-
-
无机化学学报
Chinese Journal of Inorganic Chemistry
主管 : 中国科学技术协会
刊期 : 月刊主编 : 游效曾
语种 : 中文主办 : 中国化学会
ISSN : 1001-4861 CN : 32-1185/O6简介:展开 >《无机化学学报》由中国化学会主办,是展示我国无机化学研究成果的学术性期刊,月刊。1985年由化学前辈戴安邦院士(发起)创刊,现任主编游效曾院士。编辑部设在南京大学化学化工学院化学楼。报道我国无机化学领域的基础研究和应用基础研究的创新成果,内容涉及固体无机化学、配位化学、无机材料化学、生物无机化学、有机金属化学、理论无机化学、超分子化学和应用无机化学、催化等,着重报道新的和已知化合物的合成、热力学、动力学性质、谱学、结构和成键等。设有综述、研究快报及论文等栏目。
本刊所刊论文均为美国《科学引文索引》(SCI)网络版、美国《化学文摘》(CA)、《中国学术期刊文摘》(中、英文版)、《中国科技论文与引文数据库(CSTPCD)》、《中国科学引文数据库》、《中文科技期刊数据库》、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》、中国台湾华艺《中文电子期刊服务》等国内外多种著名检索刊物和文献数据库摘引和收录。
《无机化学学报》2011年每期200页,定价28.00元、全年定价336.00元。本刊由各地邮局征订,邮发代号28-133。也可直接向编辑部订阅。
- 影响因子: 0.834
期刊内检索
期刊内热点文章
采用电子辅助热丝化学气相沉积技术制备了垂直石墨烯(VG)、硼掺杂垂直石墨烯(BVG)、氮掺杂垂直石墨烯(NVG)及硼-氮共掺杂垂直石墨烯(BNVG)薄膜, 采用扫描电子显微镜、透射电子显微镜、X射线光电子能谱及Raman光谱仪表征了形貌、微结构及成分, 并采用电化学方法分析了其作为表皮传感电极的电化学性能。结果表明, BNVG薄膜由垂直于基片生长的二维纳米片排列成了三维多孔网结构, 这些纳米片的硼和氮原子分数达到3.78%和2.75%。BNVG薄膜电极的皮肤接触电阻低至4.5 kΩ, 对于葡萄糖的响应浓度范围在0.001~10 000 μmol·L-1, 检测限低至0.03 μmol·L-1, 具有良好的抗干扰能力及长期稳定性。
为研究草酸钙(CaC2O4)晶体成核、生长和聚集, 探讨降解茯苓多糖(PCP)的抑制作用, 采用X射线衍射、FT-IR、扫描电镜、拉曼光谱、ζ电位仪和紫外分光光度计等方法对不同条件下形成的CaC2O4晶体进行表征。结果表明, 在低过饱和度(RS ≤ 26.6)时, 主要生成一水草酸钙(COM)晶体; 至RS为37.6和46.0时分别生成了11.6%和38.3%的二水草酸钙(COD)晶体, 且高RS时晶体的聚集程度增加。在RS相同时, 随着Ca2+/Ox2-(Ox2-=C2O42-)化学计量比(nCa2+/nCa2-)增大, 晶体中COD比例增加。降解PCP的加入可增加体系中可溶性Ca2+浓度, 减少生成的CaC2O4晶体质量, 增加晶体表面ζ电位绝对值, 这些均有利于抑制CaC2O4结石的形成。因此, 高Ox2-浓度对肾结石形成的风险远大于高Ca2+浓度, 提示草酸的摄入对CaC2O4结石的风险远远大于钙的摄入, 降解PCP能同时抑制CaC2O4晶体的成核、生长和聚集。
采用简单的两步水热法制备出了锆基金属有机骨架和钼酸铋的复合材料MOF-808/Bi2MoO6。通过X射线粉末衍射、傅里叶红外光谱、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外可见漫反射光谱、N2吸附-脱附测试和电化学测试对所制备材料的组成、微观结构、光学性质以及光生载流子的复合效率进行了分析。与纯Bi2MoO6和MOF-808相比,0.5%-MOF-808/Bi2MoO6复合材料展示出了较高的光催化活性,在可见光照射120 min时对抗生素环丙沙星(CIP)的降解率达89.7%。通过自由基捕获实验,证明了•O2-是主要活性物种,基于此我们提出了可能的光催化降解机理。
采用水热法、以氯化铝为铝源对硅藻土(De)进行改性,通过浸渍法将亚铁氰化铜(KCuHCF)纳米颗粒负载于改性De表面,制备出γ-AlOOH/De-KCuHCF和γ-Al2O3/De-KCuHCF两种复合吸附剂,对所制备的吸附剂进行了表征,并研究了其对Cs+的吸附性能。结果表明,所制备吸附剂具有优异的Cs+吸附性能,γ-AlOOH/De-KCuHCF和γ-Al2O3/De-KCuHCF最高吸附容量分别可达75.44、84.02 mg·g-1,γ-Al2O3/De-KCuHCF对模拟卤水中Cs+的吸附率高达97.55%;以3 mol·L-1 NH4NO3为脱附剂,经3级连续脱附后,γ-Al2O3/De-KCuHCF的Cs+脱附率可达81.88%,经过5次吸附-脱附循环后仍保持了较高的吸附量。
采用Zn-MOF(MOF为金属有机骨架)制备纳米多孔碳材料,通过自组装法将多孔碳与花状MoS2结合,制备出具有规整有序结构的花状Zn-MOF衍生碳@MoS2复合吸波材料。基于Zn-MOF衍生纳米多孔碳的高孔隙率、大比表面积,MoS2的花状结构引起的电磁波多次反射和散射,以及MoS2和Zn-MOF衍生碳之间存在的强极化效应、良好的阻抗匹配和协同作用,Zn-MOF衍生碳@MoS2在频率为9.28 GHz时的最佳反射损耗达到-49.68 dB,表现出优异的电磁波吸收性能。
使用一步热解法制备了Cu/Fe双金属生物炭复合材料(BC@Cu/Fe-X,X=3、5、10)和Fe生物炭复合材料(BC@Fe)。考察了Cu掺杂量对BC@Cu/Fe-X吸附Pb2+的影响,确定最佳掺杂比例。结果显示BC@Cu/Fe-5吸附Pb2+性能最好。考察了吸附时间、Pb2+浓度、pH、背景离子、空气中老化等实验条件对BC@Cu/Fe-5吸附Pb2+的影响。通过动力学、热力学数据拟合分析了BC@Cu/Fe-5吸附Pb2+的行为,利用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)等表征手段解析了BC@Cu/Fe-5吸附Pb2+前后特征峰变化。BC@Cu/Fe-5吸附Pb2+的机理如下:大约42%的Pb2+被还原为Pb0,33%的Pb2+形成PbO/Pb(OH)2,25%的Pb2+与O—H、C—O、C=O、COO、Fe—O等官能团形成配合物。Cu掺杂可以提高Fe还原Pb2+的能力。
利用热分解法制备了结构明确的负载型纳米晶催化剂。在纳米晶成核和生长过程中加入一维ZnO纳米棒作为晶种,调控不同组分的纳米晶在ZnO纳米棒表面均匀生长,从而获得了结构明确的MnO/ZnO、Co3O4/ZnO、Co3Mn1/ZnO催化剂。透射电子显微镜(TEM)与X射线粉末衍射(XRD)结果显示,不同组分纳米颗粒都均匀分散在ZnO纳米棒表面。相对于MnO/ZnO和Co3O4/ZnO催化剂,Co3Mn1/ZnO催化剂在CO氧化反应中具有最佳的催化性能。在200 L·gcat-1·h-1的气时空速下,Co3Mn1/ZnO催化剂起活温度为50 ℃,其T100(CO转化率达到100%时的温度)为200 ℃;利用X射线光电子能谱(XPS)对不同催化剂进行了分析,结果显示,Co3Mn1/ZnO催化剂的氧空位比MnO/ZnO催化剂提高了30%以上,从而使其具有较高的CO氧化催化性能。更为重要的是,Co3Mn1/ZnO复合纳米晶催化剂的活化能(39.4 kJ·mol-1)远低于其它负载型纳米晶催化剂。
以咔唑为原料,经过两步反应制备得到N-乙基咔唑-3-甲醛,其结构经X射线单晶衍射测定属于单斜晶系,空间群为P21/n。再以N-乙基咔唑-3-甲醛与1,3-二氨-2-丙醇为原料,设计、合成了一种新型双席夫碱荧光探针分子CMP。借助荧光光谱在体积比为6∶4的DMSO/H2O缓冲溶液(Tris-HCl,pH=7.0)中研究了探针CMP对Cu2+的选择性识别。研究结果表明,探针CMP与Cu2+以1∶2的比例配位,结合常数为1.52×105 L·mol-1,检出限为0.205 μmol·L-1。回收实验表明,探针分子CMP可应用于环境水样中Cu2+的检测。
以2-(4-甲基)苯基吡啶为C, N-配体构筑的环金属钌配合物1与NOBF4在不同反应条件下, 以较高产率获得了2个环金属钌(Ⅱ)亚硝酰配合物2和3。温度提高和有氧条件更有利于3的生成。核磁共振谱、质谱、红外光谱及单晶结构显示这2个亚硝酰配合物均具有{RuⅡ-NO+}特征。电化学及紫外可见吸收光谱进一步证实了这一点。随后, 对钌亚硝酰配合物2在光照下的产物进行分离并通过NMR和质谱表征, 结果表明: 此类亚硝酰配合物在光照下断裂Ru—NO并释放NO, 金属中心以Ru (Ⅱ)稳定存在。
以2,2′-联苯二甲酸(H2DPA)分别与双(三(2-甲基-2-苯基丙基)锡)氧化物、三环己基氢氧化锡和二丁基氧化锡反应,合成了3个有机锡2,2′-联苯二甲酸酯:[((PhC(Me)2CH2)3Sn)2(DPA)] (1)、[(Cy)3Sn(DPA)]n (2)和[(n-Bu)2Sn(DPA)]n (3)。通过IR、NMR、元素分析、热重及X射线单晶衍射对配合物进行表征分析。配合物1、2、3均属单斜晶系,配合物1为双核结构,配合物2、3为一维链状结构,锡原子的配位数依次增大,分别为4、5、6。体外抗癌活性实验表明,配合物1、2、3对人肺癌细胞(NCI-H460)、人乳腺腺癌细胞(MCF-7)、人肝癌细胞(HepG2)的增殖具有较强的抑制作用。
利用水热法合成核壳结构Au@SiO2@CeO2纳米微球,制备了一系列双层结构复合光阳极并应用于染料敏化太阳能电池(DSSC)。研究表明:当CeO2纳米微球和核壳结构Au@SiO2@CeO2纳米微球应用于DSSC光阳极散射层时,电池的光电转化效率有了显著提高。相对于纯TiO2 (P25)光阳极,P25/CeO2纳米球光阳极电池的DSSC光电性能提高了15.3%,P25/Au@SiO2@CeO2纳米球光阳极电池的光电性能提高了27.9%。DSSC光电性能的提高主要归因于2个方面:一方面,Au纳米粒子的表面等离子体共振效应有效提高了光阳极薄膜的光散射效应。另一方面,CeO2具有较高的染料负载能力,核壳球形结构具有较高的比表面积,增强了光的散射效应,提高了电子传输能力。
钛硅(TS-1)分子筛的微孔孔道严重限制了其在复杂分子催化转化中的应用,为了克服这一问题,通过酸洗脱、碱刻蚀及二者相结合的方法制备了多级孔TS-1分子筛,并采用等体积共浸渍法制备了相应的NiMo负载型催化剂;使用X射线衍射(XRD)、N2吸附-脱附、吡啶吸附红外光谱(Py-FTIR)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)和高分辨透射电子显微镜(HR-TEM)等方法对多级孔TS-1分子筛的理化性质进行了表征;以二苯并噻吩(DBT)为探针对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,和常规TS-1分子筛相比,多级孔TS-1分子筛保持了MFI拓扑结构,比表面积增大且具有介孔结构,分子筛表面形成了适量的Br?nsted酸中心;相应催化剂上活性金属与载体间相互作用得以改善,MoS2片晶长度和堆垛层数适宜,形成了更多的NiMoS活性相;催化剂活性和选择性均有所提升,尤其是酸洗脱获得的NiMo/AT-TS-1催化剂的活性相较未经处理的NiMo/TS-1催化剂提升了1.2倍,直接脱硫(DDS)路径选择性提升了22%。
用双模板法制备了介孔纳米薄膜构筑的毫米级尺寸的大孔-介孔SiO2(MMS),通过多巴胺(DA)在其孔道表面氧化自聚合成聚多巴胺(PDA),得到PDA修饰的MMS(PDA/MMS),再经PDA原位还原Ag+制得大孔-介孔Ag/PDA/MMS复合材料。应用扫描电镜、透射电镜、N2吸附-脱附、X射线光电子能谱、X射线衍射、UV-Vis、FT-IR和热重技术对所制得的材料进行表征。结果表明,MMS兼具纳米介孔材料和宏观尺寸大孔材料的优点。Ag/PDA/MMS在催化还原对硝基苯酚(4-NP)反应中展现出高催化活性,转化频率(TOF)达2.97 min-1。这归因于其独特的结构:相互连通的大孔孔道大大降低了传质阻力,短孔道的介孔显著增加了活性位点的可达性,大的比表面积为反应物提供了大量的活性位点。而且,毫米级尺寸的Ag/PDA/MMS可以很容易从反应体系中分离出来,在5次循环后仍能将4-NP完全转化为对氨基苯酚(4-AP)。另外,Ag/PDA/MMS对亚甲基蓝(MB)的还原也有良好的催化效果。
A novel Ho4 complex, namely [Ho4(NO3)2(acac)4(L)2(CH3OH)2]·2CH3CN, where H4L=(E)-2-(hydroxymethyl)-2-(((2-hydroxynaphthalen-1-yl)methylene)amino)propane-1,3-diol and acac=acetylacetone, has been constructed by using a polydentate Schiff base ligand (H4L) reacting with Ho(acac)3·2H2O. X-ray diffraction analysis indicates that complex 1 shows a central symmetric tetranuclear structure. Both eight-coordinated Ho1(Ⅲ) and Ho2(Ⅲ) ions possess a distorted triangular dodecahedron geometrical configuration. Complex 1 shows good solvent stability. The magnetic study reveals that complex 1 exhibits a slow relaxation of the magnetization behavior. To our knowledge, complex 1 is a rarely Ho(Ⅲ)-based complex displaying slow magnetic relaxation behavior under Hdc=0 Oe filed. Interestingly, complex 1 exhibited high catalytic activity and could effectively catalyze the cycloaddition reaction of CO2 with vari-ous epoxides.
A series of complexes constructed by 2,2′∶6,2″-terpyridine-4-carboxylic acid (Htpc), namely [Cr2(tpc)2 (HCOO)2(OH)2]·4H2O (1), [Ba(tpc)2(H2O)2]n (2), [Zn2(tpc)2(NO3)2]n (3), [Pb(Htpc)(NO3)2]·2H2O (4), and [Rh(Htpc)Cl3]·CH3OH·H2O (5), have been prepared under solvothermal conditions. Single crystal X-ray analysis reveals that the organic ligands took four different coordination fashions in 1-5. Complexes 1-5 show novel supramolecular networks through rich C—H…O/N hydrogen bonds and π…π contacts. The luminescence of the complexes was investigated and under 365 nm ultraviolet radiation the crystals of 2-5 displayed green, blue, purple-blue, and golden colors, respectively.
One metal-organic framework [Cd3(L)2(H2O)9]·9H2O (MOF 1), where H3L=5-(((4-carboxyphenyl)oxy)methyl) benzene-1,3-dicarboxylic acid, has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and elemental analysis. MOF 1 exhibits a 2D microporous structure with an accessible volume of 22.4%. Luminescent property studies reveal that MOF 1 can act as a promising luminescent sensor for detecting Fe(Ⅲ) and Cr(Ⅵ) with high selectivities and low detection limits, which are additionally free from the interference of other ions. Moreover, the mechanism of selective quenching was studied by measuring the UV-Vis absorption of the host metal-organic framework and the target analyte ions. The fluorescence resonance energy transfer is the possible mechanism involved in the quenching of the fluorescence intensity.
A new cyano-equipped dithienylethene in closed-ring form (Lc) was first isolated and structurally characterized by IR, 1H NMR, and X-ray single-crystal diffraction. It showed an interesting racemic mixture of R,R and S,S enantiomer pairs evidencing the structural transformation from 1,3,5-hexatriene to cyclohexadiene in the photochemical conrotatory cyclization. Followed UV-Vis spectral investigations exhibited its reversible photochromism in both THF solution and solid state with the maximum absorption wavelength of 607 nm observed in the visible band. The photo-isomerization kinetics of the compound indicated a first-order process for photo-reversion and zeroth-order for photo-cyclization. The compound was further used as a ligand to self-assemble with Ag(CF3SO3) resulting in complex 1. Its structure was characterized by elemental analysis, IR, 1H NMR, and ESI-MS. Complex 1 demonstrated reversible photochromism in the solid state with the same λmax as the closed-ring ligand. Unlike the complex derived from the open-ring ligand, Ag(Ⅰ) ions coordination with the closed-ring ligand doesn′t modify the absorption due to the restricted free rotation of the thienyl rings in the rigid configuration of the closed-ring ligand. In comparison with the open-ring ligand, 1 displayed a faster photo-isomerization rate corresponding to the smaller band gap determined by cyclic voltammetry.
Two anthracene-based complexes [Au(anbdtim)2]PF6 (1) and [Au(anbdtim)2][Au(CN)2] (2) have been synthesized, where anbdtim=2-(anthracenyl)-4, 5-bis(2, 5-dimethyl(3-thienyl))-1-methyl-imidazole. The different counter anions, PF6- in 1 and [Au(CN)2]- in 2, led to significantly different fluorescence between 1 and 2 both in solution and in the solid state. Complexes 1 and 2 in CH2Cl2 revealed an emission at 465 and 445 nm, respectively, and their solidstate luminescence exhibited an emission at 450 nm for 1 and 478 nm for 2. Interestingly, the luminescence of 2 was sensitive to benzene molecules, with an emission at 475 nm (quantum yield Φ=66.5%) in benzene while 448 nm (Φ=22.9%) in CH2Cl2. Moreover, the blue-green-emitting solid 2-benzene was prepared by the evaporation of a benzene solution of complex 2. This solid exhibited reversible luminescence switching between blue-green emission at 491 nm and steel-blue emission at 460 nm upon alternately removing and incorporating benzene molecules. On the basis of these experimental results, we discussed the influence of counter anions and benzene molecules on the luminescence behaviours of 1 and 2.
A series of xMoO3/NiO-Al2O3 catalysts (x% represented the mass fraction of MoO3) were prepared by double hydrolytic co-precipitation method combined with impregnation method. The methanation reaction activity and sulfur resistance of catalysts were evaluated using a fixed-bed reactor, and the catalysts were characterized in detail fresh and after deactivation. The results showed that the low-temperature methanation activity of the catalyst decreased with the increase in MoO3 loading, whereas the sulfur resistance of the catalyst was significantly enhanced after MoO3 doping. The decrease in catalyst activity for low-temperature methanation was attributed to the fact that the increase in MoO3 loading reduced the active specific surface area of the catalyst, but the introduction of MoO3 also provided a competitive adsorption site for sulfide, which can delay sulfur poisoning at the active site. The xMoO3/NiO-Al2O3 catalyst with 12.5% MoO3 loading (mass fraction) maintained the highest methanation activity for 7 h in the presence of 143 mg·m-3 H2S/H2 (81.1% CO conversion, 550 ℃). The sulfur chemisorption content of 12.5MoO3/NiO-Al2O3 catalyst reaching 0.71% (mass fraction) was 1.48 times that of NiO-Al2O3 catalyst and further XPS also confirmed that the amount of MoS2 generated was the highest, which indicated that Mo preferentially adsorbs more sulfur and protects the active site. In addition, at a MoO3 loading of 12.5%, MoO3 on the surface of the catalyst reached the threshold of monolayer dispersion, which can provide more adsorption sites for sulfides when competitive adsorption occurs.
Core-shell structure precursor Ni0.80Co0.15Al0.05(OH)2 was synthesized via co-precipitation by adjusting the Al solution with three flow rates (Each flow rate worked for three hours). The core of the precursor was a uniform structure with a composition of Ni0.88Co0.12(OH)2; and the shell of the precursor was a concentration-gradient structure with a composition of Ni0.72Co0.18Al0.10(OH)2, which Ni content decreased gradually while Al content increased steadily from the surface of the core to the particle surface. A mixture of this core-shell structure precursor and LiOH·H2O was sintered at 700 ℃ for different sintering times in the O2 atmosphere to obtain a full concentration gradient and spherical LiNi0.80Co0.15Al0.05O2. The diffusion of Ni, Co, and Al under different calcination times led to a concentration gradient variation of LiNi0.80Co0.15Al0.05O2, which displayed different electrochemical performance. When the sintering time was 12 h, the obtained material had a well-designed concentration-gradient structure: from the core to particle surface, the content (atomic fraction) of Ni decreased from 0.855 to 0.732, while the content of Al content increased steadily from 0.003 to 0.115. And the content of Co first increased from 0.142 to 0.163 and then decreased to 0.153. This cathode material had a lower degree of cation mixing and well-developed layered characteristics. It had a discharge capacity of 201.3 mAh·g-1 at 0.2C, which was just under 205.8 mAh·g-1 of the homogeneous one; and it showed excellent capacity retention of 71.6% after 200 cycles, which was much higher than that of the homogeneous material (54.6%). It is attributed to a good Ni-deficient and Al/Co-rich out-layer, which can reduce anisotropic volume variations and electrode polarization during cycling. As a result, it could reduce the charge-transfer resistance of the electrode, and prevent the formation and extension of micro-cracks on the electrode′s surface. This cathode material is easy for industrial application because the pH value of the co-precipitation reaction is quite stable and its concentration gradient structure is controllable by adjusting the flow rates of the Al solution and the calcination time. Furthermore, the pH value of the co-precipitation reaction shifted only when the injection rate of the Al solution was adjusted. After that, the pH value quickly returned to keep constant, and the precursor had high crystallinity and good consistency of the material.

以多齿席夫碱配体H2L (H2L=(E)-N'-(3-乙氧基-2-羟基亚苄基)-3-羟基吡啶甲酰肼)为配体,与Ln (acac)3·2H2O (Ln=Tb、Ho、Er;acac-=乙酰丙酮根)反应,通过溶剂热法,成功得到了3例新的双核稀土配合物[Ln2(acac)2(L)2(C2H5OH)2](Ln=Tb (1)、Ho (2)、Er (3))。单晶X射线衍射分析表明:配合物1~3的结构主要由2个LnⅢ离子、2个乙酰丙酮根(acac-)、2个L2-及2个C2H5OH组成,中心LnⅢ离子通过2个μ2-O原子相互连接,形成一个平行四边形的Ln2O2核心。固体荧光实验测试结果表明:配合物1在室温下表现出TbⅢ离子的荧光特征发射峰。此外,生物活性研究表明,与配体H2L和稀土离子相比较,配合物1~3具有更强的抗菌活性。采用紫外光谱法、循环伏安法、凝胶电泳法和荧光光谱法研究了配合物1~3与小牛胸腺DNA之间的相互作用,结果表明配合物主要以插入作用的方式与小牛胸腺DNA结合。
前期采用环境友好方法制备的改性碳化硅颗粒,经较长时间放置,发现其由亲水性转变为超疏水性,接触角为156°。为解释这一新的现象,采用扫描电子显微镜、能谱、(高分辨)透射电子显微镜、X射线光电子能谱(XPS)对原粉碳化硅、改性后碳化硅及久置碳化硅进行了测试与分析。结果显示:改性后碳化硅经较长时间放置,表面胞状颗粒增大并出现凸起物,粗糙度增加,存在类似于荷叶的微纳米结构。改性后颗粒的主要成分为Ni、Si、O,其中凸起处Ni、O元素的含量明显高于凹陷处。Ni颗粒表面出现清晰的膜层,膜层厚度为2~3 nm,但结晶度偏低。XPS测试结果显示金属镍的特征峰正向移动近4 eV,与镍的氧化态特征峰相一致,从而解释了颗粒表面形态发生细小改变,自发形成超疏水膜层的机理。
光生电子-空穴对的复合被认为是限制BiVO4材料光电催化转换效率的重要原因之一。基于此,通过简单的水热-煅烧方法构筑了BiVO4/ZnFe2O4同型异质结光阳极,BiVO4/ZnFe2O4复合光阳极在1.23 V (vs RHE)下的光电流密度为3.33 mA·cm-2,较纯BiVO4提升了2倍(1.20 mA·cm-2)。相关的结构及性能测试表明,BiVO4和ZnFe2O4形成了带隙错开的n-n异质结,使得光生载流子得到有效分离,更有效地参与水氧化过程,进而提高了BiVO4的光电催化水分解性能。
通过静电自组装制备有机复合半导体N缺陷g-C3N5(NVs)修饰S掺杂苝酰亚胺(S-PDI)。NVs具有丰富的活性位点,而具有氨基基团的酰胺增强了S-PDI与NVs的分子间作用力。NVs质量分数30%的30% NVs/S-PDI对Cr(Ⅵ)的还原率为79.96%,对苯酚的降解率为74.40%;30% NVs/S-PDI协同氧化苯酚与还原Cr(Ⅵ)过程中,Cr(Ⅵ)的还原率为92.83%,苯酚的降解率为93.89%,即苯酚的氧化降解促进了Cr(Ⅵ)的还原,Cr(Ⅵ)的还原增强了苯酚的氧化降解。NVs/S-PDI充分利用导带的还原性能和价带的氧化性能,实现电子空穴的空间分离,协同强化光催化过程中的氧化半反应和还原半反应,同步提升光催化氧化还原性能。同时,光照产生的电子、H2O2与Cr(Ⅵ)形成一个光自芬顿反应过程,进一步促进了苯酚的氧化降解与Cr(Ⅵ)的还原去除。
选取溴代噻唑和三乙炔基苯为单体,利用聚合反应自下而上构建含噻唑共轭微孔聚合物(NSCMP),通过热解和KOH活化热解NSCMP制备了氮、硫杂原子硬炭(NSHC)和活化NSHC (KNSHC)。利用扫描电子显微镜、能量色散谱、氮气吸附-脱附和恒流充放电等表征2个样品的结构与电化学性能。研究表明KNSHC中N和S的质量分数分别为10.42%和2.23%,KNSHC比表面积高达2 140 m2·g-1。在0.2 A·g-1电流密度下循环500次后KNSHC和NSHC的可逆比容量分别为946.2和493.7 mAh·g-1。KNSHC的优异电化学性能归因于其独特的孔结构和氮、硫杂原子的协同作用。
为考察不同锰源对所制备尖晶石LiMn2O4(LMO)电化学性能的影响(特别是高温性能),采用沉淀法制备前驱体,通过不同煅烧温度制备得到最常用的锰氧化物(MnO2、Mn2O3和Mn3O4)为锰源,经相同条件制备得到LMO正极材料,通过考察所得LMO形貌及电化学性能来研究锰源与LMO电化学性能的关系。研究结果表明,相同的前驱体在不同煅烧温度下可以得到不同的锰氧化物,且各自具有不同的形貌结构。由这些锰氧化物都可以得到高纯度的LMO,但产物形貌结构以及材料中的八面体晶体含量和尺寸不同。由Mn2O3制备得到的LMO材料中的八面体晶体含量最多,且尺寸最均匀,在3种LMO中容量性能、倍率性能和循环性能最好:0.2C (1C=148 mA·g-1)下首次放电比容量为131.8 mAh·g-1;3C下还有100.4 mAh·g-1的放电比容量。其对应半电池在0.5C下循环100次后,放电比容量还有116.0 mAh·g-1,容量保持率为93.9%,电化学储能性能远远优于其他2种LMO。即使是在高温55℃下,由Mn2O3得到的LMO也表现出明显优于其他2种材料的高倍率性能和抗衰减性能。
采用高温固相法合成了一系列Eu2+掺杂的MgY2Al3Si2O11N (MYASON)青光荧光粉。详细探讨了不同制备方法对荧光粉的物相结构和发光强度的影响,利用X射线衍射精修和X射线光电子能谱实验证明Si4+-N3-离子对成功掺入石榴石晶格中。通过荧光光谱、寿命衰减曲线和变温光谱研究了发光性能,研究结果表明,用365 nm紫外光激发MYASON∶Eu2+荧光粉时,在青光区域呈现不对称宽带发射,峰值为490 nm,可以为紫外芯片激发的白光发光二极管有效提供青光成分。
稀土发光传感器可用于有害的有机小分子胺的检测,然而稀土离子较大的离子半径和不稳定的配位构型,使其在固态下对有机小分子胺实现高灵敏性的发光检测具有一定的挑战。通过在单β-二酮配体上引入胺醇识别基团,使其与稀土铕离子通过配位成功构筑了具有可调控配体内电荷转移(ILCT)性质的单核稀土配合物[Eu(L)3(H2O)2](HL=(2Z)-1-(4-(双(2-羟基乙基)氨基)苯基)-4,4,4-三氟-3-羟基丁-2-烯-1-酮)。配合物的传感研究表明,[Eu(L)3(H2O)2]在弱的亲核作用下对三丙胺等有机小分子胺表现出明显的发光增强响应。
以多巴胺、钼酸铵、碳酸氢铵为原料,通过一步煅烧法合成一种MoO2@氮掺杂碳复合物(MoO2@CN),并利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)等对其进行表征。以卡马西平(CBZ)为目标污染物,以过一硫酸氢钾(PMS)为氧化剂,在温度为25℃、pH为6.5的条件下,MoO2@CN/PMS在12 min内对CBZ的去除率达99.2%,与商用MoO2相比,其表观速率常数kobs(0.393 min-1)是商用MoO2(0.016 4 min-1)的24.0倍,这主要是由于制备的MoO2@CN比商用MoO2具有更好的电子传输能力以及更大的比表面积。MoO2@CN在pH为2.5~10.5时均能有效降解CBZ,而且对大多数染料、酚类化合物、抗生素等多种污染物均具有良好的降解性能。此外,MoO2@CN/PMS在60 min内对CBZ的总有机碳(TOC)去除率高达74.0%。电子顺磁共振波谱(EPR)和自由基猝灭实验显示MoO2@CN/PMS体系中主要起作用是硫酸根自由基(SO4·-)和羟基自由基(·OH)。更有意思的是,在Fe2+/PMS体系加入MoO2@CN后,其催化降解CBZ的性能显著增强,kobs(1.25 min-1)是单独Fe2+/PMS体系(0.079 7 min-1)的15.7倍,这主要归因于MoO2@CN的引入加快了Fe3+到Fe2+的转变,导致更多·OH的生成。
在水热晶种法基础上采用两步变温晶化以高水硅比(nH2O/nSiO2)稀溶液配方为合成液,研制用于渗透汽化(PV)乙酸脱水的丝光沸石膜(MOR膜),考察了变温晶化各段时间、水硅比与氟离子对MOR膜的形貌与分离性能的影响规律。结果表明:高温段晶化时间、水硅比与氟离子对MOR膜的形貌、结晶度和膜层厚度产生显著影响,并影响MOR膜渗透气化分离性能;在高温段(150℃)和低温段(120℃)的晶化时间分别为18和6 h,在水硅比为60且含氟离子体系中所制备的MOR膜的性能最佳,其对质量分数50%的乙酸水溶液的渗透通量和分离系数分别为1.45 kg·m-2·h-1和1 008。
构建氧空位以及附着金属单质Bi (Bi0)是增强半导体材料光吸收性能、促进半导体光生载流子分离的有效方法。通过简单的共沉淀法及氢气热还原成功制备了PO43-掺杂Bi2O2CO3附着Bi0(Bi-P-BOC)的可见光催化剂,并对其在可见光下催化降解氧氟沙星(OFX)的性能及机理进行了研究。材料表征结果表明BOC随着PO43-的均匀掺杂,可见光吸收能力增强,表面缺陷增多,比表面积增大。而随着氢气热还原,BOC表面形成Bi0的同时也原位构建了大量的氧空位。可见光催化性能测试表明,Bi-P-BOC可以在180 min内降解约85%的OFX,降解速率为0.013 0 min-1,是BOC降解速率的8倍。Bi-P-BOC光催化降解机理表明其具有更好的可见光吸收能力,Bi0以及氧空位的存在促进了光生载流子的分离,h+是其光催化降解过程中的主要的活性氧物种(ROS),此外,1O2和·O2-也对降解有一定贡献。
以二氰二胺、硒粉和钨酸钠为前驱体,采用一锅法成功制备出Se掺杂WO3·0.5H2O/g-C3N4(Se/WCN)催化剂。并采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和X射线光电子能谱(XPS)对样品的物相结构、形貌及化学组成进行表征。与原始的WO3和g-C3N4相比,Se/WCN催化剂的起始电位降到了-0.75 V (vs RHE),电流密度高达70 mA·cm-2,表现出更高的电催化活性。而光照后,Se/WCN的催化性能进一步提升,起始电位从-0.75 V (vs RHE)降至-0.65 V (vs RHE),电荷转移电阻由371.4 Ω减小到310.0 Ω。
设计、合成了2种配合物:[Ca (Phen)(Nap)2]n(1)和[Mn2(Phen)2(Nap)4(H2O)](2)(Phen=菲咯啉,HNap=1-萘甲酸)。通过红外光谱、元素分析、X射线单晶衍射和热重对其进行了结构表征。测定了配合物的激发光谱、发射光谱,以及配合物对人肺癌细胞(NCI-H460)、人乳腺癌细胞(MCF-7)、人肝癌细胞(HepG2)的体外抑制活性;利用紫外吸收光谱、荧光分光光度法研究了配合物与小牛胸腺DNA的相互作用。结果表明:配合物1、2的激发光谱和发射光谱具有很好的镜像关系,且配合物2的斯托克斯位移大于配合物1;配合物对3种癌细胞都有较好的抑制作用,但是2更优于1;配合物1和2与小牛胸腺DNA以静电作用发生沟面结合,结合常数分别为5.83×103和6.46×103 L·mol-1。
二水合氧化钨(WO3·2H2O)因其独特的层状结构且富含层间结构水,与无水WO3相比显示出更加优异的电致变色性能。我们采用简单、无模板的阴极电化学沉积方法,成功在氧化铟锡(ITO)导电玻璃基底上制备了WO3·2H2O薄膜。通过改变电沉积液中过氧化氢(H2O2)的加入量优化沉积液的成分,获得了具有纳米多孔结构的薄膜。由此制备的WO3·2H2O薄膜显示出大的光学对比度(633 nm处的光学对比度大于90%)、快速的响应速度(着色、褪色时间均小于10 s),以及良好的循环稳定性(经10 000次循环后,光学对比度仍保持在90%左右)。
Two ternary lanthanide complexes, [Eu(L)3(Phen)]2·2H2O (1) and [Tb(L)3(Phen)]2·2H2O (2), based on 3-((4, 6-dimethyl-2-pyrimidinyl)thio)-propanoic acid (HL) and 1, 10-phenanthroline (Phen) were prepared and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isostructural. Two lanthanide ions (Ln) are bridged by four carboxylate ligands. The rest two carboxylate ligands and Phen coordinate with Ln with bidentate chelating mode, forming the dimeric arrangement. The coordination number of Ln is nine with a distorted mono-capped square antiprismatic coordination polyhedron. The solid-state photoluminescent measurements suggest that both complexes showcase the characteristic emission bands of the metal center.
A binuclear monofunctional platinum(Ⅱ) complex, [Pt2(BPA-TPA)Cl2]Cl2 (Pt2-BPA-TPA), containing polypyridyl ligand 2, 6-bis((bis(pyridin-2-ylmethyl)amino)methyl)pyridine was synthesized and characterized by nuclear magnetic resonance and high-resolution mass spectroscopy. In addition, the structure of Pt2-BPA-TPA was determined by X-ray single-crystal diffraction. Agarose gel electrophoresis experiments were used to demonstrate the efficient pBR322 DNA-cleaving activity of Pt2-BPA-TPA at a low concentration of 10 μmol·L-1. In CCK-8 (cell counting kit-8) cytotoxicity studies using the A549 human lung cancer cell line, Pt2-BPA-TPA demonstrated enhanced anticancer activity compared with cisplatin. Mechanistic studies provided evidence that Pt2-BPA-TPA induces apoptosis via triggering DNA damage and upregulating downstream cellular signaling cascades of p21 and cleaved-caspase-3.
To explore the potential applications of AlN in optoelectronic devices, the electronic structure and optical properties of AlN with different Lu doping concentrations (denoted as Al1-xLuxN, where x is the atomic fraction of Lu) were calculated by first-principles. The results show that the supercell volume of Al1-xLuxN increases with the increase of Lu doping concentration, while the bandgap does the opposite. The static dielectric constant of Al1-xLuxN increases in the low-energy region with the increase of Lu doping concentration. As Lu doping concentration increases, the peak intensity of reflectivity, refractive index, and absorption coefficient decrease, and the peaks shift to lower energy. The energy-loss spectra of Al1-xLuxN exhibit obvious plasma oscillation features, and the peaks are lower than that of the intrinsic AlN. The photoconductivity of Al1-xLuxN increases sharply in the low-energy region with the increase of energy.
The organic substance 2,5-dibromoterephthalic acid (H2L1) was used as the primary ligand and 2,2'-bipyridine (L2) and 1,10-phenanthroline (L3) as the secondary ligands, respectively, and reacted with manganese sulphate monohydrate and cobalt nitrate hexahydrate by the solvothermal method to give complexes [Mn2(L1)2(L2)2 (H2O)2]n (1) and [Co2(L1)2(L3)2(H2O)2]n (2). The two complexes were investigated analytically by such as single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric analysis, etc. The results show that complex 1 is composed of Mn2+ coordination linking L12- and L2 to form an infinitely extended 2D network-like structure, with the layers forming a 3D network-like structure under intermolecular hydrogen bonding and π-π stacking. Complex 2 consists of Co2+ ligated to L12- and L3 to form an infinitely extended 2D network, with the layers stacked in a 3D network by intermolecular hydrogen bonding and π -π stacking. Both complexes had good fluorescence property and thermal stability, and the maximum emission wavelengths of complexes 1 and 2 were 355 and 365 nm, respectively.
Two cadmium-based coordination polymers [Cd(Htatb) (1,4-bimb)] ·H2O (1) and [Cd(Htatb) (1,4-bib) (H2O)]·DMF (2) (H3tatb=4, 4', 4″-s-triazine-2,4,6-tribenzoic acid, 1,4-bimb=1,4-bis(imidazole-1-ylmethyl) benzene, 1,4-bib=1,4-bis(1-imidazoly) benzene) were synthesized by hydrothermal reactions and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, IR spectroscopy, elemental analysis, etc. 1 displays a 2D layer structure, further these layers are joined by O—H⋯O hydrogen bonding to generate a four-fold interpenetrating 3D architecture. 2 shows a 2D layer structure, further joined through O—H⋯O hydrogen bonding to produce a two-fold interpenetrating 3D architecture. Complexes 1 and 2 had fluorescent properties. 1 was highly selective and sensitive towards nitrobenzene and Fe3+ ion through different detection mechanisms, while CP 2 was highly selective and sensitive towards 2,4,6-trinitrophenol and CrO42- ion.
Two Mg-based metal-organic frameworks (MOFs) were prepared using a coordination competition strategy. Under acidic conditions, the reaction of Mg(Ⅱ) ions with formic acid generated from the thermal decomposition of N, N-dimethylformamide (DMF) formed a 3D formate Mg-MOF: [Mg3(HCO2)6]·DMF (1). However, under the same conditions but with a competing ligand 1,1'∶3',1″-terphenyl-3,3″,5, 5″-tetracarboxylic acid (H4L), formic acid was no longer involved in the coordination, resulting in a new 3D Mg-MOF: [Mg2(L) (H2O)3]·2H2O·2CH3CN·DMF (2). Single-crystal X-ray analysis revealed that 1 possesses [Mg4@Mg2] tetrahedral building units that form a dia topological network with a 1D channel size of 0.44 nm. In contrast, 2 has a unique [Mg2] binuclear cluster to build a sra topology network after bridging the 4-connected L4- linker. Interestingly, a dumbbell-shaped pore with a length of 1.42 nm is observed along the a-axis in 2. Gas adsorption studies reveal that 1 had a significantly accessible inner surface with a surface area of 342 m2·g-1. However, after solvent removal, 2 could not retain the original porous character. Featuring good water stability, 1 exhibited a type-Ⅰ CO2 adsorption isotherm with quick uptake at low pressure, and up to 14.5% of the sample weight at 298 K and 2 000 kPa. Ideal adsorption solution theory (IAST) and adsorption heat calculations show that 1 has a good ability for selective CO2 capture from CH4 contained mixture.