Citation: LI Yun-he, HONG Xin, GAO Chang, NIU Xiao-qing, TANG Ke. Preparation of heteroatom-containing mesoporous MCM-41 molecular sieves and their performance in the adsorption denitrification of quinoline in model diesel oil[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1195-1204. shu

Preparation of heteroatom-containing mesoporous MCM-41 molecular sieves and their performance in the adsorption denitrification of quinoline in model diesel oil

  • Corresponding author: HONG Xin, hongxin12@sohu.com
  • Received Date: 19 July 2019
    Revised Date: 25 August 2019

    Fund Project: The project was supported by the Liaoning Provincial Key Research and Development Guidance Project (2018230006) and Liaoning Provincial Natural Science Foundation of China (20180550639, 2019ZD0699)Liaoning Provincial Natural Science Foundation of China 2019ZD0699Liaoning Provincial Natural Science Foundation of China 20180550639the Liaoning Provincial Key Research and Development Guidance Project 2018230006

Figures(10)

  • The mesoporous MCM-41 molecular sieve and heteroatom (Zn, Ba, and Ce) containing mesoporous MCM-41 molecular sieves were synthesized and characterized by X-ray diffraction (XRD), FT-infrared spectroscopy (FT-IR) and N2 sorption; their performance in the adsorption denitrification of quinoline in model diesel oil was investigated. The results indicate that all the synthesized molecular sieves take typical mesoporous structure and heteroatoms are successfully incorporated into the molecular sieves framework. An 8T cluster model for the MCM-41 molecular sieves was built by using the Materials Studio software; the simulated XRD spectrum is basically consistent with the experimental spectrum, proving the accuracy of cluster model. The adsorption of quinoline on the heteroatom-containing mesoporous MCM-41 molecular sieves were then simulated and the adsorption energy and the distance between the adsorbed molecule and the adsorption center (d(N-M)) were calculated. The results suggest that the adsorption denitrification performance of various molecular sieves follows the order of Zn-MCM-41 > Ce-MCM-41 > Ba-MCM-41 > MCM-41; that is, Zn-MCM-41 exhibits the best adsorption denitrification performance, with the highest adsorption energy and shortest distance between the adsorption molecule and the adsorption center. Moreover, the adsorption time has a significant influence on the denitrification efficiency, whereas the effect of adsorption temperature is relatively minor; the optimal adsorption times for Zn-MCM-41, Ba-MCM-41 and Ce-MCM-41 are 40, 10 and 30 min, respectively, whereas the optimal adsorption temperatures for three molecular sieves are 40, 30 and 40℃, respectively.
  • 加载中
    1. [1]

      WANG Di. Research on the type and distribution of nitrogen compounds in FCC process[D]. Beijing: Institute of petrochemical sciences, 2016.

    2. [2]

      CHENG X G, ZHAO T, FU X G, HU Z D. Identification of nitrogen compounds in RFCC diesel oil by mass spectrometry[J]. Fuel Process Technol, 2003,85:1463-1472.  

    3. [3]

      GEORGINA C L, SARA L, REGINA A, MA T M, JEUSUS C, LIUS N. Nitrogen compounds characterization in atmospheric gas oil and light cycle oil from a blend of mexican crudes[J]. Fuel, 2002,81(10):1341-1350. doi: 10.1016/S0016-2361(02)00047-9

    4. [4]

      MA Yun-jie. Study on preparation of catalyst active alumina[D]. Changsha: Agricultural University of Hunan, 2012.

    5. [5]

      MINH T N, TAYAKOUT F M, FABIEN C, GERHARD D P, CRISTOPHE G. Use of kinetic modeling for investigating support acidity effects of NiMo sulfide catalysts on quinoline hydrodenitrogenation[J]. Appl Catal A:Gen, 2017,520:132-144.  

    6. [6]

      GUO Zhong-sen, ZU Yun, HUI Yu, QIN Yu-cai, WANG Huan, ZHANG Xiao-tong, SONG Li-juan. Influence of olefin on the mechanism of thiophene adsorption on the active species of Al-MCM-41 mesoporous zeolites[J]. J Fuel Chem Technol, 2019,47(4):474-483.  

    7. [7]

      MARTINEZ B E, AGUILAR J, GUTIERREZ M, MONTOYA J A, REYES D L. Ga and Al containing MCM-41 mesoporous molecular sieves:Structure and catalytic performance for the 4, 6 dimethyldibenzothiophene hydrodesulfurization[J]. Catal Today, 2013,212:45-51. doi: 10.1016/j.cattod.2012.08.028

    8. [8]

      GUO Xiao-jun, LI Yu-tian, LI Jing. Performance of magnesium hydroxide-modified diatomite in adsorption of reactive red from aqueous solution[J]. Bull Chin Ceram, 2014,33(9):2170-2175.  

    9. [9]

      HONG Xin, LI Yun-he, GUAN Li-hua, SUN Cheng-yi, GAO Chang, TANG Ke. Adsorption removal and dynamics of aniline or pyridine from model diesel with silica gel-supported heteropoly acid[J]. Petrochem Technol, 2018,47(12):1356-1361. doi: 10.3969/j.issn.1000-8144.2018.12.010

    10. [10]

      HE Qing-quan. Study on alumina porous media preparation and adsorption properties[D]. Wuhan: Wuhan Institute of Technology, 2015.

    11. [11]

      MING Yang, WANG Lei, WANG Jun-feng, SUN Yu, YANG Jing. Study on hydrothermal stability of metal modified SBA-15mesoporous molecular sieves[J]. Spec Petrochem, 2017,34(3):30-35.  

    12. [12]

      ZHANG Z Q, YAN L, YUAN G, SHI W X, WANG W, ZHANG B, ZHANG R J, BAO X, WU S Y, CUI F Y. Pd and Pt nanoparticles supported on the mesoporous silica molecular sieve SBA-15 with enhanced activity and stability in catalytic bromate reduction[J]. Chem Eng J, 2018,344:114-123. doi: 10.1016/j.cej.2018.03.056

    13. [13]

      CHENG Jun-jie, LI Zhen-rong, ZHAO Liang-fu. Catalytic performance of Ni-W supported on micro-mesoporous Hβ/Al-SBA-15 composite molecular sieves in the hydrocracking of naphthalene to BTX[J]. J Fuel Chem Technol, 2017,45(1):93-99. doi: 10.3969/j.issn.0253-2409.2017.01.013 

    14. [14]

      LIU Sha, CAI Yi-xi, FAN Yong-sheng, LI Xiao-hua, WANG Jia-jun. Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis[J]. J Fuel Chem Technol, 2016,44(10):1195-1202. doi: 10.3969/j.issn.0253-2409.2016.10.006 

    15. [15]

      GUO Wei, CAO Yang, LI Jin, LUO Nan, ZHAO Zi-wei. Preparation, characterization and catalytic performance of the new catalysts NixP/Zr-MCM-41[J]. Acta Pet Sin (Pet Process Sect), 2016,32(5):891-897. doi: 10.3969/j.issn.1001-8719.2016.05.004

    16. [16]

      ZHANG X B, DONG J X, HAO Z C, CAI W F, WANG F M. Fe-Mn/MCM-41:Preparation, characterization and catalytic activity for methyl orange in the process of heterogeneous fenton reaction[J]. Trans Tianjin Univ, 2018,24(4):361-369. doi: 10.1007/s12209-018-0122-1

    17. [17]

      HE Xi-feng, SONG Wei-ming, AN Hong. Synthesis and characterization of mesoporous molecular sieve MCM-41 with metal dopin[J]. Fine Chem, 2014,31(10):1215-1219.  

    18. [18]

      ZHANG Jia-dong, ZU Yun, QIN Yu-cai, SONG Li-juan. Study on selective adsorption desulfurization mechanism on aluminum modified MCM-41 Zeolite[J]. Pet Process Petrochem, 2017,48(8):51-57. doi: 10.3969/j.issn.1005-2399.2017.08.012

    19. [19]

      LI Yun-he, HONG Xin, LI Xiang-long, NIU Xiao-qing, TANK Ke. Preparation of molecular sieve Ni-MCM-41 and its adsorptive denitrogenation performance of Simulated Diesel[J]. Pet Process Petrochem, 2019,50(6):40-45. doi: 10.3969/j.issn.1005-2399.2019.06.009

    20. [20]

      HONG Xin, TANG Ke. Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2015,43(6):720-727. doi: 10.3969/j.issn.0253-2409.2015.06.012 

    21. [21]

      China Petrochemical Co Ltd. Science and Technology Development Department. Industry Standards for Petroleum Products[M]. Beijing:China Petrochemical Press, 2005:402-405.

    22. [22]

      AN Xiao-wei. The theoretica calculation for CO2 capture Using hydroxypyridine-based ionic liquids and its immobilization on molecular sieve MCM-41[D]. Taiyuan: Taiyuan University of Technology, 2017.

    23. [23]

      ABREU T H, MEYER C I, PADRO C, MARTINS L. Acidic V-MCM-41 catalysts for the liquid-phase ketalization of glycerol with acetone[J]. Microporous Mesoporous Mater, 2019,273:219-225. doi: 10.1016/j.micromeso.2018.07.006

    24. [24]

      LI Ya-nan. Synthesis, characterization and catalytic activity of Me-MCM-41 for oxidative dehydrogenation of ethane to ethylene with CO2[D]. Jilin: Jilin University, 2006.

    25. [25]

      LIU Jia, SUI Ming-hao, SHENG Li. Hydrothermal synthesis, characterization and catalytic performance of Mn-MCM-41 mesoporous molecular sieve[J]. Modern Chem Ind, 2018,38(7):93-97.  

    26. [26]

      YI, BAI, Zhao-ri-ge-tu. Preparation of Pd/MCM-41 and its photocatalytic performance for benzene hydroxylation[J]. J Mol Catal, 2016,30(16):583-593.  

    27. [27]

      YAN C Y, CHEN Q C, CHANG Q, PENG Y B. Microwave-assisted hydrothermal synthesis, characterization and photocatalytic activities of Ti-MCM-41[J]. Acta Scientiae Circumstantiae, 2014,34(5):1220-1227.  

    28. [28]

      JIANG T S, TANG Y J, ZHAO Q, YIN H B. Effect of Ni-doping on the pore structure of pure silica MCM-41 mesoporous molecular sieve under microwave irradiation[J]. Colloid Surface A, 2018,315:299-303.  

    29. [29]

      Bai Jia-ning, Li Hui-peng, Zhao Hua. Study on adsorptive denitrogennation of Ce-MCM-41 molecular sieve[J]. J Liaoning Univ Pet Chem Technol, 2018,38(1):16-19. doi: 10.3969/j.issn.1672-6952.2018.01.003

    30. [30]

      WU Qi-sheng, CHEN Yi-lin. Synthesis, characterization, and de-NOx performance of lanthanum-doped MCM-41[J]. Inorg Chem Ind, 2014,46(7):71-74. doi: 10.3969/j.issn.1006-4990.2014.07.020

    31. [31]

      ZHAO Q, CHU J Y, JIANG T S, YIN H B. Hydrothermal synthesis and stability of Ni-MCM-41[J]. J Chin Ceram Soc, 2008,9(36):1256-1261.

    32. [32]

      KARTHIK M, TRIPATHI A K, GUPTA N M, VINU A, HARTMANN M, PALANICHA M Y, MURUGESAN V. Characterization of Co, Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol[J]. Appl Catal A:Gen, 2004,268:139-149. doi: 10.1016/j.apcata.2004.03.028

    33. [33]

      WANG Jun-feng, SHEN Jian, REN Tie-qiang. Preparation of Ce-SBA-15 catalyst and its performance on phenol alkylation with methanol[J]. J Mol Catal A Chem (China), 2016,30(6):523-531.  

    34. [34]

      YANG Xiao-dong, WANG Xin-miao, GAO Shan-bin, WANG An-jie. Hydrodesulfurization performances of Pd catalysts supported on ZSM-5/MCM-41 composite zeolite[J]. Acta Chim Sin, 2017,75:479-484.  

    35. [35]

      SUO Yan-hua, WANG Juan, WANG Ying-jun, CHEN Yan-guang, CHEN Gang. HPMo-Ni/La-MCM-41 catalyst for n-Heptane hydroisomerization[J]. Acta Pet Sin (Pet Process Sect), 2015,31(4):875-882. doi: 10.3969/j.issn.1001-8719.2015.04.007

    36. [36]

      SZEGEDI Á, KÍNYA Z, MÉHN D, SOLYMÁRE , PÁLBORBÉLYG , HORVÁTH Z E, BIRÍ LP, KIRICSI I. Spherical mesoporous MCM-41 materials containing transition metals:Synthesis and characterization[J]. Appl Catal A:Gen, 2004,272:257-266. doi: 10.1016/j.apcata.2004.05.057

    37. [37]

      HAN Lei, OUYANG Ying, LUO Yi-bin, DA Zhi-jian. Application of modified ZSM-5 zeolite with different elements in catalytic cracking of light hydrocarbon[J]. Acta Pet Sin (Pet Process Sect), 2018,34(2):419-429. doi: 10.3969/j.issn.1001-8719.2018.02.025

    38. [38]

      ZHANG Jun-tao, SONG Jing, ZHEN Xing, SHEN Zhi-bing, LIANG Sheng-rong. Synthesis of MCM-41/MOR composite molecular sieves and its catalytic properties for isomerization of alkane[J]. J Fuel Chem Technol, 2017,45(6):675-681. doi: 10.3969/j.issn.0253-2409.2017.06.005 

    39. [39]

      SHU U H, SHAO Y M, WEI X Y. Synthesis and characterization of Ni-MCM-41 for methyl blue adsorption[J]. Microporous Mesoporous Mater, 2015,204:88-94.  

    40. [40]

      ZHOU Dan-hong, WANG Yu-qing, HE Ning, YANG Gang. The π-complexation mechanisms of Cu(I), Ag(I)/Zeolites for desulfurization[J]. Acta Phys Chim Sin, 2006,22(5):542-547. doi: 10.3866/PKU.WHXB20060506

    41. [41]

      HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2016,44(1):99-105. doi: 10.3969/j.issn.0253-2409.2016.01.014 

    42. [42]

      XU Ru-ren, PANG Wen-qin, HUO Qi-sheng, YU Ji-hong, CHEN Jie-sheng, SU Bao-lian, QIU Shi-lun, YAN Wen-fu. Chemistry-Zeolite and Porous Materials[M]. Beijing:Science Press, 2015.

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    7. [7]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    16. [16]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    17. [17]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(6)
  • Abstract views(1397)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return