Citation: XU Zi-yang, YUE Shuang, WANG Chun-bo, SUN Bo-zhao, LI Hang-xing. Reaction mechanism of heterogeneous reduction of NO2 on carbonaceous surface[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1236-1247. shu

Reaction mechanism of heterogeneous reduction of NO2 on carbonaceous surface

  • Corresponding author: XU Zi-yang, 923126537@qq.com
  • Received Date: 11 August 2020
    Revised Date: 26 September 2020

    Fund Project: The National Natural Science Foundation of China 51976059The project was supported by the National Natural Science Foundation of China (51976059)

Figures(12)

  • Based on the quantum chemical density functional theory(DFT), the mechanism of heterogeneous reduction of NO2 on carbonaceous surface was studied. For zigzag and armchair carbonaceous surfaces, M06-2X method and 6-311G(d) basis set were used to optimize the geometry configuration and energy of all stagnation points under different reaction paths, and the reaction paths were analyzed and compared from thermodynamics and kinetics. The role of CO in the heterogeneous reduction of NO2 was deeply investigated, and the effects of carbon surface and reaction temperature on the heterogeneous reaction were also investigated. The results show that the heterogeneous reduction process of NO2 on the carbon surface can be divided into two stages: the reduction stage of NO2 and the desorption stage of carbon oxide. By comparing the reactions without CO molecules, it can be seen that the CO molecules involved in the reaction can reduce the reaction energy barrier of each stage and accelerate the reaction rate of each stage. In the presence of CO molecule, the reaction energy barrier at the reduction stage of NO2 is reduced, which promotes the heterogeneous reaction process of NO2 reduction to NO. CO molecules participating in the reaction can combine with the residual oxygen atoms on the surface to form and release CO2 molecules, which reduces the reaction energy barrier in the release stage of carbon oxides, thus promoting the overall reduction reaction. In addition, the energy barrier of NO2 heterogeneous reduction reaction on zigzag surface is lower and the reaction rate is faster than that on armchair surface, which indicates that the heterogeneous reduction reaction of NO2 is easier on Zigzag carbonaceous surface. Finally, the reaction kinetics analysis shows that the reaction rate of each stage increases with the increase of temperature, which indicates that increasing temperature can promote the heterogeneous reduction of NO2 on the carbonaceous surface.
  • 加载中
    1. [1]

      ZHANG Xiu-xia, LV Xiao-xue, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol, 2020,48(6):663-673.  

    2. [2]

      TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Study on the performance of Mn-Zr composite oxide for CO reduction of NO[J]. J Fuel Chem Technol, 2019,47(10):1258-1264.  

    3. [3]

      TAYLOR K. nitric oxide catalysis in automotive exhaust systems[J]. Catal Rev, 1993,4(35):457-481.  

    4. [4]

      WANG C, WANG P, DU Y, CHE D. Experimental study on effects of combustion atmosphere and coal char on NO2 reduction under oxy-fuel condition[J]. J Energy Ins, 2019,92(4):1023-1033. doi: 10.1016/j.joei.2018.07.004 

    5. [5]

      XIN Jing. Mechanism and experimental study of nitrogen conversion in coal char-NO reaction process[D]. Beijing: North China Electric Power University, 2015.

    6. [6]

      LI Jing-ji, YANG Xin-hua, YANG Hai-rui, LV Jun-fu. Experimental and model study on the formation of coke type NOx in bubble bed[J]. J China Coal Soc, 2016,41(6):1546-1553.  

    7. [7]

      WANG C A, DU Y, CHE D. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion[J]. Proc Combust Inst, 2015,35(2):2323-2330. doi: 10.1016/j.proci.2014.07.018 

    8. [8]

      ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-hu, JIANG Shu-dong, LIU Jian-zhong, CEN Ke-fa. Density Functional Theory study on the mechanism of heterogeneous formation and decomposition of N2O on coke surface[J]. J Fuel Chem Technol, 2011,39(11):806-811.  

    9. [9]

      ARENILLAS A, ARIAS B, RUBIERA F, PIS J J, LÓPEZ R, CAMPOMANES P, PEVIDA C, MENÉNDEZ M I. Heterogeneous reaction mechanisms of the reduction of nitric oxide on carbon surfaces:A theoretical analysis[J]. Theor Chem Acc, 2010,127(1/2):95-108.  

    10. [10]

      PEVIDA C, ARENILLAS A, RUBIERA F, PIS J J. Synthetic coal chars for the elucidation of NO heterogeneous reduction mechanisms[J]. Fuel, 2007,86(1/2):41-49.  

    11. [11]

      YING Zhi, ZHENG Xiao-yuan, CUI Guo-min. Study on combustion performance of pulverized coal based on O2/CO2 atmosphere[J]. Chin J Power Eng, 2019,39(1):7-12.  

    12. [12]

      DEGRAEUWE B, THUNIS P, CLAPPIER A, WEISS M, LEFEBVRE W, JANSSEN S, VRANCKX S. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution-Scenario analysis for the city of Antwerp, Belgium[J]. Atmos Environ, 2016,126:218-224. doi: 10.1016/j.atmosenv.2015.11.042

    13. [13]

      OUYANG Zi-qu, ZHU Jian-guo, LV Qing-gang. Experimental study on combustion and NOx emission of pulverized anthracite coal preheated by a circulating fluidized bed[J]. Proc CSEE, 2014(11):1748-1754.  

    14. [14]

      GARCÍA-GARCÍA A, ILLÁN-GÓMEZ M J, LINARES-SOLANO A, SALINAS-MARTÍNEZ DE LECEA C. NOx Reduction by potassium-containing coal briquettes.effect of NO2 concentration[J]. Energy Fuels, 1999,13(2):499-505. doi: 10.1021/ef980165h 

    15. [15]

      SADAOKA Y, JONES T A, REVELL G S, G PEL W. Effects of morphology on NO2 detection in air at room temperature with phthalocyanine thin films[J]. J Mater Sci, 1990,25(12):5257-5268. doi: 10.1007/BF00580159

    16. [16]

      ZHU X, ZHANG L, ZHANG M, MA C. Effect of N-doping on NO2 adsorption and reduction over activated carbon:An experimental and computational study[J]. Fuel, 2019,258116109. doi: 10.1016/j.fuel.2019.116109

    17. [17]

      JEGUIRIM M, TSCHAMBER V, BRILHAC J F, EHRBURGER P. Interaction mechanism of NO2 with carbon black:effect of surface oxygen complexes[J]. J Anal Appl Pyrolysis, 2004,72(1):171-181. doi: 10.1016/j.jaap.2004.03.008

    18. [18]

      MUCKENHUBER H, GROTHE H. The heterogeneous reaction between soot and NO2 at elevated temperature[J]. Carbon, 2006,44(3):546-559. doi: 10.1016/j.carbon.2005.08.003

    19. [19]

      WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx emission characteristics of coal coke under constant temperature combustion in O2/CO2 atmosphere[J]. J China Coal Soc, 2018,43(1):257-264.  

    20. [20]

      WANG Bi, SU Sheng, SUN Lu-shi, HU Song, FEI Hua, LU Teng-fei, XIANG Jun. Study on the effect of CO on NO reduction in coal coke under O2/CO2 atmosphere[J]. J Eng Thermo, 2012,33(2):336-338.  

    21. [21]

      WEI Shuai, YAN Guo-chao, ZHANG Zhi-qiang, LIU Meng-song, ZHANG Yuan-fang. Analysis of molecular structure characteristics of Jincheng Anthracite[J]. J China Coal Soc, 2018,43(2):555-562.

    22. [22]

      ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. J Fuel Chem Technol, 2019,47(2):138-143.  

    23. [23]

      SINGLA P, SINGHAL S, GOEL N. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface[J]. Appl Surf Sci, 2013,283:881-887. doi: 10.1016/j.apsusc.2013.07.038

    24. [24]

      SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007,86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029

    25. [25]

      ENOKI T, FUJⅡ S, TAKAI K. Zigzag and armchair edges in graphene[J]. Carbon, 2012,50(9):3141-3145. doi: 10.1016/j.carbon.2011.10.004

    26. [26]

      GIRITÇÖ , MEYER J C, ERNI R, ROSSELL M D, KISIELOWSKI C, YANG L, PARK C, CROMMIE M F, COHEN M L, LOUIE S G, ZETTL A. Graphene at the edge:Stability and dynamics[J]. Science, 2009,323(5922):1705-1708. doi: 10.1126/science.1166999

    27. [27]

      JIAO A, ZHANG H, LIU J, JIANG X. Quantum chemical and kinetics calculations for the NO reduction with char(N):Influence of the carbon monoxide[J]. Combust Flame, 2018,196:377-385. doi: 10.1016/j.combustflame.2018.06.029

    28. [28]

      YU Yue-xi, GAO Zheng-yang, JI Peng, LI Fang-yong, YANG Wei-jie. Reaction mechanism of heterogeneous reduction of N2O from coal coke[J]. CIESC J, 2017,68(1):369-374.  

    29. [29]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36(7):1061-1070.  

    30. [30]

      YANG F H, YANG R T. Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite:Insight into hydrogen storage in carbon nanotubes[J]. Carbon, 2002,40(3):437-444. doi: 10.1016/S0008-6223(01)00199-3

    31. [31]

      GAO Z, YANG W, DING X, DING Y, YAN W. Theoretical research on heterogeneous reduction of N2O by char[J]. App Thermal Eng, 2017,126:28-36. doi: 10.1016/j.applthermaleng.2017.07.166

    32. [32]

      JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017,141:1538-1546. doi: 10.1016/j.energy.2017.11.115

    33. [33]

      ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06 functionals and 12 other functionals[J]. Theor Chem Acc, 2008,119(5/6)525.  

    34. [34]

      ZHAO Y, TRUHLAR D G. A Prototype for graphene material simulation:Structures and interaction potentials of coronene dimers[J]. J Phys Chem C, 2008,112(11):4061-4067. doi: 10.1021/jp710918f

    35. [35]

      GAO Zheng-yang, YANG Wei-jie, YAN Wei-ping. Reaction mechanism of coal coke catalyzing HCN reduction[J]. J Fuel Chem Technol, 2017,45(9):1043-1048.  

    36. [36]

      J F M, W T G, B S H, E S G, A R M, et al. Revision A.03[CP]. Wallingford CT: Gaussian, Inc., 2016.

    37. [37]

      ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82:312-321. doi: 10.1016/j.energy.2015.01.040

    38. [38]

      XU Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Study on the reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020,48(3):266-274.  

    39. [39]

      ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction of N2O reaction on Zigzag coal char surface[J]. J China Coal Soc, 2017,42(11):3028-3034.  

    40. [40]

      CHEN P, GU M, CHEN G, LIU F, LIN Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel, 2019,254115666. doi: 10.1016/j.fuel.2019.115666

    41. [41]

      WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental study on NO2 reduction characteristics under O2/CO2 combustion conditions[J]. J Xi'an Jiaotong Univ, 2017,51(5):16-22.  

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    14. [14]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    17. [17]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(11)
  • Abstract views(1492)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return