Citation: HE Xiao-qiang, MO Wen-long, QIN Song, MA Feng-yun. Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 221-230. shu

Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming

  • Corresponding author: MO Wen-long, mowenlong@xju.edu.cn
  • Received Date: 9 December 2019
    Revised Date: 14 February 2020

    Fund Project: the National Science Foundation of Xinjiang Uyghur Autonomous Region 2018D01C034The project was supported by the National Science Foundation of Xinjiang Uyghur Autonomous Region (2018D01C034)

Figures(12)

  • Three Ni/Al2O3 catalysts were prepared with different aluminum sources by the solution combustion method and characterized by XRD, H2-TPR, NH3-TPD, N2 sorption, TG-DTG and TPH. The effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming was then investigated. The results show that the NiNO-AlNO catalyst with Al(NO3)3·9H2O as aluminum source owns a large surface area of 102 m2/g and a wide and intense high-temperature reduction peak; besides, the Al2O3 support displays certain crystallinity. In contrast, the NiNO-AlSO and NiNO-AlCl catalysts, prepared with Al2(SO4)3·18H2O and AlCl3·6H2O sources, respectively, are composed of amorphous Al2O3 as support and crystal Ni as active component; the Ni species is poorly dispersed and present as large grains, with a small reduction peak and weak interaction with the support. In particular, because of the high stability of Al2(SO4)3 and difficulty in converting Al2(SO4)3 to active Al2O3 at high temperature, certain sulfur-containing substances are preserved and the resultant NiNO-AlSO catalyst shows strong surface acidity. The catalytic evaluation results indicate that the NiNO-AlNO catalyst exhibits high activity and stability in the CO2-CH4 reforming; the conversions of CH4 and CO2 are 31.21% and 48.97%, respectively. The carbon deposition analysis illustrates that the content of deposited carbon (present mainly in the amorphous form) on the NiNO-AlNO catalyst is rather low, suggesting a high resistance against carbon deposition.
  • 加载中
    1. [1]

      ABDULRASHEE A, JALIL A A, GAMBO Y, IBRAHIM M, HAMBALI H U, SHAHUL HAMID M. A review on catalyst development for dry reforming of methane to syngas:Recent advances[J]. Renewable Sustainable Energy Rev, 2019,108:175-193. doi: 10.1016/j.rser.2019.03.054

    2. [2]

      ZHANG G J, LIU J W, XU Y, SUN Y H. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017)[J]. Int J Hydrogen Energy, 2018,43:15030-15054. doi: 10.1016/j.ijhydene.2018.06.091

    3. [3]

      HORLYCK J, LEWIS S, AMAL R, SCOTT J. The impact of la doping on dry reforming ni-based catalysts loaded on fsp-alumina[J]. Top Catal, 2018,61:1842-1855. doi: 10.1007/s11244-018-1015-1

    4. [4]

      CHEN C J, WANG X G, HUANG H G, ZOU X J, GU F N, SU F B, LU X G. Synthesis of mesoporous Ni-La-Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity[J]. Fuel Process Technol, 2019,185:56-57. doi: 10.1016/j.fuproc.2018.11.017

    5. [5]

      JANG W J, SHIM J O, KIM H M, YOO S Y, ROH H S. A review on dry reforming of methane in aspect of catalytic properties[J]. Catal Today, 2019,324:15-26. doi: 10.1016/j.cattod.2018.07.032

    6. [6]

      NAVAS A Z, CRUZ P L, MARTIN G M, IRIBARREN D, DUFOUR J. Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and Fischer-Tropsch synthesis[J]. Fuel, 2019,235(1):1492-1500.  

    7. [7]

      ARAMOUNIL N A K, TOUNMA J G, TARBOUSH B A, ZEAITER J, AHMAD M N. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable Sustainable Energy Rev, 2018,82:2570-2585. doi: 10.1016/j.rser.2017.09.076

    8. [8]

      DAHDAH E, RACHED J A, AOUAD S, GENNEQUIN C, TIDAHY H L, ESTEPHANE J, ABOUKAIS A, AAD E A. CO2 reforming of methane over NixMg6-xAl2 catalysts:Effect of lanthanum doping on catalytic activity and stability[J]. Int J Hydrogen Energy, 2017,42(17):12808-12817. doi: 10.1016/j.ijhydene.2017.01.197

    9. [9]

      MO W L, MA F Y, MA Y Y, FAN X. The optimization of Ni-Al2O3 catalyst with the addition of La2O3 for CO2-CH4 reforming to produce syngas[J]. Int J Hydrogen Energy, 2019,44(45):24510-24524. doi: 10.1016/j.ijhydene.2019.07.204

    10. [10]

      SERRANO L A, DAZA L. Influence of the operating parameters over dry reforming of methane to syngas[J]. Int J Hydrogen Energy, 2014,39(8):4089-4094. doi: 10.1016/j.ijhydene.2013.05.135

    11. [11]

      TALKHONCHEH S K, HAGHIGHI M. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina[J]. J Nat Gas Sci Eng, 2015,23:16-25. doi: 10.1016/j.jngse.2015.01.020

    12. [12]

      REZAEI M, ALAVI S M. Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M:CeO2, ZrO2, La2O3) catalysts[J]. Int J Hydrogen Energy, 2019,44(31):16516-16525. doi: 10.1016/j.ijhydene.2019.04.213

    13. [13]

      LI B, XU Z X, JING F L, LUO S Z, WANG N, CHU W. Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides[J]. J Energy Chem, 2016,25(6):1078-1085.  

    14. [14]

      WANG Y, YAO L, WANG S H, MAO D H, HU C W. Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts:A review[J]. Fuel Process Technol, 2018,169:199-206. doi: 10.1016/j.fuproc.2017.10.007

    15. [15]

      SEO H O. Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane[J]. Catalysts, 2018,8(3):110-118.  

    16. [16]

      AMIR E, REZAEI M, MESHKANI F. Investigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane[J]. Iran J Hydrogen Fuel Cell, 2016,3(4):315-322.  

    17. [17]

      SHIRAZ M H A, REZAEI M, MESHKANI F. The effect of promoters on the CO2 reforming activity and coke formation of nanocrystalline Ni/Al2O3 catalysts prepared by microemulsion method[J]. Korean J Chem Eng, 2016,33:3359-3366. doi: 10.1007/s11814-016-0203-6

    18. [18]

      SHANG Z Y, LI S G, LI L, LIU G Z, LIANG X H. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane[J]. Appl Catal B:Environ, 2017,201:302-309. doi: 10.1016/j.apcatb.2016.08.019

    19. [19]

      CHEIN R Y, FUNG W Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2019,44:14303-14315. doi: 10.1016/j.ijhydene.2019.01.113

    20. [20]

      RYOO H, MA B C, KIM Y C. Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Mo-Sb/Al2O3 catalysts[J]. J Nanosci Nanotechnol, 2019,19:988-990. doi: 10.1166/jnn.2019.15941

    21. [21]

      QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017,45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010 

    22. [22]

      DU Ming-xian, ZHAI Xiao-zhen, LI Yuan, LI Lin-dong, ZHU Hua-qing, TAN Chang-yu. Preparation of alumina with high specific surface area and narrow pore size distributionⅠ. Effect of precipitation conditions[J]. Chin J Catal, 2002,23(5):456-468.  

    23. [23]

      TAN Ya-nan, LI Feng, YI Xiao-dong, WANG Yue-min, FANG Wei-ping, WAN Hui-lin. A novel method for preparation of activated alumina[J]. Chin J Catal, 2008,29(10):975-978. doi: 10.3321/j.issn:0253-9837.2008.10.006

    24. [24]

      MO Wen-long, MA Feng-yun, LIU Yue-e, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. Effect of preparation methods on the catalytic performance of Ni-Al2O3 for CO2-CH4 reforming[J]. J Fuel Chem Technol, 2015,43(9):1084-1091.  

    25. [25]

      HAO Zhi-gang, ZHU Qing-shan, LEI Ze, LI Hong-zhong. Comparative study of CH4-CO2 reforming over different Ni/Al2O3 catalysts in a fluidized bed reactor[J]. J Fuel Chem Technol, 2007,35(4):436-441. doi: 10.3969/j.issn.0253-2409.2007.04.010

    26. [26]

      VETCHINKINA T N. Physicochemical properties of the alumina produced by alkaline and acidic methods[J]. Russ Metall, 2009,2:120-128.  

    27. [27]

      HAO M M, ZENG Z Q, FAN G F, WANG X H, LÜ W Z, LIANG F. Influence of sulfate ion on phase and dispersion of Y3Al5O12 nanopowders with the co-crystallization method[J]. Solid State Phenom, 2018,281:3-8. doi: 10.4028/www.scientific.net/SSP.281.3

    28. [28]

      WANG J, SHI J, XU B. Effect of precursors on the morphology of hydroxyl aluminum prepared by hydrothermal treatment[J]. Adv Mater Res, 2011,308/310:542-547. doi: 10.4028/www.scientific.net/AMR.308-310.542

    29. [29]

      JABBOUR K, MASSIANI P, DAVIDSON A, CASALE S, HASSAN N E. Ordered mesoporous "one-pot" synthesized Ni-Mg (Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM)[J]. Appl Catal B:Environ, 2017,201:527-542. doi: 10.1016/j.apcatb.2016.08.009

    30. [30]

      ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on the performance of Ni-based catalyst in methane dry reforming[J]. J Fuel Chem Technol, 2015,43(11):1359-1365. doi: 10.3969/j.issn.0253-2409.2015.11.011 

    31. [31]

      ZHOU Jian-liang, ZHU Jian, CHEN Zhao-xiong, QIU Li-ling, HE Xue-qin, HUO Yan. Influence of different raw materials on the crystal structure and morphology of Mg-Al-CO3 hydrotalcite[J]. J Huazhong Norm Univ (Nat Sci), 2010,44(2):247-250.  

    32. [32]

      WANG Jing, XU Bing. Effect of aluminum salt precursors on microstructure of boehmite prepared by hydrothermal treatment[J]. Chin J Nonferrous Met, 2012,22(6):1821-1825.  

    33. [33]

      MO Wen-long, MA Feng-yun, LIU Yue-e, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. Preparation of Ni-Al2O3 Catalysts by Solution Combustion Method for CO2 Reforming of CH4[J]. J Inorg Mater, 2016,31(5):485-491.  

    34. [34]

      AL-FATESH A S, NAEEM M A, FAKEEHA A H, ABASAEED A E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane[J]. Chin J Chem Eng, 2014,22(1):28-37. doi: 10.1016/S1004-9541(14)60029-X

    35. [35]

      ZHANG Peng, ZHANG Qing, LIU Jing, GAO Lian. Research progress of ni-based composite catalysts for methane dry reforming[J]. J Inorg Mater, 2018,33(9):931-941.  

    36. [36]

      MO Wen-long, MA Feng-yun, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature programmed hydrogenation characterization[J]. J Fuel Chem Technol, 2019,47(5):549-557. doi: 10.3969/j.issn.0253-2409.2019.05.005 

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    17. [17]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(6)
  • Abstract views(310)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return