载体类型对Ni基催化剂甲烷干重整反应性能的影响

张荣俊 夏国富 李明丰 吴玉 聂红 李大东

引用本文: 张荣俊, 夏国富, 李明丰, 吴玉, 聂红, 李大东. 载体类型对Ni基催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报, 2015, 43(11): 1359-1365. shu
Citation:  ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on catalytic performance of Ni-based catayst in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1359-1365. shu

载体类型对Ni基催化剂甲烷干重整反应性能的影响

    通讯作者: 张荣俊,Tel:010-82368083,E-mail:zhangrj.ripp@sinopec.Com
  • 基金项目:

    中国石油化工股份有限公司合同项目(113128)资助 (113128)

摘要: 以不同载体负载NiO制备了甲烷干重整催化剂并对所制备的催化剂采用等温氮气吸附、XRD、H2-TPR、H2化学吸附等进行了表征。结果表明,载体性质对NiO的存在状态影响较大。SiO2、TiO2以及ZrO2与NiO的相互作用较弱,催化剂易于被还原活化,而正是由于其与NiO的弱相互作用,导致活性金属在反应过程中易迁移聚集而失活。Al2O3和MgO均与NiO有强相互作用,易分别生成NiAl2O4尖晶石和NiO-MgO固溶体,导致其难以被还原活化。经MgO改性的Al2O3载体不仅具有较大的比表面积,而且与NiO的相互作用强度适中,这有利于NiO的分散和稳定,以其为载体制备的催化剂在较高空速下表现出优异的催化反应活性和稳定性,催化剂连续稳定运行100h不失活。

English

  • 
    1. [1] 刘炳泗, 巩家志, 区泽棠. La2NiO4/Al2O3催化剂上CH4/CO2的重整[J]. 催化学报, 2004, 25(1): 15-18. (LIU Bing-si, GONG Jia-zhi, OU Ze-tang. CH4/CO2 reforming over La2NiO4/Al2O3 catalyst[J]. Chin J Catal, 2004, 25(1): 15-18.)[1] 刘炳泗, 巩家志, 区泽棠. La2NiO4/Al2O3催化剂上CH4/CO2的重整[J]. 催化学报, 2004, 25(1): 15-18. (LIU Bing-si, GONG Jia-zhi, OU Ze-tang. CH4/CO2 reforming over La2NiO4/Al2O3 catalyst[J]. Chin J Catal, 2004, 25(1): 15-18.)

    2. [2] HU Y, RUCKENSTEIN E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catal Rev, 2002, 44(3): 423-453.[2] HU Y, RUCKENSTEIN E. Binary MgO-based solid solution catalysts for methane conversion to syngas[J]. Catal Rev, 2002, 44(3): 423-453.

    3. [3] 赵雅郡, 刘欣梅, 钱岭, 阎子峰. 新型纳米介孔二氧化锆担载的镍基催化剂甲烷干气重整性能评价[J]. 分子催化, 2004, 18(5): 346-350. (ZHAO Ya-jun, LIU Xin-mei, QIAN Ling, YAN Zi-feng. CH4 reforming with CO2 over mesoporous nano-zirconia supported Ni-based catalyst[J]. J Mol Catal (China), 2004, 18(5): 346-350.)[3] 赵雅郡, 刘欣梅, 钱岭, 阎子峰. 新型纳米介孔二氧化锆担载的镍基催化剂甲烷干气重整性能评价[J]. 分子催化, 2004, 18(5): 346-350. (ZHAO Ya-jun, LIU Xin-mei, QIAN Ling, YAN Zi-feng. CH4 reforming with CO2 over mesoporous nano-zirconia supported Ni-based catalyst[J]. J Mol Catal (China), 2004, 18(5): 346-350.)

    4. [4] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev: Sci Eng, 1999, 41(1): 1-42.[4] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev: Sci Eng, 1999, 41(1): 1-42.

    5. [5] FISCHER F, TROPSCH H, Conversion of methane into hydrogen and carbon monoxide[J]. Brennst Chem, 1928, 9: 39-46.[5] FISCHER F, TROPSCH H, Conversion of methane into hydrogen and carbon monoxide[J]. Brennst Chem, 1928, 9: 39-46.

    6. [6] ASHCROFT A T, CHEETHAN A K, GREEN M L H, VERNON P D F. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature, 1991, 352: 225-226.[6] ASHCROFT A T, CHEETHAN A K, GREEN M L H, VERNON P D F. Partial oxidation of methane to synthesis gas-using carbon-dioxide[J]. Nature, 1991, 352: 225-226.

    7. [7] WANG Y H, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support[J]. Appl Catal A: Gen, 2000, 204(1): 143-152.[7] WANG Y H, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: The effect of support[J]. Appl Catal A: Gen, 2000, 204(1): 143-152.

    8. [8] NAGAI M, NAKAHIRA K, OZAWA Y, NAMIKI Y, SUZUKI Y. CO2 reforming of methane on Rh/Al2O3 catalyst[J]. Chem Eng Sci, 2007, 62(18/ 20): 4998-5000.[8] NAGAI M, NAKAHIRA K, OZAWA Y, NAMIKI Y, SUZUKI Y. CO2 reforming of methane on Rh/Al2O3 catalyst[J]. Chem Eng Sci, 2007, 62(18/ 20): 4998-5000.

    9. [9] JORGE D A BELLIDO, JOSE E DE SOUZA, JEAN-CLAUDE MPEKO, ELISABETE M A. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane[J]. Appl Catal A: Gen, 2009, 358: 215-223.[9] JORGE D A BELLIDO, JOSE E DE SOUZA, JEAN-CLAUDE MPEKO, ELISABETE M A. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane[J]. Appl Catal A: Gen, 2009, 358: 215-223.

    10. [10] XU B Q, WEI J M, WANG H Y, SUN K Q, ZHU Q M. Nano-MgO: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catal Today, 2001, 68: 217-225.[10] XU B Q, WEI J M, WANG H Y, SUN K Q, ZHU Q M. Nano-MgO: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catal Today, 2001, 68: 217-225.

    11. [11] KATSUTOSHI N, KAZUHIRO T, KEN-ICHI A. Influence of the phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane[J]. Chem Commun, 2002, 1006-1007.[11] KATSUTOSHI N, KAZUHIRO T, KEN-ICHI A. Influence of the phase composition of titania on catalytic behavior of Co/TiO2 for the dry reforming of methane[J]. Chem Commun, 2002, 1006-1007.

    12. [12] KEIICHI T, CHEN Y G, FUJIMOTO K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts[J]. J Catal, 1999, 181(1): 91-103.[12] KEIICHI T, CHEN Y G, FUJIMOTO K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts[J]. J Catal, 1999, 181(1): 91-103.

    13. [13] XU B Q, WEI J M, YU Y T, LI Y, LI J L, ZHU Q M. Size limit of support particles in an oxide-supported metal catalyst: Nanocomposite Ni/ZrO2 for utilization of natural gas[J]. J Phys Chem B, 2003, 107: 5203-5207.[13] XU B Q, WEI J M, YU Y T, LI Y, LI J L, ZHU Q M. Size limit of support particles in an oxide-supported metal catalyst: Nanocomposite Ni/ZrO2 for utilization of natural gas[J]. J Phys Chem B, 2003, 107: 5203-5207.

    14. [14] SEOK S, CHOI S, PARK E, HAN S, LEE J. Mn-Promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane[J]. J Catal, 2002, 209: 6-15.[14] SEOK S, CHOI S, PARK E, HAN S, LEE J. Mn-Promoted Ni/Al2O3 catalysts for stable carbon dioxide reforming of methane[J]. J Catal, 2002, 209: 6-15.

    15. [15] 杨雅仙, 秦大伟, 谢辉. MgO改性Ni/γ-Al2O3催化剂用于甲烷重整制取合成气研究[J]. 天然气化工, 2012, 37(6): 40-43, 62. (YANG Ya-xian, QIN Da-wei, XIE Hui. Preparation of syngas by methane reforming over magnesium oxide modified nickel/γ-alumina[J]. Nat Gas Chem Ind, 2012, 37(6): 40-43, 62.)[15] 杨雅仙, 秦大伟, 谢辉. MgO改性Ni/γ-Al2O3催化剂用于甲烷重整制取合成气研究[J]. 天然气化工, 2012, 37(6): 40-43, 62. (YANG Ya-xian, QIN Da-wei, XIE Hui. Preparation of syngas by methane reforming over magnesium oxide modified nickel/γ-alumina[J]. Nat Gas Chem Ind, 2012, 37(6): 40-43, 62.)

    16. [16] KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A: Gen, 2000, 197: 191-200.[16] KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A: Gen, 2000, 197: 191-200.

    17. [17] JACONO M L, SCHIVAVELLO M, CIMINO A. Structural, magnetic, and optical properties of nickel oxide supported on η- and γ-aluminas[J]. J Phys Chem, 1971, 75: 1044-1046.[17] JACONO M L, SCHIVAVELLO M, CIMINO A. Structural, magnetic, and optical properties of nickel oxide supported on η- and γ-aluminas[J]. J Phys Chem, 1971, 75: 1044-1046.

    18. [18] ZHANG R J, LIU H M, HE D H. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012, 26: 244-247.[18] ZHANG R J, LIU H M, HE D H. Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis[J]. Catal Commun, 2012, 26: 244-247.

    19. [19] GAO J J, JIA C M, ZHANG M J, GU F N, XU G W, SU F B. Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas[J]. Catal Sci Technol, 2013, 3: 2009-2015.[19] GAO J J, JIA C M, ZHANG M J, GU F N, XU G W, SU F B. Effect of nickel nanoparticle size in Ni/α-Al2O3 on CO methanation reaction for the production of synthetic natural gas[J]. Catal Sci Technol, 2013, 3: 2009-2015.

    20. [20] XU G L, SHI K Y, GAO Y, XU H Y, WEI Y D. Studies of reforming natural gas with carbon dioxide to produce synthesis gas X. The role of CeO2 and MgO promoters[J]. J Mol Catal A: Chem, 1999, 147: 47-54.[20] XU G L, SHI K Y, GAO Y, XU H Y, WEI Y D. Studies of reforming natural gas with carbon dioxide to produce synthesis gas X. The role of CeO2 and MgO promoters[J]. J Mol Catal A: Chem, 1999, 147: 47-54.

    21. [21] ZHU J Q, PENG X X, YAO L, DENG X J, DONG H Y, TONG D M. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J]. Int J Hydrogen Energy, 2013, 38(1): 117-126.[21] ZHU J Q, PENG X X, YAO L, DENG X J, DONG H Y, TONG D M. Synthesis gas production from CO2 reforming of methane over Ni-Ce/SiO2 catalyst: The effect of calcination ambience[J]. Int J Hydrogen Energy, 2013, 38(1): 117-126.

    22. [22] ZHANG Z L, VERYKIOS X E, BAERNS M. Effect of electronic properties of catalysts for the oxidative coupling of methane on their selectivity and activity[J]. Catal Rev: Sci Eng, 1994, 36: 507-556.[22] ZHANG Z L, VERYKIOS X E, BAERNS M. Effect of electronic properties of catalysts for the oxidative coupling of methane on their selectivity and activity[J]. Catal Rev: Sci Eng, 1994, 36: 507-556.

    23. [23] MICHAEL C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Appl catal A: Gen, 1996, 142(1): 73-96.[23] MICHAEL C J, VANNICE M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity[J]. Appl catal A: Gen, 1996, 142(1): 73-96.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  681
  • HTML全文浏览量:  61
文章相关
  • 收稿日期:  2015-04-13
  • 网络出版日期:  2015-09-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章