新加坡Chemistry Matters教材酸、碱、盐知识分析及启示
刘克文, 王昊
【化学教育】doi: 10.13884/j.1003-3807hxjy.2014110019
基于命题和页幅2个方面对新加坡Chemistry Matters教材中酸、碱、盐知识进行了定量分析,研究了其在内容选取、结构编排、呈现方式等方面的特点,并给出了一些启示。
关键词: 新加坡化学教材, Chemistry Matters, 酸、碱、盐, 教材设计
膨胀阻燃聚丙烯及其协同力学改性的研究进展
王昊, 金静
【高分子通报】doi: 10.14028/j.cnki.1003-3726.2015.07.003
对聚丙烯(PP)进行阻燃协同力学改性一直是PP材料领域的研究热点。本文综述了近几年膨胀阻燃PP领域的研究进展,包括新型成炭剂的开发和阻燃体系改性新技术,讨论了纳米粘土、稀土元素化合物、分子筛等协同剂在膨胀阻燃剂中的阻燃效果及机理;同时介绍了膨胀阻燃PP及其协同力学改性的研究进展,包括无机刚性粒子、弹性体等不同组分对阻燃PP力学性能的影响,特别是对冲击韧性的影响,总结了PP阻燃及阻燃协同力学改性方面存在的问题,并对未来的发展进行了展望。
关键词: 阻燃聚丙烯;力学性能;膨胀阻燃剂;协同作用
锂离子电池三元正极材料电解液添加剂的研究进展
邓邦为, 孙大明, 万琦, 王昊, 陈滔, 李璇, 瞿美臻, 彭工厂
【化学学报】doi: 10.6023/A17110517
三元层状氧化物{Li[NixCoyMz]O2(0 < xyz < 1,M=Mn,缩写NMC;M=Al,缩写NCA)}具有能量密度高、循环性能好、价格适中等优异的综合性能,是目前锂离子电池(LIBs)中最具应用前景的一类正极材料.随着纯电动汽车(EVs)及混合电动汽车(HEVs)的快速发展,人们对LIBs的能量密度、循环寿命以及安全性要求不断提高.然而,在传统电解液体系中,三元正极材料在高电压、高温下会发生剧烈的结构变化和界面副反应,给实际应用带来巨大挑战,尤其是高镍三元材料的循环寿命和安全性.其中,开发适配的电解液添加剂是提高锂离子电池电化学性能最经济有效的方法之一.从物质本征结构出发,综述了近5年来包括碳酸亚乙烯酯(VC)、氟代物、新型锂盐、含P、含B、含S、腈类等及其复合物作为电解液添加剂在NMC及NCA正极材料中的应用及作用机理,并进行总结与展望.
关键词: 锂离子电池, NMC及NCA三元材料, 电解液添加剂, 作用机理
多电极阵列微流控芯片内细胞介电泳运动分析
姚佳烽, 姜祝鹏, 赵桐, 王昊, 陈柏, 吴洪涛
【分析化学】doi: 10.19756/j.issn.0253-3820.181433
研究了多电极阵列微流控芯片内不同细胞在介电泳力下的运动特征,对外部形态相同而内部组蛋白不同的两种细胞进行了分离。多电极阵列微流控芯片在流道的5个正方形横截面嵌入电极阵列,每个横截面的一组对边嵌入8根电极,此结构扩大了微流道的尺寸,可以实现细胞在介电泳力的作用下高流量分离。为了研究微流控芯片内细胞运动特征,首先通过电场数值分析,对一个横截面内多电极电场分布进行了计算,得到了最佳电极组合方式,使得电场分布均匀,且介电泳力最大。之后,通过实验分析了在不同频率、多电极复杂电场下,外部形态相同而内部组蛋白不同的人肺部成纤维细胞MRC-5的运动特点。通过对介电泳力的波谱进行分析,得到了野生型(WT)和组蛋白-GFP型(GFP-HT)两种细胞的分离频率为f=30 kHz。最后,在两个入口处通入不同比例的蔗糖(Sucrose)溶液与两种细胞混合液,计算了细胞的分离率。当两个入口的流量比为12:1时,两种细胞的分离率可以达到93.5%。本研究提出的多电极阵列微流控芯片分离细胞的方法为细胞的高流量快速分离奠定了基础。
关键词: 介电泳, 细胞运动, 多电极, 复合电场, 最优电极组合, 微流控芯片
纤维素原位合成Fe-N-C催化加氢硝基苯到苯胺
王昊, 刘小好, 许光月, 郭子薇, 张颖
【催化学报】doi: S1872-2067(19)63416-9
贵金属被广泛用作各种反应的催化剂,然而它们高昂的价格和有限的来源引起了人们对于开发非贵金属催化剂的浓厚兴趣.因此,寻找一种丰富而有效的催化剂来代替贵金属已成为催化领域最重要的任务之一.铁是地球上最丰富、最廉价的过渡金属,同时铁基催化剂在合成氨,费托合成和选择性还原氮氧化物等方面表现出优异的活性.近年来,廉价高效的氮掺杂碳负载铁催化剂在各种典型的铂催化反应中表现出良好的催化性能,尤其在催化加氢反应中的应用引起了研究人员的关注.本文通过在氨气氛围下共热解纤维素和氯化铁制备了一系列氮掺杂碳负载铁催化剂,并通过元素分析、原子吸收光谱、透射电子显微镜、X射线衍射和X射线光电子能谱等表征方法,探索了催化剂的物理化学性质.同时以硝基苯加氢制备苯胺为模型反应,探究了催化剂制备条件和反应条件对于催化剂活性的影响.其中Fe-N-C-700(通过在氨气氛围下700℃共热解纤维素和氯化铁制备)表现出最佳活性,在5 MPa氢气和120℃的条件下反应12 h,硝基苯被完全转化,苯胺的收率可达98.0%,同时,该催化剂还显示出良好的可再循环性,5次运行后未见催化活性的显著降低.
BET和元素分析结果表明,在热解温度为700℃的条件下制备的催化剂具有最高的比表面积,并且随着热解温度的升高,催化剂中碳元素和铁元素的含量升高,而氢、氮、氧元素的含量都随之下降.根据TEM图像,当热解温度升至600℃时,在碳材料上可以观察到平均尺寸为5.1 nm的金属颗粒,分散性较好.进一步将温度升至700℃,观察到平均尺寸为9.1 nm的金属颗粒,并且碳材料的形态结构转变为卷曲的层状.在XRD分析中,600℃时催化剂的衍射峰归因于正交晶系的Fe2N,随着温度升至700℃,Fe2N相消失同时出现了Fe3C相.在HRTEM的图谱中,可以清晰地看到Fe3C相的(031)面的衍射条纹,并且在颗粒周围有约5.2 nm厚的石墨碳层包裹.XPS结果表明,当温度达到700℃时,形成石墨化的氮掺杂碳,提高了催化剂活性.结合催化剂表征结果和对比实验,催化剂中铁物种的转变和氮掺杂碳尤其是石墨化的氮掺杂碳的生成可能是影响催化剂活性的主要因素.根据动力学实验,当使用Fe-N-C-700催化剂时,硝基苯加氢反应表观活化能为31.53 kJ/mol(报道为91.5 kJ/mol),这表明Fe-N-C-700催化剂可以有效地降低反应活化能.
关键词: 共热解, , 氮掺杂, 碳材料, 氢化反应

出版年份

相关作者

相关热词