电容去离子提锂技术中电极材料的研究进展

陈泽秋 蔡黎淼 关杰 李瞻洋 王昊 郭耀广 徐兴涛 潘丽坤

引用本文: 陈泽秋, 蔡黎淼, 关杰, 李瞻洋, 王昊, 郭耀广, 徐兴涛, 潘丽坤. 电容去离子提锂技术中电极材料的研究进展[J]. 物理化学学报, 2025, 41(8): 100089. doi: 10.1016/j.actphy.2025.100089 shu
Citation:  Zeqiu Chen, Limiao Cai, Jie Guan, Zhanyang Li, Hao Wang, Yaoguang Guo, Xingtao Xu, Likun Pan. Advanced electrode materials in capacitive deionization for efficient lithium extraction[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100089. doi: 10.1016/j.actphy.2025.100089 shu

电容去离子提锂技术中电极材料的研究进展

    通讯作者: 郭耀广, ygguo@sspu.edu.cn; 徐兴涛, xingtao.xu@zjou.edu.cn; 潘丽坤, lkpan@phy.ecnu.edu.cn
  • 基金项目:

    国家自然科学基金 52400174

    国家自然科学基金 52270129

    国家自然科学基金 52370142

    上海扬帆计划 24YF2714000

    东方英才青年计划及上海曙光计划 23SG52

摘要: 随着新能源领域对锂资源需求的持续增长,开发高效的锂提取技术变得及其重要。然而,由于其高能耗和可能引发的二次污染问题,传统的锂提取和回收技术具有实际应用和发展的局限性。电容去离子(CDI)技术作为一种新兴的锂提取技术,在效率、成本效益和能源消耗方面展现出巨大的潜力。本综述从文献计量入手,剖析了CDI提锂的关键研究主题,进而全面总结了在CDI提锂技术中电极材料的最新进展,并探讨了使用这些材料构建的各种CDI系统类型。本研究详细阐明了CDI系统中用于锂资源回收的主要电极材料——水系锂离子电极材料(包括LiFePO4、LiMn2O4、LiNi1/3Co1/3Mn1/3O2等)及其修饰材料(包括碳纳米管、石墨烯、MOF等)。此外,本文讨论了通过不同的电容去离子(CDI)系统提高锂提取效率,并评估了各种先进电极材料在这些系统中的性能。文末强调了机器学习在CDI提锂领域的应用潜力,并期望本研究将为未来开发基于CDI的高效锂提取系统提供坚实的理论基础和实践指导。

English

    1. [1]

      P. Greim, A. Solomon, C. Breyer, Nat. Commun. 11 (1) (2020) 4570, https://doi.org/10.1038/s41467-020-18402-y. doi: 10.1038/s41467-020-18402-y

    2. [2]

      S. Sahoo, S. Tripathy, A. Nayak, K. Hembrom, S. Dey, R. Rath, M. Mohanta, Miner. Process. Extr. M 45 (1) (2022) 1, https://doi.org/10.1080/08827508.2022.2117172. doi: 10.1080/08827508.2022.2117172

    3. [3]

      E. Dugamin, A. Richard, M. Cathelineau, M. Boiron, F. Despinois, A. Brisset, Sci. Rep. 11 (1) (2021) 21091, https://doi.org/10.1038/s41598-021-99912-7. doi: 10.1038/s41598-021-99912-7

    4. [4]

      L. Talens Peiró, G. Villalba Méndez, R. Ayres, Jom 65 (8) (2013) 986, https://doi.org/10.1007/s11837-013-0666-4. doi: 10.1007/s11837-013-0666-4

    5. [5]

      T. Gao, N. Fan, W. Chen, T. Dai, China Geol. 6 (1) (2023) 137, https://doi.org/10.31035/cg2022088. doi: 10.31035/cg2022088

    6. [6]

      Y. Sun, Q. Wang, Y. Wang, R. Yun, X. Xiang, Sep. Purif. Technol. 256 (2021) 117807, https://doi.org/10.1016/j.seppur.2020.117807. doi: 10.1016/j.seppur.2020.117807

    7. [7]

      M. Zheng, X. Zhang, M. Li, D. Che, L. Bu, J. Han, C. Ye. China Geol. 6 (4) (2023) 547, https://doi.org/10.31035/cg2023061. doi: 10.31035/cg2023061

    8. [8]

      A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 528 (2022) 115611, https://doi.org/10.1016/j.desal.2022.115611. doi: 10.1016/j.desal.2022.115611

    9. [9]

      J. Song, L. Nghiem, X. Li, T. He, Environ. Sci.-Wat. Res. Technol. 3 (4) (2017) 593, https://doi.org/10.1039/c7ew00020k. doi: 10.1039/c7ew00020k

    10. [10]

      L. Wu, C. Zhang, S. Kim, T. Hatton, H. Mo, T. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822. doi: 10.1016/j.watres.2022.118822

    11. [11]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139 (2019) 105865, https://doi.org/10.1016/j.mineng.2019.105868. doi: 10.1016/j.mineng.2019.105868

    12. [12]

      Z. Xu, H. Zhang, R. Wang, W. Gui, G. Liu, Y. Yang, Ind. Eng. Chem. Res. 53 (42) (2014) 16502, https://doi.org/10.1021/ie502749n. doi: 10.1021/ie502749n

    13. [13]

      X. Liu, M. Zhong, X. Chen, Z. Zhao, Hydrometallurgy 176 (2018) 73, https://doi.org/10.1016/j.hydromet.2018.01.005. doi: 10.1016/j.hydromet.2018.01.005

    14. [14]

      W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Hydrometallurgy 171 (2017) 27, https://doi.org/10.1016/j.hydromet.2017.04.007. doi: 10.1016/j.hydromet.2017.04.007

    15. [15]

      J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang, X. Xiang, Desalination 547 (2023) 116225, https://doi.org/10.1016/j.desal.2022.116225. doi: 10.1016/j.desal.2022.116225

    16. [16]

      B. Van Der Bruggen, A. Koninckx, C. Vandecasteele, Water Res. 38 (5) (2004) 1347, https://doi.org/10.1016/j.watres.2003.11.008. doi: 10.1016/j.watres.2003.11.008

    17. [17]

      A. Somrani, A. Hamzaoui, M. Pontie, Desalination 317 (2013) 184, https://doi.org/10.1016/j.desal.2013.03.009. doi: 10.1016/j.desal.2013.03.009

    18. [18]

      Y. Li, Y. Zhao, H. Wang, M. Wang, Desalination 468 (2019) 114081, https://doi.org/10.1016/j.desal.2019.114081. doi: 10.1016/j.desal.2019.114081

    19. [19]

      L. Li, V. Deshmane, M. Paranthaman, R. Bhave, B. Moyer, S. Harrison, Johnson Matthey Tech. 62 (2) (2018) 161, https://doi.org/10.1595/205651317x696676. doi: 10.1595/205651317x696676

    20. [20]

      H. Yu, G. Naidu, C. Zhang, C. Wang, A. Razmjou, D. Han, T. He, H. Shon, Desalination 539 (2022) 115951, https://doi.org/10.1016/j.desal.2022.115951. doi: 10.1016/j.desal.2022.115951

    21. [21]

      A. Battistel, M. Palagonia, D. Brogioli, F. Mantia, R. Trócoli, Adv. Mater. 32 (23) (2020) 1905440, https://doi.org/10.1002/adma.201905440. doi: 10.1002/adma.201905440

    22. [22]

      J. Wang, X. Yue, P. Wang, T. Yu, X. Du, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energy Rev. 154 (2022) 111813, https://doi.org/10.1016/j.rser.2021.111813. doi: 10.1016/j.rser.2021.111813

    23. [23]

      Y. Hao, Y. Wang, Y. Wang, X. Guo, X. Yan, Y. Chen, X. Zhang, W. Lang, Ind. Eng. Chem. Res. 62 (50) (2023) 21693, https://doi.org/10.1021/acs.iecr.3c03744. doi: 10.1021/acs.iecr.3c03744

    24. [24]

      D. Weng, H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang, J. Wang, Prog. Nat. Sci.-Mater. 30 (2) (2020) 139, https://doi.org/10.1016/j.pnsc.2020.01.017. doi: 10.1016/j.pnsc.2020.01.017

    25. [25]

      H. Wang, X. Xu, X. Gao, Y. Li, T. Lu, L. Pan, Coord. Chem. Rev. 510 (2024) 215835, https://doi.org/10.1016/j.ccr.2024.215835. doi: 10.1016/j.ccr.2024.215835

    26. [26]

      W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Water Res. 150 (2019) 225, https://doi.org/10.1016/j.watres.2018.11.064. doi: 10.1016/j.watres.2018.11.064

    27. [27]

      Y. Shin, J. Lim, C. Boo, S. Hong, Desalination 502 (2021) 114930, https://doi.org/10.1016/j.desal.2021.114930. doi: 10.1016/j.desal.2021.114930

    28. [28]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035. doi: 10.1016/j.desal.2024.118035

    29. [29]

      H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, G. Yang, L. Pan, Small 20 (42) (2024) 2401214, https://doi.org/10.1002/smll.202401214. doi: 10.1002/smll.202401214

    30. [30]

      H. Wang, Y. Li, Y. Liu, X. Xu, T. Lu, L. Pan, Sep. Purif. Technol. 354 (2025) 129423, https://doi.org/10.1016/j.seppur.2024.129423. doi: 10.1016/j.seppur.2024.129423

    31. [31]

      G. Xu, M. Jiang, J. Li, X. Xuan, J. Li, T. Lu, L. Pan, Energy Storage Mater. 72 (2024) 103710, https://doi.org/10.1016/j.ensm.2024.103710. doi: 10.1016/j.ensm.2024.103710

    32. [32]

      M. Jiang, Y. Zhang, Z. Yang, H. Li, J. Li, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Inorg. Chem. Front. 10 (22) (2023) 6646, https://doi.org/10.1039/d3qi01705b. doi: 10.1039/d3qi01705b

    33. [33]

      Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C. Sun, L. Pan, Carbon 130 (2018) 377, https://doi.org/10.1016/j.carbon.2018.01.035. doi: 10.1016/j.carbon.2018.01.035

    34. [34]

      X. Yang, J. Li, W. Qu, W. Wang, P. Wang, J. Ma, Desalination 599 (2025) 118450, https://doi.org/10.1016/j.desal.2024.118450. doi: 10.1016/j.desal.2024.118450

    35. [35]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883. doi: 10.1016/j.desal.2020.114883

    36. [36]

      M. Liu, M. He, J. Han, Y. Sun, H. Jiang, Z. Li, Y. Li, H. Zhang, Sustainability 14 (21) (2022) 14429, https://doi.org/10.3390/su142114429. doi: 10.3390/su142114429

    37. [37]

      Z. Song, Y. Chen, N. Ren, X. Duan, Environ. Funct. Mater. 2 (3) (2023) 290, https://doi.org/10.1016/j.efmat.2023.11.001. doi: 10.1016/j.efmat.2023.11.001

    38. [38]

      M. Chen, Wires Comput. Stat. 2(4) (2010) 387, https://doi.org/10.1002/wics.89. doi: 10.1002/wics.89

    39. [39]

      T. Pang, J. Shen, Desalination 527 (2022) 115562, https://doi.org/10.1016/j.desal.2022.115562. doi: 10.1016/j.desal.2022.115562

    40. [40]

      J. Ma, R. Zhou, F. Yu, Desalination 571 (2024) 117107, https://doi.org/10.1016/j.desal.2023.117107. doi: 10.1016/j.desal.2023.117107

    41. [41]

      C. Xiao, L. Zeng, Hydrometallurgy 178 (2018) 283, https://doi.org/10.1016/j.hydromet.2018.05.001. doi: 10.1016/j.hydromet.2018.05.001

    42. [42]

      N. Heidari, P. Momeni, Environ. Earth. Sci. 76 (16) (2017) 551, https://doi.org/10.1007/s12665-017-6885-1. doi: 10.1007/s12665-017-6885-1

    43. [43]

      R. Reich, K. Slunitschek, R. Danisi, E. Eiche, J. Kolb, Miner. Process. Extr. M 44 (4) (2022) 261, https://doi.org/10.1080/08827508.2022.2047041. doi: 10.1080/08827508.2022.2047041

    44. [44]

      K. Walha, R. Amar, F. Quemeneur, P. Jaouen, Desalination 219 (1–3) (2008) 231, https://doi.org/10.1016/j.desal.2007.05.016. doi: 10.1016/j.desal.2007.05.016

    45. [45]

      D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Desalination 376 (16) (2015) 109, https://doi.org/10.16/jdesal.2015.020. doi: 10.16/jdesal.2015.020

    46. [46]

      L. Wang, X. Xiong, Z. Fan, G. Zhang, Z. Wang, Appl. Mech. Mater. 378 (2013) 318, https://doi.org/10.4028/www.scientific.net/AMM.378.318. doi: 10.4028/www.scientific.net/AMM.378.318

    47. [47]

      A. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Desalination 356 (2015) 226, https://doi.org/10.1016/j.desal.2014.10.043. doi: 10.1016/j.desal.2014.10.043

    48. [48]

      P. Xu, J. Drewes, T. Kim, C. Bellona, G. Amy, J. Membr. Sci. 279 (12) (2006) 165, https://doi.org/10.1016/j.memsci.2005.12.001. doi: 10.1016/j.memsci.2005.12.001

    49. [49]

      J. Blair, G. Murphy, Saline Water Conversion 20 (1960) 206, https://doi.org/10.21/ba-1960-0027.ch020. doi: 10.21/ba-1960-0027.ch020

    50. [50]

      A. Johnson, J. Newman, J. Electrochem. Soc. 118 (3) (1971) 510, https://doi.org/10.1149/1.2408094. doi: 10.1149/1.2408094

    51. [51]

      P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 5 (7) (2020) 517, https://doi.org/10.1038/s41578-020-0193-1. doi: 10.1038/s41578-020-0193-1

    52. [52]

      D. Lee, T. Ryu, J. Shin, J. Ryu, K. Chung, Y. Kim, Hydrometallurgy 173 (2017) 283, https://doi.org/10.1016/j.hydromet.2017.09.005. doi: 10.1016/j.hydromet.2017.09.005

    53. [53]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5 (11) (2012) 9487, https://doi.org/10.1039/c2ee22977c. doi: 10.1039/c2ee22977c

    54. [54]

      R. Al-Juboori, S. Bakly, L. Bowtell, S. Alkurdi, A. Altaee, J. Water Process. Eng. 47 (2022) 102786, https://doi.org/10.1016/j.jwpe.2022.102786. doi: 10.1016/j.jwpe.2022.102786

    55. [55]

      H. Wang, Y. Liu, Y. Li, X. Xu, X. Liu, Y. Yao, T. Lu, L. Pan, Chem. Eng. J. 496 (2024) 153808, https://doi.org/10.1016/j.cej.2024.153808. doi: 10.1016/j.cej.2024.153808

    56. [56]

      H. Wang, Y. Liu, Y. Li, X. Xu, T. Lu, L. Pan, Mater. Horiz. 11 (21) (2024) 5209, https://doi.org/10.1039/d4mh00773e. doi: 10.1039/d4mh00773e

    57. [57]

      X. Zhang, Y. Li, Z. Yang, P. Yang, J. Wang, M. Shi, F. Yu, J. Ma, Sep. Purif. Technol. 297 (2022) 121510, https://doi.org/10.1016/j.seppur.2022.121510. doi: 10.1016/j.seppur.2022.121510

    58. [58]

      M. Gao, J. Li, Z. Wang, Z. Yang, Y. Chen, W. Deng, W. Liang, T. Ao, W. Chen, Sep. Purif. Technol. 328 (2024) 125084, https://doi.org/10.1016/j.seppur.2023.125084. doi: 10.1016/j.seppur.2023.125084

    59. [59]

      A. Sood, A. Poletayev, D Cogswell, P. Csernica, J. Mefford, D. Fraggedakis, M. Toney, A. Lindenberg, M. Bazant, W. Chueh, Nat. Rev. Mater. 6 (9) (2021) 847, https://doi.org/10.1038/s41578-021-00314-y. doi: 10.1038/s41578-021-00314-y

    60. [60]

      K. Salari, P. Zarafshan, M. Khashehchi, G. Chegini, H. Etezadi, H. Karami, J. Szulżyk-Cieplak, G. Łagód, Membranes 12 (5) (2022) 459, https://doi.org/10.3390/membranes12050459. doi: 10.3390/membranes12050459

    61. [61]

      Z. He, Y. Lv, T. Zhang, Y. Zhu, L. Dai, S. Yao, W. Zhu, L. Wang, Chem. Eng. J. 427 (2022) 131680, https://doi.org/10.1016/j.cej.2021.131680. doi: 10.1016/j.cej.2021.131680

    62. [62]

      S. Bao, C. Xin, Y. Zhang, B. Chen, W. Ding, Y. Luo, Energies 16 (3) (2023) 1136, https://doi.org/10.3390/en16031136. doi: 10.3390/en16031136

    63. [63]

      J. Wang, J. Yuan, H. Gao, F. Yu, J. Ma, Chem. Eng. J. 480 (2024) 147986, https://doi.org/10.1016/j.cej.2023.147986. doi: 10.1016/j.cej.2023.147986

    64. [64]

      E. Sayed, M. Obaid, A. Olabi, M. Abdelkareem, M. Al Radi, A. Al-Dawoud, S. Al-Asheh, N. Ghaffour, J. Water. Process. Eng. 56 (2023) 104379, https://doi.org/10.1016/j.jwpe.2023.104379. doi: 10.1016/j.jwpe.2023.104379

    65. [65]

      P. Sivasubramanian, M. Kumar, V. Kirankumar, M. Samuel, C. Dong, J. Chang, Desalination 559 (2023) 116652, https://doi.org/10.1016/j.desal.2023.116652. doi: 10.1016/j.desal.2023.116652

    66. [66]

      F. Yu, Y. Yang, X. Zhang, J. Ma, Sep. Purif. Technol. 354 (2025) 129285, https://doi.org/10.1016/j.seppur.2024.129285. doi: 10.1016/j.seppur.2024.129285

    67. [67]

      Y. Tao, Y. Cui, H. Wang, Z. Li, Z. Qian, P. Zhang, H. Zhou, M. Shi, Adv. Funct. Mater. 35 (6) (2024) 2414805, https://doi.org/10.1002/adfm.202414805. doi: 10.1002/adfm.202414805

    68. [68]

      Q. Wang, Q. Wu, M. Zhao, S. Lu, D. Liang, Chem. Eng. J. 482 (2024) 148923, https://doi.org/10.1016/j.cej.2024.148923. doi: 10.1016/j.cej.2024.148923

    69. [69]

      H. Yu, S. Hossain, C. Wang, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 556 (2023) 116569, https://doi.org/10.1016/j.desal.2023.116569. doi: 10.1016/j.desal.2023.116569

    70. [70]

      S. Kim, J. Kang, H. Joo, Y. Sung, J. Yoon, Environ. Sci. Technol. 54 (14) (2020) 9044, https://doi.org/10.1021/acs.est.9b07646. doi: 10.1021/acs.est.9b07646

    71. [71]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5 (6) (2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034. doi: 10.1016/j.matt.2022.04.034

    72. [72]

      J. Luo, W. Cui, P. He, Y. Xia, Nat. Chem. 2 (9) (2010) 760, https://doi.org/10.1038/nchem.763. doi: 10.1038/nchem.763

    73. [73]

      J. Tarascon, M. Armand, Nature 414 (6861) (2001) 359, https://doi.org/10.1038/35104644. doi: 10.1038/35104644

    74. [74]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133 (2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013. doi: 10.1016/j.hydromet.2012.11.013

    75. [75]

      M. Thackeray, P. Johnson, L. De Picciotto, P. Bruce, J. Goodenough, Mater. Res. Bull.19 (2) (1984) 179, https://doi.org/10.1016/0025-5408(84)90088-6. doi: 10.1016/0025-5408(84)90088-6

    76. [76]

      Q. Lu, P. Liu, T. Zhou, R. Huang, K. Zhang, L. Hu, R. Liu, Z. Ren, J. Wang, X. Wang, Nano Res. 17 (4) (2023) 2563, https://doi.org/10.1007/s12274-023-6121-0. doi: 10.1007/s12274-023-6121-0

    77. [77]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28 (13) (1993) 643, https://doi.org/10.1080/01496399308019512. doi: 10.1080/01496399308019512

    78. [78]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112. doi: 10.1016/j.desal.2021.115112

    79. [79]

      X. Shang, B. Hu, P. Nie, W. Shi, T. Hussain, J. Liu, Sep. Purif. Technol. 258 (2021) 118009, https://doi.org/10.1016/j.seppur.2020.118009. doi: 10.1016/j.seppur.2020.118009

    80. [80]

      C. Ouyang, S. Shi, M. Lei, J. Alloy. Compd. 474 (12) (2009) 370, https://doi.org/10.1016/j.jallcom.2008.06.123. doi: 10.1016/j.jallcom.2008.06.123

    81. [81]

      Y. Wang, G. Zhang, G. Dong, H. Zheng, Batteries 8 (11) (2022) 225, https://doi.org/10.3390/batteries8110225. doi: 10.3390/batteries8110225

    82. [82]

      C. Lawagon, G. Nisola, R. Cuevas, H. Kim, S. Lee, W. Chung, Chem. Eng. J. 348 (2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030. doi: 10.1016/j.cej.2018.05.030

    83. [83]

      R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H. Cheng, Adv. Mater. 31 (9) (2018) 1800863, https://doi.org/10.1002/adma.201800863. doi: 10.1002/adma.201800863

    84. [84]

      N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater. 28 (21) (2016) 4126, https://doi.org/10.1002/adma.201505918. doi: 10.1002/adma.201505918

    85. [85]

      S. Zhang, F. Han, Q. Pan, D. Lin, G. Chen, X. Mu, X. Zhu, C. Shao, N. Wu, G. Meng, Sci. China Mater. 66 (9) (2023) 3493, https://doi.org/10.1007/s40843-023-2526-8. doi: 10.1007/s40843-023-2526-8

    86. [86]

      S. Zhang, F. Han, Q. Pan, D. Lin, X. Zhu, C. Shao, G. Zhang, Z. Wang, S. Sun, G. Meng, Energy Environ. Mater. 6 (4) (2023) e12586, https://doi.org/10.1002/eem2.12586. doi: 10.1002/eem2.12586

    87. [87]

      G. Wang, Z. Ma, G. Shao, L. Kong, W. Gao, J. Power Sources 291 (2015) 209, https://doi.org/10.1016/j.jpowsour.2015.05.027. doi: 10.1016/j.jpowsour.2015.05.027

    88. [88]

      X. Tu, Y. Zhou, X. Tian, Y. Song, C. Deng, H. Zhu, Electrochim. Acta 222 (2016) 64, https://doi.org/10.1016/j.electacta.2016.10.137. doi: 10.1016/j.electacta.2016.10.137

    89. [89]

      Y. Qiao, W. Feng, J. Li, T. Shen, Electrochim. Acta 232 (2017) 323, https://doi.org/10.1016/j.electacta.2017.02.161. doi: 10.1016/j.electacta.2017.02.161

    90. [90]

      W. Li, A. Garg, M. Le, C. Ruhatiya, L. Gao, V. Tran, Electrochim. Acta 330 (2020) 135314, https://doi.org/10.1016/j.electacta.2019.135314. doi: 10.1016/j.electacta.2019.135314

    91. [91]

      J. Daigle, Y. Asakawa, M. Beaupré, V. Gariépy, R. Vieillette, D. Laul, M. Trudeau, K. Zaghib, Sci. Rep. 9 (1) (2019) 16871, https://doi.org/10.1038/s41598-019-53195-1. doi: 10.1038/s41598-019-53195-1

    92. [92]

      Y. Hu, F. Lin, Z. Liu, Ceram. Int. 45 (8) (2019) 10976, https://doi.org/10.1016/j.ceramint.2019.02.180. doi: 10.1016/j.ceramint.2019.02.180

    93. [93]

      A. Wei, J. Mu, R. He, X. Bai, Z. Liu, L. Zhang, Z. Liu, Y. Wang, J. Phys. Chem. Solids 138 (2020) 109303, https://doi.org/10.1016/j.jpcs.2019.109303. doi: 10.1016/j.jpcs.2019.109303

    94. [94]

      Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, J. Tu, Adv. Sci. 5 (3) (2018) 1700786, https://doi.org/10.1002/advs.201700786. doi: 10.1002/advs.201700786

    95. [95]

      X. Shang, J. Liu, B. Hu, P. Nie, J. Yang, B. Zhang, Y. Wang, F. Zhan, J. Qiu, Small Methods 6 (7) (2022) 2200508, https://doi.org/10.1002/smtd.202200508. doi: 10.1002/smtd.202200508

    96. [96]

      J. Si, C. Xue, S. Li, L. Yang, W. Li, J. Yang, J. Lan, N. Sun, Desalination 572 (2024) 117154, https://doi.org/10.1016/j.desal.2023.117154. doi: 10.1016/j.desal.2023.117154

    97. [97]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360, https://doi.org/10.1016/j.desal.2020.114360. doi: 10.1016/j.desal.2020.114360

    98. [98]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181. doi: 10.1016/j.jcis.2021.12.181

    99. [99]

      R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, et al., Angew. Chem. Int. Ed. 60 (45) (2021) 23975, https://doi.org/10.1002/anie.202106259. doi: 10.1002/anie.202106259

    100. [100]

      A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Nat. Commun. 10 (1) (2019) 5793, https://doi.org/10.1038/s41467-019-13648-7. doi: 10.1038/s41467-019-13648-7

    101. [101]

      X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46 (10) (2017) 2660, https://doi.org/10.1039/c6cs00426a. doi: 10.1039/c6cs00426a

    102. [102]

      M. Ding, X. Cai, H. Jiang, Chem. Sci. 10 (44) (2019) 10209, https://doi.org/10.1039/c9sc03916c. doi: 10.1039/c9sc03916c

    103. [103]

      A. Chen, M. Cheng, D. Huang, G. Zhang, W. Wang, L. Du, G. Wang, H. Liu, Y. Chen, W. Xiao, et al., Renew. Sust. Energy Rev. 199 (2024) 114520, https://doi.org/10.1016/j.rser.2024.114520. doi: 10.1016/j.rser.2024.114520

    104. [104]

      N. Cheng, L. Ren, X. Xu, Y. Du, S. Dou, Adv. Energy Mater. 8 (25) (2018) 1801257, https://doi.org/10.1002/aenm.201801257. doi: 10.1002/aenm.201801257

    105. [105]

      G. Zhong, D. Liu, J. Zhang, J. Mater. Chem. A 6 (5) (2018) 1887, https://doi.org/10.1039/c7ta08268a. doi: 10.1039/c7ta08268a

    106. [106]

      S. Hossain, H. Yu, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 546 (2023) 116201, https://doi.org/10.1016/j.desal.2022.116201. doi: 10.1016/j.desal.2022.116201

    107. [107]

      J. Lim, H. Lee, S. Lee, S. Hong, Desalination 578 (2024) 117403, https://doi.org/10.1016/j.desal.2024.117403. doi: 10.1016/j.desal.2024.117403

    108. [108]

      F. Yang, J. Ma, X. Zhang, X. Huang, P. Liang, Water Res. 164 (2019) 114904, https://doi.org/10.1016/j.watres.2019.114904. doi: 10.1016/j.watres.2019.114904

    109. [109]

      T. Elmakki, S. Zavahir, H. Shon, G. Gago, H. Park, D. Han, Desalination 593 (2025) 118195, https://doi.org/10.1016/j.desal.2024.118195. doi: 10.1016/j.desal.2024.118195

    110. [110]

      W. Shi, X. Liu, C. Ye, X. Cao, C. Gao, J. Shen, Sep. Purif. Technol. 210 (2019) 885, https://doi.org/10.1016/j.seppur.2018.09.006. doi: 10.1016/j.seppur.2018.09.006

    111. [111]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (8) (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6. doi: 10.1007/s10008-023-05461-6

    112. [112]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693. doi: 10.1016/j.seppur.2024.127693

    113. [113]

      N. Xie, Y. Li, Y. Yuan, J. Gong, X. Hu, ACS Appl. Energy Mater. 4 (11) (2021) 13036, https://doi.org/10.1021/acsaem.1c02654. doi: 10.1021/acsaem.1c02654

    114. [114]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z. Ji, Chem. Eng. J. 482 (2024) 148802, https://doi.org/10.1016/j.cej.2024.148802. doi: 10.1016/j.cej.2024.148802

    115. [115]

      A. Siekierka, Desalination 527 (2022) 11569, https://doi.org/10.1016/j.desal.2022.115569. doi: 10.1016/j.desal.2022.115569

    116. [116]

      Y. Ha, H. Jung, H. Lim, P. Jo, H. Yoon, C. Yoo, T. Pham, W. Ahn, Y. Cho, Energies 12 (15) (2019) 2913, https://doi.org/10.3390/en12152913. doi: 10.3390/en12152913

    117. [117]

      H. Saif, J. Crespo, S. Pawlowski, J. Membr. Sci. Lett. 3 (2) (2023) 100059, https://doi.org/10.1016/j.memlet.2023.100059. doi: 10.1016/j.memlet.2023.100059

    118. [118]

      W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935, https://doi.org/10.1016/j.desal.2021.114935. doi: 10.1016/j.desal.2021.114935

    119. [119]

      Z. Guo, Z. Ji, J. Wang, X. Guo, J. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767. doi: 10.1016/j.desal.2022.115767

    120. [120]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Glob. Chall. 2 (2) (2018) 1700079, https://doi.org/10.1002/gch2.201700079. doi: 10.1002/gch2.201700079

    121. [121]

      C. Liu, Y. Li, D. Lin, P. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (7) (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017. doi: 10.1016/j.joule.2020.05.017

    122. [122]

      S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. Atchison, K. Keesman, S. Kaskel, P. Biesheuvel, V. Presser, Energy Environ. Sci. 6 (12) (2013) 3700, https://doi.org/10.1039/c3ee42209g. doi: 10.1039/c3ee42209g

    123. [123]

      W. Tang, P. Kovalsky, D. He, T. Waite, Water Res. 84 (2015) 342, https://doi.org/10.1016/j.watres.2015.08.012. doi: 10.1016/j.watres.2015.08.012

    124. [124]

      J. Choi, H. Lee, S. Hong, Desalination 400 (2016) 38, https://doi.org/10.1016/j.desal.2016.09.016. doi: 10.1016/j.desal.2016.09.016

    125. [125]

      J. Lee, K. Park, H. Eum, C. Lee, Desalination 196 (13) (2006) 125, https://doi.org/10.1016/j.desal.2006.01.011. doi: 10.1016/j.desal.2006.01.011

    126. [126]

      A. Siekierka, J. Wolska, M. Bryjak, W. Kujawski, Desalin. Water Treat. 75 (2017) 331, https://doi.org/10.5004/dwt.2017.20431. doi: 10.5004/dwt.2017.20431

    127. [127]

      J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 7 (11) (2014) 3683, https://doi.org/10.1039/c4ee02378a. doi: 10.1039/c4ee02378a

    128. [128]

      D. Jiang, R. Xu, L. Bai, W. Wu, D. Luo, Z. Li, T. Asahi, Y. Mai, Z. Liu, Y. Yamauchi, et al., Coord. Chem. Rev. 516 (2024) 215923, https://doi.org/10.1016/j.ccr.2024.215923. doi: 10.1016/j.ccr.2024.215923

    129. [129]

      A. Siekierka, J. Kujawa, W. Kujawski, M. Bryjak, Sep. Purif. Technol. 194 (2018) 231, https://doi.org/10.1016/j.seppur.2017.11.045. doi: 10.1016/j.seppur.2017.11.045

    130. [130]

      A. Siekierka, Sep. Purif. Technol. 236 (2020) 116234, https://doi.org/10.1016/j.seppur.2019.116234. doi: 10.1016/j.seppur.2019.116234

    131. [131]

      S. Dahiya, B. Mishra, Sep. Purif. Technol. 240 (2020) 116660, https://doi.org/10.1016/j.seppur.2020.116660. doi: 10.1016/j.seppur.2020.116660

    132. [132]

      S. Jeon, H. Park, J. Yeo, S. Yang, C. Cho, M. Han, D. Kim, Energy Environ. Sci. 6 (5) (2013), https://doi.org/10.1039/c3ee24443a. doi: 10.1039/c3ee24443a

    133. [133]

      K. Smith, R. Dmello, J. Electrochem. Soc. 163 (3) (2016) A530, https://doi.org/10.1149/2.0761603jes. doi: 10.1149/2.0761603jes

    134. [134]

      X. Liu, X. Chen, L. He, Z. Zhao, Desalination 376 (2015) 35, https://doi.org/10.1016/j.desal.2015.08.013. doi: 10.1016/j.desal.2015.08.013

    135. [135]

      L. Miao, M. Gao, W. Xiao, Y. Kang, R. Li, H. Kong, H. Mou, W. Chen, T. Ao, Desalination 586 (2024) 117850, https://doi.org/10.1016/j.desal.2024.117850. doi: 10.1016/j.desal.2024.117850

    136. [136]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, J. Mater. Chem. A 9 (4) (2021) 2259, https://doi.org/10.1039/d0ta09531a. doi: 10.1039/d0ta09531a

    137. [137]

      G. Xu, Y. Zhang, M. Jiang, J. Li, H. Sun, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Chem. Eng. J. 476 (2023) 146676, https://doi.org/10.1016/j.cej.2023.146676. doi: 10.1016/j.cej.2023.146676

    138. [138]

      Z. Xu, Y. Ding, S. Han, C. Zhang, Water Res. 266 (2024) 122374, https://doi.org/10.1016/j.watres.2024.122374. doi: 10.1016/j.watres.2024.122374

    139. [139]

      E. Aytaç, A. Fombona-Pascual, J. Lado, E. Quismondo, J. Palma, M. Khayet, Desalination 563 (2023) 116715, https://doi.org/10.1016/j.desal.2023.116715. doi: 10.1016/j.desal.2023.116715

    140. [140]

      L. Bai, R. Xu, W. Wu, C. Ma, S. Li, H. Gao, D. Luo, B. Liu, S. Melhi, Y. Zhao, et al., J. Mater. Chem. A 12 (18) (2024) 10676, https://doi.org/10.1039/d3ta07069g. doi: 10.1039/d3ta07069g

    141. [141]

      Z. Wang, T. Yan, L. Shi, D. Zhang, ACS Appl. Mater. Interfaces 9 (17) (2017) 15068, https://doi.org/10.1021/acsami.7b02712. doi: 10.1021/acsami.7b02712

    142. [142]

      J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, J. Mater. Chem. A 6 (31) (2018) 15245, https://doi.org/10.1039/c8ta04813d. doi: 10.1039/c8ta04813d

    143. [143]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, Desalination 515 (2021) 115197, https://doi.org/10.1016/j.desal.2021.115197. doi: 10.1016/j.desal.2021.115197

    144. [144]

      Y. Zhu, B. Lian, Y. Wang, C. Miller, C. Bales, J. Fletcher, L. Yao, T. Waite, Water Res. 227 (2022) 119349, https://doi.org/10.1016/j.watres.2022.119349. doi: 10.1016/j.watres.2022.119349

    145. [145]

      K. Salari, P. Zarafshan, M. Khashehchi, E. Pipelzadeh, G. Chegini, Desalination 540 (2022) 115992, https://doi.org/10.1016/j.desal.2022.115992. doi: 10.1016/j.desal.2022.115992

    146. [146]

      S. Yu, J. Jeon, Y. Shin, H. Bae, ACS EST Engg. 4 (8) (2024) 1937, https://doi.org/10.1021/acsestengg.4c00142. doi: 10.1021/acsestengg.4c00142

    147. [147]

      M. Son, N. Yoon, S. Park, A. Abbas, K. Cho, Sci. Total Environ. 856 (2023) 159158, https://doi.org/10.1016/j.scitotenv.2022.159158. doi: 10.1016/j.scitotenv.2022.159158

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  40
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-01-17
  • 接受日期:  2025-04-07
  • 修回日期:  2025-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章