首页 > 期刊 > 物理化学学报
论文
含氮金属有机框架衍生的铜基催化剂电催化还原二氧化碳
金惠东, 熊力堃, 张想, 连跃彬, 陈思, 陆永涛, 邓昭, 彭扬
2021, 37(11): 2006017-0  doi: 10.3866/PKU.WHXB202006017
[摘要]  (195) [HTML全文] (195) [PDF 1516KB] (11)
摘要:
将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源和环境危机的有效策略之一。众所周知,铜基纳米材料是电还原二氧化碳的良好催化剂,但仍存在选择性低和耐久性差等缺点。本文中,我们以Cu-NBDC MOF为前驱体,通过退火得到了一种锚定在氮掺杂多孔碳上的Cu2O/Cu催化剂(Cu2O/Cu@NC)。XPS结果显示,Cu2O/Cu@NC中的Cu-N含量随着退火温度升高而降低。通过电还原二氧化碳测试结果分析,我们发现与不含氮的Cu2O/Cu@C相比,Cu2O/Cu@NC有效抑制了副反应HER,提高了电还原二氧化碳反应的整体催化活性,而且随着Cu-N含量的增加,Cu2O/Cu@NC对乙烯和甲烷的选择性得到显著提高。在400 ℃退火处理下,Cu2O/Cu@NC的CO2催化效率高于86% (−1.4 – −1.6 V vs. RHE),其中包括20.4%的C2H4 (−1.4 V vs. RHE)和23.9%的CH4 (−1.6 V vs. RHE)。相比之下,Cu2O/Cu@C的二氧化碳还原效率最高不足50%,且无明显乙烯和甲烷生成。我们认为这些显著的催化性能差异主要归因于Cu-N有利于稳定二氧化碳还原反应中*CH2中间体的吸附,抑制*H生成氢气。这些结果表明,通过调控氮的掺杂可以有效改变铜基MOF衍生的催化剂的二氧化碳还原路径并提高其催化性能。
Communication
Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes
Liming Guan, Beidou Guo, Xinrui Jia, Guancai Xie, Jian Ru Gong
2021, 37(11): 2007067-0  doi: 10.3866/PKU.WHXB202007067
[摘要]  (111) [HTML全文] (111) [PDF 543KB] (2)
摘要:
Graphene monolayers are permeable to thermal protons and impermeable to other atoms and molecules, exhibiting their potential applications in fuel cell technologies and hydrogen isotope separation. Furthermore, the giant photoeffect in proton transport through catalytically activated graphene membranes was reported by Geim et al. Their experiment showed that the synergy between illumination and the catalytically active metal plays a key role in this photoeffect. Geim et al. suggested that the local photovoltage created between metal nanoparticles and graphene could funnel protons and electrons toward the metal nanoparticles for the production of hydrogen, while repelling holes away from them, causing the giant photoeffect. However, based on static electric field theory, this explanation is not convincing and the work lacks an analysis on the microscopic mechanism of this effect. Herein, we provide the exact microscopic mechanism behind this phenomenon. In semi-metal pristine graphene, most photon excited hot electrons relax to lower energy states within a timescale of 10−12 s, while the typical timescale of a chemical reaction is 10−6 s. Thus, hot electrons excited by incident photons relax to lower energy states before reacting with protons through the graphene. When graphene is decorated with metal, electron transfer between the graphene and the metal, induced by different work functions, would result in the formation of interface dipoles. When using metals such as Pt, Pd, Ni, etc., which can strongly interact with graphene, local dipoles form. Protons are trapped around the negative poles of the local dipoles, while electrons are around the positive poles. Upon illumination, the electrons are excited to metastable excited states with higher energy levels. Due to the energy barriers around them, the free electrons in the metastable excited states will have a relatively longer lifetime, which facilitates the production of hydrogen through their effective reaction with protons that permeated through the graphene. The concentration of high-energy electrons under illumination was estimated, and the results showed that more electrons are energized to the excited state with strong illumination. According to the analysis, the giant photoeffect in proton transport through the catalytically activated graphene membrane is attributed to long-lived hot electrons and a fast proton transport rate. Since there is no change in the activation energy of the reaction, the metal catalyst increases the rate of the reaction by increasing the number of successful collisions between the reactants to produce the significant photoeffect. This might lead to a new microscopic mechanism that clarifies the role of the catalyst in improving the efficiency of photo(electro)catalytic reactions.
Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes
Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu
2021, 37(11): 2008033-0  doi: 10.3866/PKU.WHXB202008033
[摘要]  (113) [HTML全文] (113) [PDF 1756KB] (2)
摘要:
Lithium (Li)-based batteries are the dominant energy source for consumer electronics, grid storage, and electrified transportation. However, the development of batteries based on graphite anodes is hindered by their limited energy density. With its ultrahigh theoretical capacity (3860 mAh∙g−1), low redox potential (−3.04 V), and satisfactorily low density (0.54 g∙cm−3), Li metal is the most promising anode for next-generation high-energy-density batteries. Unfortunately, the limited cycling life and safety issues raised by dendrite growth, unstable solid electrolyte interphase, and "dead Li" have inhibited their practical use. An effective strategy is to develop a suitable lithiophilic matrix for regulating initial Li nucleation behavior and controlling subsequent Li growth. Herein, single-atom cobalt coordinated to oxygen sites on graphene (Co-O-G SA) is demonstrated as a Li plating substrate to efficiently regulate Li metal nucleation and growth. Owing to its dense and more uniform lithiophilic sites than single-atom cobalt coordinated to nitrogen sites on graphene (Co-N-G SA), high electronic conductivity, and high specific surface area (519 m2∙g−1), Co-O-G SA could significantly reduce the local current density and promote the reversibility of Li plating and stripping. As a result, the Co-O-G SA based Li anodes exhibited a high Coulombic efficiency of 99.9% at a current density of 1 mA∙cm−2 with a capacity of 1 mAh∙cm−2, and excellent rate capability (high current density of 8 mA∙cm−2). Even at a high plating capacity of 6 mAh∙cm−2, the Co-O-G SA electrode could stably cycle for an ultralong lifespan of 1300 h. In the symmetric battery, the Co-O-G SA based Li anode (Co-O-G SA/Li) possessed a stable voltage profile of 18 mV for 780 h at 1 mA∙cm−2, and even at a high current density of 3 mA∙cm−2, its overpotential maintained a small hysteresis of approximately 24 mV for > 550 h. Density functional theory calculations showed that the surface of Co-O-G SA had a stronger interaction with Li atoms with a larger binding energy, −3.1 eV, than that of Co-N-G SA (−2.5 eV), leading to a uniform distribution of metallic Li on the Co-O-G SA surface. More importantly, when matched with a sulfur cathode, the resulting Co-O-G SA/lithium sulfur full batteries exhibited a high capacity of 1002 mAh∙g−1, improved kinetics with a small polarization of 191 mV, and an ultralow capacity decay rate of 0.036% per cycle for 1000 cycles at 0.5C (1C = 1675 mA∙g−1) with a steady Coulombic efficiency of nearly 100%. Therefore, this work provides novel insights into the coordination environment of single atoms for the chemistry of Li metal anodes for high-energy-density batteries.
综述
全固态电池界面的研究进展
王晗, 安汉文, 单红梅, 赵雷, 王家钧
2021, 37(11): 2007070-0  doi: 10.3866/PKU.WHXB202007070
[摘要]  (145) [HTML全文] (145) [PDF 1407KB] (6)
摘要:
采用固态电解质代替有机电解液的全固态电池具有高能量密度和高安全性等优点,为下一代能量存储设备提供了一种很有发展前途的解决方案。然而,大多数固态电解质和电极活性物质间都存在严重的界面问题,制约固态电池的实际应用;解决固态电池中的固-固界面问题,提升固态电池电化学性能是目前的研究热点。本文详细总结了固态电池中的界面挑战、改善策略以及针对界面问题的表征方法,并展望了固态电池今后发展中的关键方向和趋势。
二维材料范德华间隙的利用
阙海峰, 江华宁, 王兴国, 翟朋博, 孟令佳, 张鹏, 宫勇吉
2021, 37(11): 2010051-0  doi: 10.3866/PKU.WHXB202010051
[摘要]  (175) [HTML全文] (175) [PDF 2123KB] (8)
摘要:
二维材料因为其优异且可调的各种物理化学性质自被发现以来就引起了科研工作者的极大关注。其电学、光学、量子、催化等方面的一些独特性质使其迅速成为一类极其重要的材料体系。二维材料层间弱结合的性质为利用范德华间隙来调控体系的电子结构从而进一步优化材料性能创造了条件。客体原子的引入可以显著改变原有材料的层间间距,改变层间的耦合强度。客体与宿主原子的相互作用也可能改变原始材料的电子结构,从而影响材料的多方面性能,甚至带来新的性质。以锂离子电池为代表的层间存储也是二维范德华间隙在能源存储方面的重要应用,一直受到许多科研工作者的关注。在本综述中,我们从利用插层法改变层间距从而改变层间耦合,引入客体物质与宿主原子相互作用从而改变原材料的物理化学性质或引入新性质和层间储能四个方面系统化阐述了二维材料范德华间隙的各种调控方法及其对合成材料的物理、化学性能的巨大影响,并展望了二维范德华间隙进一步开发利用的方向。
锂电池中固体电解质界面研究进展
杨毅, 闫崇, 黄佳琦
2021, 37(11): 2010076-0  doi: 10.3866/PKU.WHXB202010076
[摘要]  (139) [HTML全文] (139) [PDF 6395KB] (4)
摘要:
锂离子电池在电子产品和电动汽车等领域已得到广泛应用,同时具有更高比能量的锂离子电池和锂金属电池也在不断研发中。电极界面的研究在推动电池的研发和产业化过程中发挥重要作用,因为电池在首次充放电过程中电解液组分在电极/电解质界面上发生氧化/还原反应并形成离子导通、电子绝缘性质的界面膜,界面膜对于维持电极结构的完整性、保障锂离子快速迁移和防止电解液持续分解十分关键,因此其稳定性与电池的循环性能和使用寿命密切相关。本文综述了固体电解质界面(SEI)的研究进展,首先介绍了SEI在初次充放电阶段对电位的依赖性,讨论SEI的形成机理,具体分析了影响SEI形成的两个关键因素,即电极表面的离子特性吸附和电解液体相的溶剂化组成和结构;其次,梳理总结了界面的结构与化学组成研究进展,及锂离子在界面中可能的传导机制;此外还简要概述了影响界面膜的因素和调控界面膜的策略;最后对SEI在未来的研究方向进行了展望。
锂离子电池正极材料中的极化子现象理论计算研究进展
叶耀坤, 胡宗祥, 刘佳华, 林伟成, 陈涛文, 郑家新, 潘锋
2021, 37(11): 2011003-0  doi: 10.3866/PKU.WHXB202011003
[摘要]  (144) [HTML全文] (144) [PDF 1531KB] (5)
摘要:
作为一种高能量密度储能器件,锂离子电池不仅已经广泛应用于消费电子领域(如笔记本电脑、智能手机),而且也适合用于电动车中的动力电池。正极是锂电池最为重要的组成部分。在正极材料的研究中,当电子在空间上局域分布并与晶格耦合将形成极化子,极化子现象近些年逐渐引起人们更多关注,主要是因为其减弱电子导电性,不利于电子传导,是磷酸铁锂等正极材料电子导电性差的根本原因。极化子是一种晶格畸变束缚电子作整体运动的晶体缺陷。开展极化子现象的相关机理研究,将为设计高导电性正极材料提供理论指导,对锂离子电池电化学性能的进一步提升有着重要意义。基于第一性原理的理论计算方法已成为研究正极材料中极化子的重要研究手段,能够判断体系是否有极化子出现以及分析极化子的出现对正极材料的物理化学性能影响。本文主要从理论计算的角度出发,首先介绍了极化子的基本物理概念,其次结合我们的相关研究综述了极化子的理论计算判别方法、极化子对常见类型正极材料导电性能的影响与调控和当前研究方法的一些理论难题,最后从基础理论和实际应用两个角度对未来正极材料中的极化子研究进行展望。
表面限域掺杂提升高比能正极材料稳定性
张思东, 刘园, 祁慕尧, 曹安民
2021, 37(11): 2011007-0  doi: 10.3866/PKU.WHXB202011007
[摘要]  (137) [HTML全文] (137) [PDF 1510KB] (3)
摘要:
锂离子电池在便携式电子设备、电动汽车等领域得到了广泛应用,随着对电池能量密度需求的日益增加,高比能、高稳定正极材料的开发成为相关研究的重点和难点。而正极材料比能量的提升又同时伴随着其自身结构稳定性和循环稳定性的挑战,使得锂离子电池的稳定性、安全性成为制约其应用的关键挑战。本文以高比能正极材料为研究对象,对影响正极材料结构稳定性、电化学稳定性等一系列因素进行介绍和分析,再从目前改善材料结构稳定性的有效策略入手,对表面限域掺杂这一特殊稳定策略的实现途径、稳定机制进行了总结和分析,并结合现有不同表面修饰方法进行分析和评述,对高比能正极稳定性提升的可能策略及方向进行了展望。
基于限域特性的电催化剂调控
郑堂飞, 蒋金霞, 王健, 胡素芳, 丁炜, 魏子栋
2021, 37(11): 2011027-0  doi: 10.3866/PKU.WHXB202011027
[摘要]  (110) [HTML全文] (110) [PDF 6053KB] (0)
摘要:
开发高效催化剂是促进包括电能源、碳循环等洁净新能源技术发展的关键。这些新型物质能源转换过程往往涉及光子、电子、质子等量子尺度的粒子转换,而常规纳米尺度催化剂调控策略已略显困难。原子分子尺度的限域空间带来的强相互作用、强分子碰撞,一方面增加了反应几率,另一方面显著影响了内部分子/原子的电子结构。更为重要的是,限域空间赋予了内部物质不同于开放体系下的特性。这些限域特性在调控催化剂上展现出巨大优势。本文从限域角度出发,综述利用原子、分子尺度限域特性对电催化剂分子构型、配位结构、电荷转移填充、介观调控、催化剂表面能量场的调控机制与方法,以及在燃料电池、物质能源转换方面的应用和未来发展方向的展望。
Article
Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide
Zijun Jing, Chen Tan Khai, Teng He, Yang Yu, Qijun Pei, Jintao Wang, Hui Wu, Ping Chen
2021, 37(11): 2009039-0  doi: 10.3866/PKU.WHXB202009039
[摘要]  (83) [HTML全文] (83) [PDF 1323KB] (2)
摘要:
Development of clean energy is an urgent requirement because of the depletion of fossil energy sources and increasingly severe environmental pollution. However, the lack of safe and efficient hydrogen storage materials is one of the bottlenecks in the implementation of hydrogen energy. Liquid organic hydrogen carriers (LOHCs) have been recognized as potential materials for the storage and transportation of hydrogen owing to their high gravimetric and volumetric hydrogen densities, reversible hydrogen absorption and desorption ability, and ease of widespread implementation with minimal modification on the existing fueling infrastructure. While some LOHCs such as cycloalkanes and N-heterocycles have been developed for hydrogen storage, they require a high hydrogen release temperature due to the large enthalpy change of dehydrogenation. In our previous work, a metallation strategy was proposed to improve the thermodynamic properties of liquid organic hydrogen carriers for hydrogen storage, and a series of metalorganic hydrides were synthesized and investigated. Among them, sodium phenoxide-cyclohexanolate pair, lithium carbazolide-perhydrocarbazolide, and sodium anilinide-cyclohexylamide pair showed promising dehydrogenation thermodynamics and improved hydrogen storage properties. Sodium pyrrolide and sodium imidazolide were also synthesized. However, pyrrolides were not well characterized, and the structure of lithium pyrrolide was not resolved. In the present study, we synthesized sodium and lithium pyrrolides by ball milling and wet chemical methods. One equivalent of hydrogen could be released from the reaction of pyrrole and metal hydrides, indicating the replacement of H by metal. The formation of pyrrolides was confirmed by nuclear magnetic resonance (NMR), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy analyses. The 1H signals attributed to C-H in the NMR spectra of the alkali metal pyrrolides shifted upfield due to the replacement of the H of N-H with a stronger electron-donating species (Li or Na), resulting in a greater shielding environment upon metallation. The absorption peaks of lithium and sodium pyrrolides showed red shifts, and the intensities became obviously stronger in the UV-Vis spectra, suggesting an enhancement of the conjugation effect, in accordance with theoretical calculations. The structure of lithium pyrrolide was determined by the combined direct space method and first-principles calculations on XRD data and Rietveld refinement. This molecule crystallizes in the monoclinic P21/c (14) space group, with lattice parameters of a = 4.4364(7) Å, b = 11.969(2) Å, c = 8.192(2) Å, β = 108.789(8)°, and V = 411.8(2) Å3 (1 Å = 0.1 nm). Each Li+ cation is surrounded by three pyrrolides via cation-N σ bonding with two pyrrolides and a cation–π interaction with the third pyrrolide, where the Li+ is on the top of the π face. Our experimental findings are different from the theoretical prediction in the literature.
Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method
Yuan Liu, Zenghui Duan, Jun Li, Chunran Chang
2021, 37(11): 2011012-0  doi: 10.3866/PKU.WHXB202011012
[摘要]  (178) [HTML全文] (178) [PDF 1225KB] (9)
摘要:
With the rapid consumption of petrochemical resources and massive exploitation of shale gas, the use of natural gas instead of petroleum to produce chemical raw materials has attracted significant attention. While converting methane to chemicals, it has long seemed impossible to avoid its oxidation into O-containing species, followed by de-oxygenation. A breakthrough in the nonoxidative conversion of methane was reported by Guo et al. (Science 2014, 344, 616), who found that Fe©SiO2 catalysts exhibited an outstanding performance in the conversion of methane to ethylene and aromatics. However, the reaction mechanism is still not clear owing to the complex experimental reaction conditions. One view of the reaction mechanism is that methane molecules are first activated on the Fe©SiC2 active center to form methyl radicals, which then desorb into the gas phase to form the ethylene and aromatics. In this study, ReaxFF methods are applied to five model systems to study the gas-phase reaction mechanism under near-experimental conditions. For the pure gas-phase methyl radical system, the main simulation product is ethane after 10 ns simulation, which is produced by the combination of methyl radicals. Although a small amount of ethylene produced by C2H6 dehydrogenation can be detected, it is difficult to explain the high selectivity for ethylene in the experiment. When the methyl radicals are mixed with hydrogen and methane molecules, ethane remains the main product, together with some methane produced by the collision of hydrogen with methyl radicals, while ethylene is still difficult to produce. With the addition of hydrogen radicals to the methane atmosphere, methane activation can be enhanced by hydrogen radical collisions, which produce some methyl radicals and hydrogen molecules, but the methyl radicals eventually combine with the hydrogen species to produce methane molecules again. If some hydrogen molecules and methyl radicals are added to the CH4/H∙ system, the activation of methane molecules by hydrogen radicals will be weakened. Hydrogen radicals are more likely to combine with themselves or with methyl radicals to form hydrogen and methane molecules, and the high selectivity for ethylene remains difficult to achieve. Thermal cracking of C10H12 at high temperature can produce hydrogen radicals and ethylene at the same time, which can partially explain the enhanced methane conversion and ethylene selectivity in the experiment of Hao et al. (ACS Catal. 2019, 9, 9045). Overall, the selective production of ethylene by nonoxidative conversion of methane over Fe©SiO2 catalyst appears hard to achieve via a gas-phase mechanism. The catalyst surface may play a key role in the entire process of methane transformation.
前言
能源与材料化学
吴凯, 张国俊
2021, 37(11): 2101035-0  doi: 10.3866/PKU.WHXB202101035
[摘要]  (170) [HTML全文] (170) [PDF 328KB] (10)
摘要:

论文
原位聚合表面修饰的金属锂负极
刘亚, 郑磊, 谷巍, 沈炎宾, 陈立桅
2021, 37(1): 2004058-0  doi: 10.3866/PKU.WHXB202004058
[摘要]  (177) [HTML全文] (177) [PDF 4113KB] (177)
摘要:
金属锂负极由于比容量高(3860 mAh·g-1)及氧化还原电位极低(-3.04 V vs.标准氢气电极(SHE)),被认为是实现高能量密度锂电池的理想负极。然而,金属锂电极与电解液反应剧烈,且锂离子在电极表面沉积不均匀容易产生枝晶,导致其循环稳定性和安全性都较差,限制了其应用推广。我们前期通过构建金属锂-碳纳米管(Li-CNT)复合结构,极大的提高了金属锂的比表面积,降低了电极电流密度,从而有效地抑制了锂枝晶的生长,提高了金属锂电极的循环稳定性和安全性能。本工作在前期工作基础上,采用简单的液相反应,利用4-氟苯乙烯(FPS)对Li-CNT进行表面修饰并进行原位聚合,得到了表面富含氟化锂(LiF)保护层的Li-CNT(FPS-Li-CNT)。该表面修饰层能够有效抑制电解液和空气对Li-CNT的侵蚀,显著的提高了Li-CNT电极的界面稳定性。FPS-Li-CNT与磷酸铁锂正极(LFP)组成的LFP||FPS-Li-CNT全电池,在正负极容量配比为1 : 6条件下,能够稳定循环280圈,库伦效率达到97.7%。
柱状金属锂沉积物:电解液添加剂的影响
杨世杰, 徐向群, 程新兵, 王鑫萌, 陈金秀, 肖也, 袁洪, 刘鹤, 陈爱兵, 朱万诚, 黄佳琦, 张强
2021, 37(1): 2007058-0  doi: 10.3866/PKU.WHXB202007058
[摘要]  (167) [HTML全文] (167) [PDF 2157KB] (167)
摘要:
二次电池的能量密度已成为推动电动汽车和便携式电子产品技术向前发展的重要指标。使用石墨负极的锂离子电池正接近其理论能量密度的天花板,但仍难以满足高端储能设备的需求。金属锂负极因其极高的理论比容量和极低的电极电位,受到了广泛关注。然而,锂沉积过程中枝晶的生长会导致电池安全性差等问题。电解液对金属锂的沉积有着至关重要的影响。本文设计了一种独特的电解槽体系来进行柱状锂的沉积,研究了不同电解液体系(1 mol·L-1 LiPF6-碳酸乙烯酯/碳酸二乙酯(EC/DEC,体积比为1 : 1)、1 mol·L-1 LiPF6-氟代碳酸乙烯酯(FEC,体积分数5%)-EC/DEC (体积比为1 : 1))对金属锂沉积的影响。对两种电解液中金属锂沉积物长径比的研究表明,电解液的组分可以显著地影响金属锂的沉积形貌,在加入氟代碳酸乙烯酯(FEC)添加剂之后,柱状锂的直径从0.3–0.6 μm增加到0.7–1.3 μm,长径比从12.5下降到5.6。长径比的降低有助于减小金属锂和电解液的反应面积,提高金属锂负极的利用率和循环寿命。通过考察循环后锂片的表面化学性质,发现FEC的分解增加了锂表面固态电解质界面层中氟化锂(LiF)组分的比例,提高了界面层中锂离子的扩散速率,减少了锂的成核位点,从而给予锂核更大的生长空间,降低了沉积出的柱状锂的长径比。
亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极
王骞, 吴恺, 王航超, 刘文, 周恒辉
2021, 37(1): 2007092-0  doi: 10.3866/PKU.WHXB202007092
[摘要]  (153) [HTML全文] (153) [PDF 2144KB] (153)
摘要:
金属锂由于其高的比容量,低的电极电势和轻质等特点被认为是下一代高能量密度锂金属二次电池负极材料的最佳选择。然而,充放电循环中不均匀的锂沉积会导致严重的体积变化和大量的锂枝晶形成,从而影响了电池的库伦效率甚至会带来严重的安全隐患。为此,本文设计了一种亲锂的三维二硫化锡@碳纤维布复合基底材料,并作为集流体将其应用于金属锂电池上。一者,高比表面积的三维碳纤维骨架可以适应充放电过程中的体积变化并且有效地降低局部电流密度,从而确保锂的均匀沉积。二者,表面修饰的SnS2层在锂沉积过程中可以形成Li-Sn合金界面层,诱导锂的沉积并降低过电势。最终,实验结果表明:使用所制备的复合集流体与金属锂搭配组成的半电池可以在5 mA·cm-2的高电流密度下以 > 98%的库伦效率稳定循环100周以上。此外,在承载10 mAh·cm-2的金属锂后,复合的锂负极无论是在对称电池还是与磷酸铁锂组装成的实际电池中,均可以在高的电流密度下实现稳定的循环。我们相信这一复合的集流体构建策略对于设计安全稳定的锂金属电池或器件具有重要意义。
锂金属负极的可逆性与沉积形貌的关联
黄凡洋, 揭育林, 李新鹏, 陈亚威, 曹瑞国, 章根强, 焦淑红
2021, 37(1): 2008081-0  doi: 10.3866/PKU.WHXB202008081
[摘要]  (226) [HTML全文] (226) [PDF 6028KB] (226)
摘要:
高能量密度二次电池的商业化将会推动便携式电子设备和电动车的飞速发展。锂金属电池因具有较高的理论能量密度而受到研究者的广泛关注。然而,锂金属负极较低的库仑效率(CE)和枝晶生长等问题,严重制约了锂金属电池的发展。库仑效率是衡量电池体系可逆性的关键参数之一,锂金属负极的库仑效率在不同电解液中存在较大的差异,本文以四种常见的电解液为例,包括1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯电解液,1 mol·L-1六氟磷酸锂-碳酸乙烯酯/碳酸二甲酯+ 5% (w)氟代碳酸乙烯酯电解液,1 mol·L-1双(三氟甲烷磺酰)亚胺锂-乙二醇二甲醚/1, 3二氧戊环+ 2% (w)硝酸锂电解液,以及4 mol·L-1双氟磺酰亚胺锂-乙二醇二甲醚电解液,利用原子力显微镜研究了不同电解液体系中锂金属的生长行为,探讨了锂金属沉积形貌与其库仑效率之间的联系,为发展高效的锂金属负极提供了参考依据。
多孔泡沫铜和硫脲协同作用构筑无枝晶锂负极
秦金利, 任龙涛, 曹欣, 赵亚军, 许海军, 刘文, 孙晓明
2021, 37(1): 2009020-0  doi: 10.3866/PKU.WHXB202009020
[摘要]  (192) [HTML全文] (192) [PDF 2302KB] (192)
摘要:
锂金属作为下一代储能电池的理想负极材料一直受到极大的关注,然而锂枝晶的不可控生长和负极副反应带来的低库伦效率问题严重限制了锂金属电池的发展。这里, 我们提出了一种多孔泡沫铜和硫脲协同作用的策略,利用硫脲分子的超填充作用实现锂金属在多孔泡沫铜表面的均匀沉积。在电解液中添加0.02 mol·L-1硫脲作为电解质添加剂,采用多孔泡沫铜的Li||Cu半电池在循环300圈以后,库伦效率仍保持在98%以上。此外,在5C的高倍率条件下,Li||LiFePO4全电池循环300圈以后仍有94%的容量保持率。本工作为锂金属负极保护提供了一种新的策略并且该策略也可以扩展到其他金属负极保护中,非常有利于下一代高能量密度储能电池的开发。
综述
锂金属负极的挑战与改善策略研究进展
刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦
2021, 37(1): 2006021-0  doi: 10.3866/PKU.WHXB202006021
[摘要]  (257) [HTML全文] (257) [PDF 5640KB] (257)
摘要:
锂金属由于其高比容量和低电极电势等优点被认为是下一代高比能量电池体系中最有潜力的负极材料。然而由于锂金属的高活性,锂负极在循环过程中会产生大量的枝晶,导致SEI (solid-electrolyte interphase)破裂,并且枝晶增加了电极与电解液的接触面积,使得副反应进一步增加。此外,脱落的枝晶形成死锂,从而降低电池的充放电库仑效率。并且不可控的锂枝晶持续生长会刺穿隔膜引发电池短路,伴随着电池热失控等安全问题。本综述基于锂负极存在的主要挑战,结合理解锂枝晶的成核生长模型等机理总结并深度分析近些年来在液态和固态电解质体系中改善锂金属负极的主要策略及其作用机理,为促进高比能量锂金属电池的应用提供借鉴参考作用。
金属有机骨架材料在金属锂电池界面的应用
孙宇恒, 高铭达, 李慧, 徐丽, 薛晴, 王欣然, 白莹, 吴川
2021, 37(1): 2007048-0  doi: 10.3866/PKU.WHXB202007048
[摘要]  (205) [HTML全文] (205) [PDF 3682KB] (205)
摘要:
金属锂电池是下一代高能量密度电池体系的代表。然而,高比能金属锂电池的发展受到界面诸多问题的限制,如:金属锂负极枝晶生长、隔膜界面兼容性、正极界面不稳定等,影响了金属锂电池的界面传质传荷过程,并导致金属锂界面环境恶化、电池的容量衰减、安全性能下降等问题。金属有机骨架(MOF)是一种具有稳定多孔结构的有机无机杂化材料,近年来在高比能金属锂电池领域受到广泛关注。其多孔结构与开放的金属位点(OMs)提供了优异的离子电导率,稳定的空间结构提供了较高的机械强度,多样的官能团与金属节点带来丰富的功能性。本文分析了金属锂电池界面的主要挑战,结合金属锂界面的成核模型,总结了MOF及其衍生材料在解决锂金属负极界面、隔膜界面、以及正负极界面稳定性相互作用等方面的研究进展和作用机理,为解决高比能金属锂电池界面失稳问题提供了解决途径,并展望了MOF基材料的设计与发展方向。
金属锂电池的热失控与安全性研究进展
张世超, 沈泽宇, 陆盈盈
2021, 37(1): 2008065-0  doi: 10.3866/PKU.WHXB202008065
[摘要]  (203) [HTML全文] (203) [PDF 5459KB] (203)
摘要:
锂离子电池在便携式储能器件及电动汽车领域得到了广泛应用,然而频繁发生的电池起火爆炸事故,使热失控和热安全问题备受人们关注,目前已有多篇综述报道了缓解锂离子电池热失控的措施。相比于已经接近理论比能极限的锂离子电池,金属锂负极具有更高的比容量、更低的电势和高反应活性,但是不可控的锂枝晶生长,使得金属锂电池的热失控问题更为复杂和严重。针对金属锂电池的热失控问题,本文首先介绍了热失控的诱因及基本过程和阶段,其次从材料层面综述了提高电池热安全性的多种策略,包括使用阻燃性电解质、离子液体电解质、高浓电解质和局域高浓电解质等不易燃液态电解质体系,开发高热稳定性隔膜、热响应隔膜、阻燃性隔膜和具有枝晶检测预警与枝晶消除功能的新型智能隔膜,以及研究热响应聚合物电解质,最后对金属锂电池热失控在未来的进一步研究进行了展望。
多空间尺度下的金属锂负极表征技术
潘弘毅, 李泉, 禹习谦, 李泓
2021, 37(1): 2008091-0  doi: 10.3866/PKU.WHXB202008091
[摘要]  (199) [HTML全文] (199) [PDF 13252KB] (199)
摘要:
金属锂因为其优秀的特性被认为是未来锂电池负极的最终之选。然而目前金属锂负极在旧有液态体系中的研究陷入瓶颈,在新兴固态体系中的挑战层出不穷。想要实现金属锂负极的实用化,必须加深对金属锂负极基础科学问题的认识。本文系统论述了多空间尺度下金属锂的电极行为与对应的表征技术。首先综述了多空间尺度下金属锂负极的基础科学和应用技术问题,结合近年来的工作,对全空间尺度下的先进表征手段做了梳理,分析了从原子级到宏观尺度各种表征手段的技术特点,并重点讨论了各类表征技术在研究固态体系中金属锂负极时的特点与可能的发展方向。
中子深度剖析技术研究可充锂金属负极
郑国瑞, 向宇轩, 杨勇
2021, 37(1): 2008094-0  doi: 10.3866/PKU.WHXB202008094
[摘要]  (214) [HTML全文] (214) [PDF 5377KB] (214)
摘要:
可充锂金属负极严重的界面不稳定性和安全问题极大限制了其商业化应用,对于锂的沉积/溶出行为以及锂枝晶的成核生长机理的清楚认识将有利于更高效的可充锂金属负极改性研究。然而,由于锂金属的高反应活性所带来的产物复杂性及其形貌多样性给原位谱学表征带来了诸多的困难。中子深度剖析(Neutron Depth Profiling,NDP)技术由于其高穿透特性、定量非破坏性、且对锂的高灵敏性,在实时研究锂金属电池中锂的电化学行为上显示出广阔的应用前景。本文首先简要介绍了NDP技术的测试原理及提高其空间/时间分辨率的方法,同时总结分析了近年来NDP技术在液态/固态电池体系中锂金属负极研究的应用,并展望了NDP技术今后的发展前景。
金属锂负极的成核机制与载体修饰
邱晓光, 刘威, 刘九鼎, 李俊志, 张凯, 程方益
2021, 37(1): 2009012-0  doi: 10.3866/PKU.WHXB202009012
[摘要]  (244) [HTML全文] (244) [PDF 2394KB] (244)
摘要:
金属锂具有电位低、比容量高等突出优点,是极具吸引力的下一代高能量密度电池的负极材料,然而存在枝晶、死锂、副反应严重、库伦效率低、循环稳定性差等问题,限制了其实际应用。金属锂负极的成核是电化学沉积过程中的重要步骤,锂在集流体或导电载体上的均匀成核和稳定生长对于抑制枝晶死锂、提高充放电效率和循环性能具有关键作用。本文从成核机制与载体效应的角度概述了锂金属负极的研究进展,介绍了锂成核驱动力、异相成核模型、空间电荷模型等内容,分析了锂核尺寸及分布与过电位和电流密度的关系,并通过三维载体分散电流密度、异相晶核/电场诱导成核、晶格匹配等方面的研究实例讨论了载体修饰对锂负极的性能提升。
Article
A Framework with Enriched Fluorinated Sites for Stable Li Metal Cycling
Muqin Wang, Zhe Peng, Huan Lin, Zhendong Li, Jian Liu, Zhongmin Ren, Haiyong He, Deyu Wang
2021, 37(1): 2007016-0  doi: 10.3866/PKU.WHXB202007016
[摘要]  (138) [HTML全文] (138) [PDF 2291KB] (138)
摘要:
In past decades, lithium-ion batteries (LIBs) were the dominant energy storage systems for powering portable electronic devices because of their reliable cyclability. However, further increase in the energy density of LIBs was met by a bottleneck when low-specific- capacity graphite was used at the anode. Li metal has long been regarded as the ideal anode material for building the next high-energy-density batteries due to its ultrahigh capacity of 3860 mAh·g-1, which is ten times higher than that of graphite. However, using Li metal as an anode in rechargeable batteries is challenging due to its high uncontrolled volume expansion and aggressive side reactions with liquid electrolytes. In this study, we demonstrate the effect of a three-dimensional (3D) framework with enriched fluorinated sites for Li metal protection. This framework is obtained via a facile integration of down-sized fluorinated graphite (CFx) particles into Li+ conducting channels. Thermogravimetry, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy results show that Li+ conducting channels rich in lithium fluoride (LiF) are formed in situ across the embedded CFx particles during the initial lithiation process, leading to fast Li+ transfer. Scanning electron microscopy results show that residual CFx particles could act as high-quality nucleation sites for uniform Li deposition inside the framework. These features could not be achieved with a 2D structure consisting of large CFx flakes, due to the limited Li+ transfer paths and low utilization ratio of CFx for conversion into LiF-based solid electrolyte interphase (SEI) layers. Consequently, better performance of Li metal anodes in a 3D framework with enriched fluorinated sites is demonstrated. Stable Li plating/stripping over 240 cycles is obtained at a current density of 0.5 mA·cm-2 for a fixed capacity of 1 mAh·cm-2 by maintaining a voltage hysteresis below 80 mV. Improved Li-LiFePO4 full cell performance with a practical negative/positive capacity ratio of 3 is also demonstrated. These results show the rational combination of well-developed 3D Li+ transfer channels and enriched fluorinated sites as an optimized interfacial design beyond the single use of a 2D fluorinated interface, giving new insight into the protection of Li metal anodes in high-energy-density batteries.
通讯
水溶液法原位构建ZnO亲锂层稳定锂-石榴石电解质界面
蔡明俐, 姚柳, 靳俊, 温兆银
2021, 37(1): 2009006-0  doi: 10.3866/PKU.WHXB202009006
[摘要]  (191) [HTML全文] (191) [PDF 3436KB] (191)
摘要:
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10 Ω·cm2,对称电池能够在0.1 mA·cm-2的电流密度下实现长达1000 h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2 (NCM523)的准固态电池在室温下能够稳定循环100次以上。
前言
蓬勃发展的金属锂负极
张强, 郭玉国
2021, 37(1): 2011061-0  doi: 10.3866/PKU.WHXB202011061
[摘要]  (256) [HTML全文] (256) [PDF 352KB] (256)
摘要:

编委会

发布时间:


《物理化学学报》第4届编委会

(按拼音排序)

名誉主编

唐有祺

北京大学

顾问编委

包信和

中国科学院大连化学物理研究所

段雪

北京化工大学

付贤智

福州大学

侯建国

中国科学技术大学

黄维

南京工业大学

LIEBER Charles M.

Harvard University

田中群

厦门大学

万立骏

中国科学院化学研究所

吴云东

北京大学

谢晓亮

Harvard University, 北京大学

杨伟涛

 Duke University

姚建年

中国科学院化学研究所

赵新生

北京大学

主编

刘忠范

北京大学

副主编

韩布兴

中国科学院化学研究所

刘鸣华

国家纳米科学中心

申文杰

中国科学院大连化学物理研究所

吴凯

北京大学

杨金龙

中国科学技术大学

庄林

武汉大学

迟力峰

苏州大学

编委

曹勇

复旦大学

陈经广

University of Delaware

陈军

南开大学

崔屹

Stanford University

邓风

中国科学院武汉物理与数学研究所

邓友全

中国科学院兰州化学物理研究所

樊卫斌

中国科学院山西煤炭化学研究所

房喻

陕西师范大学

付红兵

中国科学院化学研究所

傅强

中国科学院大连化学物理研究所

高毅勤

北京大学

郭林

北京航空航天大学

郝京诚

山东大学

侯文华

南京大学

金荣超

Carnegie Mellon University

来鲁华

北京大学

李朝军

McGill University

李隽

清华大学

李象远

四川大学

梁万珍

厦门大学

刘海超

北京大学

刘洪来

华东理工大学

刘述斌

University of North Carolina

刘义

武汉大学

刘志敏

中国科学院化学研究所

罗小民

中国科学院上海药物研究所

马晶

南京大学

孟庆波

中国科学院物理研究所

邵翔

中国科学技术大学

孙俊奇

吉林大学

谭蔚泓

湖南大学

唐智勇

国家纳米科学中心

王键吉

河南师范大学

王鹏

中国科学院长春应用化学研究所

王心晨

福州大学

王永锋

北京大学

魏子栋

重庆大学

翁羽翔

中国科学院物理研究所

吴鹏

华东师范大学

夏永姚

复旦大学

许国勤

National University of Singapore

杨俊林

国家自然科学基金委员会

余家国

武汉理工大学

尉志武

清华大学

占肖卫

北京大学

张东辉

中国科学院大连化学物理研究所

张浩力

兰州大学

张锦

北京大学

章俊良

上海交通大学

周永贵

中国科学院大连化学物理研究所

联系我们

发布时间: 2018-05-02


编辑部工作人员联系方式
 

张小娟
主任
010-62756388
黄路
编辑
010-62751724
欧阳贱华
编辑
010-62751721
於秀芝
编辑
010-62751724
熊英
编辑
010-62751724
周虹
技术编辑
010-62751724

 

通讯地址:北京市北京大学化学学院物理化学学报编辑部

邮政编码:100871

 

发布日期:2009-06-24 浏览: