首页 > 期刊 > 物理化学学报

  

目次
第42卷第1期封面和目次
2026, 42(1):
[摘要]  (37) [HTML全文] (37) [PDF 17495KB] (0)
摘要:
综述
电化学提锂中的法拉第材料:进展、挑战与性能强化方法
王雷, 张盼盼, 郭志远, 汪婧, 马杰, 纪志永
2026, 42(1): 100127  doi: 10.1016/j.actphy.2025.100127
[摘要]  (39) [HTML全文] (39) [PDF 7890KB] (1)
摘要:
电动汽车行业的快速增长导致锂产品需求激增,推动了先进锂提取技术的发展。其中,电化学提锂技术因其优异锂选择性(相较于竞争性阳离子,如Na+和Mg2+)、高能效和环境可持续性被认为具有发展前景。关于法拉第材料、操作模式/参数和装置构型的研究已大量发表。尽管已有一些关于电化学提锂技术的综述发表,但仍缺乏系统性总结电化学提锂中法拉第材料研究进展、分析其固有性质如何影响提锂性能并阐明性能增强策略与关键提锂性能指标之间联系的全面综述。在此,我们系统地介绍了电化学提锂技术的原理并汇总了文献中涉及的所有性能指标,包括锂离子嵌入容量、锂离子提取速率、容量保持率、选择性系数(或纯度)、能耗和电流效率。我们全面分析了用于电化学提锂的法拉第材料,其中包括LiFePO4、LiMn2O4、层状镍钴锰氧化物、Li3V2(PO4)3和Li1.6Mn1.6O4,构建了其性质与性能间的内在关系,并比较了每种材料的优缺点。此外,我们对不同的性能增强策略进行了分类和评估,包括材料设计方法(如3D结构制造、晶体调控、元素掺杂和表面包覆),以及涉及进水流向、充放电模式和操作参数等方面的条件优化方法,并进一步阐明了每种方法如何影响电化学提锂的某一/某些性能及其内在影响机制。我们同时综述了基于每种法拉第材料的电化学提锂技术的工业化进展及材料成本。本综述旨在通过建立材料设计、操作条件优化和性能结果间的联系,为从事新型电化学提锂法拉第材料研究的学者和工程师提供有价值的见解,并启发法拉第材料开发和工艺优化的创新方法,为实现更可持续和更具成本效益的卤水锂资源开发提供参考。
论文
羟基功能化分子工程消除二维相壁垒实现高效宽带隙及全钙钛矿叠层太阳能电池
刘彬彬, 陈杨, 贾天赐, 陈辰, 吴章豪, 刘毓辉, 翟宇航, 马天舒, 王长擂
2026, 42(1): 100128  doi: 10.1016/j.actphy.2025.100128
[摘要]  (44) [HTML全文] (44) [PDF 3217KB] (1)
摘要:
全钙钛矿叠层太阳能电池展现出突破单结器件效率极限的潜力,通过最大化利用太阳光谱和减少热弛豫损失,其理论转换效率可超过44%。宽带隙钙钛矿太阳能电池(WBG PSCs)是叠层光伏技术的核心元件,其性能在过去十年取得飞速进展。然而,这类器件仍然面临着严重的开路电压(VOC)损失问题,主要归因于界面复合损失和载流子传输损耗,其中关键诱因是在表面钝化过程中形成的绝缘性二维(2D)钙钛矿相。因此,本文引入多功能分子添加剂4-羟基苯乙基碘化铵(p-OHPEAI),以解决高电压和高效电荷提取之间的核心矛盾。不同于传统的苯乙基碘化铵(PEAI)处理会形成绝缘二维相并因其分子垂直取向导致反向内建电场(阻碍电荷输运),p-OHPEAI通过氨基(–NH3)和羟基(–OH)的协同作用,实现了分子在钙钛矿表面的平行吸附构型。这种构型有效抑制了绝缘二维相的形成,同时钝化了配位不足的卤素离子和铅空位缺陷,显著降低非辐射复合。此外,p-OHPEAI的分子极性会在钙钛矿层/电子传输层界面诱导产生内建偶极矩,优化了能级匹配并加速了电子提取过程。将p-OHPEAI应用于1.77 eV宽带隙钙钛矿太阳能电池,器件的开路电压达到1.344 V,相应的开路电压损失仅为0.426 V,在已经报道的1.75–1.80 eV带隙范围内的反式结构器件中处于领先水平。优化后的器件光电转换效率(PCE)达到19.24%,显著优于PEAI钝化器件。将该策略应用于全钙钛矿叠层太阳能电池(TSCs),实现了28.50%的冠军效率(认证效率为28.19%)。同时,叠层器件展现出优异的运行稳定性,在350 h持续光照后仍能保持90%以上的初始效率,充分验证了羟基钝化策略的可靠性。本研究通过在钝化分子中引入羟基官能团,开发了一种兼具缺陷钝化与电荷传输保障的普适性策略,成功解决了钙钛矿电池高电压与高效载流子提取之间的矛盾。
高熵P2/O3双相正极的协同设计助力高性能钠离子电池
赵珊, 刘旭, 郭昊天, 柳宗琳, 王鹏飞, 舒杰, 伊廷锋
2026, 42(1): 100129  doi: 10.1016/j.actphy.2025.100129
[摘要]  (36) [HTML全文] (36) [PDF 6503KB] (0)
摘要:
P2型层状过渡金属氧化物(P2-NaxTMO2)因其优异的循环稳定性和倍率性能,成为钠离子电池正极材料的有力候选者。然而,其在高电压下的不可逆相变和固有低理论容量问题,阻碍了实际应用。本研究工作提出高熵策略与双相结构的协同设计来克服这些挑战。通过在P2相高熵基体中引入O3相,构建新型P2/O3双相高熵层状氧化物Na0.70Ni0.25Mn0.35Co0.15Fe0.05Ti0.20O2 (简称Na0.70NMCFT)。其中,高熵设计通过构型熵稳定效应有效抑制P2相的不可逆相变,而O3相则通过协同作用弥补容量不足并提升循环稳定性。此外,双相组分之间的相互作用进一步促进P2-O3与P2-P3相变的高度可逆性。Na0.70NMCFT在1C倍率下的初始放电容量为102.08 mAh g−1,200次循环后容量保持率达88.15%,表明具有优异的循环稳定性。更重要的是,即使在10C的高倍率下,Na0.70NMCFT仍能提供85.67 mAh g−1的初始放电比容量,并在1000次循环后容量保持率达70%。本工作证实双相高熵设计在提升钠离子电池正极性能中的关键作用,为开发先进钠离子电池正极材料提供了新思路。
废弃医用口罩衍生的碳量子点增强BiOBr/g-C3N4 S型异质结光催化降解聚对苯二甲酸乙二醇酯(PET)
陈轼逸, 付家龙, 裘建平, 常国菊, 郝仕油
2026, 42(1): 100135  doi: 10.1016/j.actphy.2025.100135
[摘要]  (38) [HTML全文] (38) [PDF 3012KB] (0)
摘要:
2019冠状病毒病(COVID-19)的大流行增加了医用口罩的需求,迄今为止,许多废弃口罩未经再处理就被丢弃,造成了环境的破坏。PET作为一种常用的塑料产品,其自然降解存在一定的障碍。在本研究中,通过简单的溶剂热法将废弃医用口罩转化为具有蓝色荧光发射的碳量子点(MCQDs),然后将其掺杂到BiOBr/g-C3N4复合材料中,构建S型异质结用于PET降解。密度泛函理论(DFT)计算表明,g-C3N4和BiOBr之间形成了界面电场(IEF)。研究结果表明,MCQDs作为电子传输和存储的助催化剂,促进了S型异质结进一步分离光生电子和空穴。左氧氟沙星(LEV)被用作分子探针,直观地比较了各种催化剂的催化活性。这些具有不同光催化活性的催化剂随后被用于降解PET。研究结果表明,BiOBr/g-C3N4/3MCQDs在海水中对于PET的降解效率为39.88% ± 1.04% (重量损失),比BiOBr/g-C3N4高1.37倍,并且优于大多数文献报道的结果。自由基捕获实验、静电场轨道阱高分辨率气相色谱质谱联用(HRGC-MS)和超高效液相色谱质谱联用(UPLC-MS)实验数据揭示并简要分析了PET光催化降解过程中的关键产物,以及PET光催化降解的相关机理。降解产物有望成为进一步生产聚合物和药物等的前体。本研究为开发用于PET生态友好降解的创新光催化剂提供了新的视角,有助于进一步减少微塑料(MPs)造成的环境损害,并提高资源的可持续性。
揭示ZnxCd1−xS固溶体光催化析氢中的直接-间接带隙跃迁机制
黄火帅, 韦之栋, 严嘉玮, 池家晟, 苏千翔, 陈铭夏, 江治, 孙洋洲, 上官文峰
2026, 42(1): 100141  doi: 10.1016/j.actphy.2025.100141
[摘要]  (32) [HTML全文] (32) [PDF 3094KB] (1)
摘要:
固溶体策略可以在热力学上提高光催化性能,然而对固溶体催化剂载流子动力学的研究同样重要。本文基于能带结构调控成功合成了一系列ZnxCd1−xS固溶体,并通过飞秒瞬态吸收光谱(TAS)和密度泛函理论(DFT)研究了载流子动力学,揭示了ZnxCd1−xS固溶体中的混合直接-间接带隙跃迁机制。间接带隙表现出较低的载流子复合率,更重要的是它还可以作为载流子的捕获中心,从而提高电荷分离效率。因此,在可见光(> 420 nm)照射下,ZnxCd1−xS固溶体的析氢速率(1426.66 μmol h–1)相较于纯CdS (129.83 μmol h–1)提高了约11倍。本工作提出光催化性能的提升可能同时源于热力学和动力学两个方面,而载流子跃迁机制的改变是影响动力学的主要因素之一。
共价键调控电荷转移以实现自供能电化学传感平台对重金属离子的灵敏分析
陈芸, 邓代洁, 徐丽, 朱兴旺, 李赫楠, 孙成明
2026, 42(1): 100144  doi: 10.1016/j.actphy.2025.100144
[摘要]  (34) [HTML全文] (34) [PDF 6208KB] (0)
摘要:
光催化燃料电池光阳极活性材料的合理设计对开发高灵敏自供能电化学传感器至关重要。实现光阳极中电荷定向迁移和缩短传输路径是提升光催化燃料电池析氧反应性能的挑战。本文设计了一种具有N–W–O共价键的钨原子分散富碳石墨相氮化碳(W-CN-C)光阳极,用于构建对重金属铜离子检测的自供能光催化燃料电池传感器。通过自组装、剥离和热诱导相结合制备W-CN-C。N–W–O共价键作为界面电荷传输通道,促进电荷载流子分离与迁移。形成的富碳结构增加碳含量,进而增强W-CN-C的π-电子离域,从而显著拓宽太阳光响应范围。原子分散的钨提供活性位点,增强W-CN-C光阳极与电解质界面间的析氧反应动力学。这些协同效应显著提高可见光吸收能力和电荷分离与转移效率,增强W-CN-C光阳极的光电转换效率,表现出优异的析氧反应性能。基于Pt@C电催化剂阴极优异的氧还原反应性能,所构建的光催化燃料电池平台展现出增强的开路电位。在W-CN-C光阳极表面锚定对铜离子特异性识别的探针,构建了自供能光催化燃料电池传感平台,用于检测铜离子。铜离子与探针形成的复合物阻碍W-CN-C光阳极的电子传输,改变光催化燃料电池的输出检测信号。所构筑的传感器表现出跨越五个数量级的宽检测范围(2.0 × 10−2–9.2 × 102 nmol L−1)、低检测限(7.0 pmol L−1)、对常见干扰物的高选择性,以及对水生环境中重金属铜离子检测的可行性。此外,以万用表作为信号输出装置,传感平台实现对铜离子的自供能和便携式检测,检测范围为0.25–1.3 × 102 nmol L−1,检测限为84 pmol L−1。这项工作利用原子分散级金属引入的共价键作为电荷转移通道设计高性能光阳极,为构筑对环境检测的高灵敏自供能电化学传感器提供了思路。
SBA-15模板化共价三嗪框架增强光催化产氢
赵呈孝, 李昭霖, 吴东方, 杨小飞
2026, 42(1): 100149  doi: 10.1016/j.actphy.2025.100149
[摘要]  (32) [HTML全文] (32) [PDF 1847KB] (0)
摘要:
共价三嗪框架(CTFs)是一类极具吸引力的可见光响应无金属共价有机框架(COFs),因其具有大比表面积、高氮含量、永久孔隙率以及高耐热性和化学稳定性等特性,被认为在光催化水分解制氢方面具有潜在的应用前景。然而,大多数CTFs在化学合成方面面临一定困难,且在光催化析氢反应(HER)过程中普遍表现出低电导率和严重的光生载流子复合现象。因此,材料的析氢性能高度依赖于CTFs的π-共轭结构及其合成方法,且实现具有明确结构的COFs纳米材料的可控合成仍具有高度挑战性。在本研究中,我们报道了以介孔二氧化硅分子筛SBA-15为模板,通过有机酸催化合成多孔CTF纳米结构的方法。SBA-15模板法制备的多孔网状CTF-S2在光催化HER中表现显著增强的催化活性,相较于微米级块体CTF-1 (4.1 μmol h−1)提升了14倍。这种显著的HER性能提升主要归因于扩展的可见光吸收、加速的载流子转移以及优化的能带结构。
自集成黑色NiO团簇与ZnIn2S4微球实现S型电子转移机制下光热辅助制氢
葛成艳, 胡佳伟, 刘星雨, 宋玉玺, 刘超, 邹志刚
2026, 42(1): 100154  doi: 10.1016/j.actphy.2025.100154
[摘要]  (40) [HTML全文] (40) [PDF 4057KB] (0)
摘要:
利用太阳能制氢(H2)技术是实现碳中和目标的关键策略,但是设计最优异质结构光催化剂仍面临重大挑战。本研究首次在溶剂热过程中成功实现了高度分散的黑色NiO团簇与ZIS微球的自组装。所构建的NiO/ZIS S型异质结构复合材料可提供更多活性位点用于可见光驱动光催化产氢(PHE)反应。最优样品2-NiO/ZIS表现出2474.0 μmol g−1 h−1的最佳产氢速率、36.67%的最高表观量子产率(AQY)以及优异的结构稳定性。此外,NiO/ZIS复合材料在天然海水中也展现出高产氢活性。通过原位X射线光电子能谱(XPS)、水相时间分辨光致发光光谱(TRPL)和瞬态吸收光谱(TAS)等先进表征技术,系统评估了催化剂的电荷分离行为。实验分析与理论计算结果共同阐明了NiO/ZIS的S型电荷转移机制。提升的PHE活性源于黑色NiO团簇与ZIS之间的协同效应,包括增强光捕获能力、加速载流子传输与分离、保持高氧化还原能力以及改善表面反应动力学。本研究为构建具有光热效应的S型异质结构复合材料提供了新思路。
离子键交联碳化聚合物点用于可调谐和增强的室温磷光
康春源, 李小瑜, 杨帆, 杨柏
2026, 42(1): 100156  doi: 10.1016/j.actphy.2025.100156
[摘要]  (34) [HTML全文] (34) [PDF 2846KB] (1)
摘要:
碳化聚合物点因其可调的发光性能和简便的合成方法,已成为有前景的室温磷光材料。然而,当前依赖氢键/共价键来增强发光的策略存在磷光强度有限和颜色多样性不足(主要为绿色)的问题。本工作提出构建离子键交联网络作为一种新颖的设计策略来解决这些局限性。得益于离子键的高强度、无方向性和无饱和性,构建的交联网络能够固定发色团并抑制非辐射跃迁。通过将锂离子引入聚丙烯酸基碳化聚合物点中,光致发光量子产率从1.1%显著提升至48.4%,磷光强度增强了近40倍。进一步引入锌离子,通过过渡金属掺杂实现了从绿色到黄色的可调谐室温磷光发射。该策略实现了对碳化聚合物点中室温磷光强度和波长的有效调控,为设计具有定制化室温磷光特性的先进有机磷光材料提供了一个通用平台。
FeOOH调节Bi12O17Cl2@FeOOH异质结中Bi12O17Cl2的表面势阱深度以增强压电电荷转移和压电自芬顿催化
邱江源, 于涛, 陈均鑫, 李文轩, 张晓萱, 李金生, 郭瑞, 黄在银, 刘宣文
2026, 42(1): 100157  doi: 10.1016/j.actphy.2025.100157
[摘要]  (40) [HTML全文] (40) [PDF 4339KB] (0)
摘要:
尽管异质结压电催化剂的设计被证明可以显著提升其催化活性,但异质结界面在压电过程中对表面势阱的调控机制及其对载流子迁移的影响仍缺乏系统研究。本研究通过自组装策略,在Bi12O17Cl2@FeOOH体系中构建了非晶FeOOH与Bi12O17Cl2之间的增强界面相互作用异质界面结。这种强界面相互作用显著增强了界面极性,可大幅抑制Bi12O17Cl2表面电荷的应力响应能力(最大降幅达原始值的63%–98%),这显著降低了压电过程中表面势阱的深度,从而有效削弱了压电电荷的束缚,同时促进了电荷转移。同时,界面形成的Bi–O–Fe化学键构建了电荷传输通道。这些协同机制使得压电自芬顿反应中H2O2产率达到3.04 mmol g−1 h−1,总有机碳去除率提高了3倍(从18.6%增至55.8%)。

  

目次
第41卷第4期封面和目次
2025, 41(4):
[摘要]  (1267) [HTML全文] (1267) [PDF 15732KB] (1267)
摘要:
综述
钙钛矿薄单晶光电探测器的进展与展望
马尧, 赵欣, 陈红旭, 魏薇, 沈亮
2025, 41(4): 100030  doi: 10.3866/PKU.WHXB202309045
[摘要]  (1599) [HTML全文] (1599) [PDF 10044KB] (1599)
摘要:
金属卤化物钙钛矿材料在光电探测领域具有突出的应用前景,但是多晶薄膜材料的晶界和缺陷问题,以及体单晶材料较厚的载流子传输距离限制了其性能。通过调控纵向尺寸制备的钙钛矿薄单晶材料理论上更适合光电探测,成为新型探测器领域的研究热点。本文介绍了钙钛矿单晶生长的结晶思路和薄单晶的制备工艺,回顾了钙钛矿薄单晶光电探测器领域的代表性工作,最后讨论了目前面临的问题和未来可能的发展方向。
电容去离子海水提铀的机遇与挑战
严国泽, 左彬, 刘少卿, 王桃, 王若愚, 包锦洋, 赵忠舟, 储菲菲, 李政通, YusukeYamauchi, SaadMelhi, 徐兴涛
2025, 41(4): 100032  doi: 10.3866/PKU.WHXB202404006
[摘要]  (1385) [HTML全文] (1385) [PDF 6137KB] (1385)
摘要:
铀是核工业不可或缺的资源,而陆基铀矿资源含量有限且分布不均。因此,海水提铀(UES)对可持续能源生产具有巨大潜力。电容去离子(CDI)技术以其低能耗、工艺简单、对环境友好和高吸附效率而闻名,对UES具有重要潜力。本文回顾了CDI技术的发展历史、原理、分类和应用。在发展历史部分,我们简要介绍了CDI技术的早期发展,并强调了其在UES中的关键里程碑以及近期优化工作。在原理和分类部分,我们将CDI技术置于UES应用的背景下,进行了全面介绍。另外,在应用部分,我们重点介绍了CDI技术在UES中的当前应用。此外,本文详细阐述了CDI技术在UES中的当前研究现状及其在吸附性、选择性和经济效益方面的优势。在吸附性方面,CDI技术通过精心优化电极结构和材料选择,展现了其吸附铀离子的效率。在选择性方面,CDI技术通过灵活调控电极材料和操作参数,有选择性地提取铀,同时减轻了来自竞争离子的干扰,从而提高了提取效率。在经济性方面,CDI技术因其低能耗和经济性脱颖而出,促进了高效的铀提取,且在UES领域具有与替代方法相比的实质经济优势。最后,我们讨论了该技术在铀提取过程中的挑战因素(竞争离子、盐度、pH值和生物污损),旨在探讨使用CDI技术进行UES的可行性和经济效益,并为进一步优化和推广CDI技术在UES中的应用提供理论支持。此外,我们还致力于通过引入材料信息学来解决CDI在提铀过程中存在的一些当前挑战,并展望该问题的未来发展。本文为CDI技术在UES中的发展和工业进展提供了实用的见解,旨在为后续CDI海水提铀研究提供宝贵的参考,以促进海水资源的可持续利用。
钠离子电池铁基聚阴离子正极材料研究进展
王禹尧, 曹志涛, 杜泽宇, 曹鑫鑫, 梁叔全
2025, 41(4): 100035  doi: 10.3866/PKU.WHXB202406014
[摘要]  (2557) [HTML全文] (2557) [PDF 7254KB] (2557)
摘要:
钠离子电池由于资源储量丰富、原料成本低廉、低温和快充性能优异等特点,在电网储能和低速交通领域可与锂离子电池形成互补,具有十分可观的应用前景。正极材料是影响电池整体性能的核心,它既是钠离子电池比能量提高的瓶颈,也是决定电池成本的最重要因素。低成本铁基聚阴离子正极材料由于结构稳定性好、安全性高、随充放电体积应变小等优势,从基础研究到成果产业化方面均受到广泛关注。本文综述了钠离子电池铁基聚阴离子正极材料的最新进展,包括铁基磷酸盐、铁基氟磷酸盐、铁基焦磷酸盐、铁基硫酸盐、铁基混合聚阴离子化合物等。系统分析讨论了各类铁基聚阴离子材料的晶体结构、制备方法、储钠机理和改性策略等,揭示铁基聚阴离子材料化学组成、结构调控与性能提升的构效关系。展望了铁基聚阴离子正极材料从实验室基础研究走向大规模产业应用过程中面临的挑战和对策建议。为新型低成本、高比能正极材料的探索开发和钠离子电池的产业化推进提供理论和技术指导。
论文
Ti3C2 MXene纳米片上原位生长的Cd0.5Zn0.5S纳米棒实现高效可见光催化析氢
李钦, 张慧慧, 顾华军, 崔园园, 高瑞华, 戴维林
2025, 41(4): 100031  doi: 10.3866/PKU.WHXB202402016
[摘要]  (1418) [HTML全文] (1418) [PDF 5385KB] (1418)
摘要:
在能源短缺和环保优先的背景下,光催化制氢是将太阳能转化为化学能的重要途径之一。有效提高光生载流子的分离效率对于设计具有优异析氢活性的光催化剂至关重要。本研究采用一步原位水热法构建了由Cd0.5Zn0.5S纳米棒和Ti3C2 MXene纳米片组成的二元异质结光催化剂。当Ti3C2 MXene的含量为0.5 wt% (质量分数)时,光催化产氢的最大速率为15.56 mmol∙g−1∙h−1,是纯Cd0.5Zn0.5S的2.56倍。经过5次催化循环后,光催化活性没有显著下降。该材料在350 nm紫外光下展现出最高的AQE为18.4%。此外,基于X射线光电子能谱(XPS)、原位光照XPS、飞秒瞬态吸收光谱、密度泛函理论(DFT)计算和光催化活性实验,我们提出了MXene/Cd0.5Zn0.5S复合材料的电荷转移和光催化制氢机理。我们的研究表明,引入不含贵金属的MXene材料可以有效地帮助光生电子的转移。这项工作展示了MXene材料在构建高效低成本的制氢光催化剂方面的潜力。
非晶高熵FeCoCrMnBS氢氧化物构筑及其增强氧析出催化性能研究
韩鑫, 程志豪, 张金凤, 刘杰, 钟澄, 胡文彬
2025, 41(4): 100033  doi: 10.3866/PKU.WHXB202404023
[摘要]  (1131) [HTML全文] (1131) [PDF 4371KB] (1131)
摘要:
析氧反应(OER)是电解水的关键反应之一。因此,高效的析氧反应电催化剂对水的分解至关重要。本研究工作基于泡沫镍(NF)基底,成功构筑了新型FeCoCrMnBS高熵氢氧化物(HEH)催化剂。FeCoCrMnBS HEH具有由大量非晶结构的超薄纳米片构成的多孔形态。获得的FeCoCrMnBS/NF电极在碱性介质中表现出优异的OER电催化活性,在100 mA∙cm−2下只需要290 mV的过电位。此外,该催化剂在10 mA∙cm−2下显示出超过120 h的耐久性。增强的催化性能受益于独特的非晶结构以及B与S之间的正协同作用。该协同作用能够促进了硫酸盐的形成,从而削弱了OER中间体在催化剂表面的吸附。本研究为设计高效的OER电催化剂提供了一种新的设计策略。
含硼MFI分子筛微结构调控及其丙烷氧化脱氢性能研究
李佩, 郑跃楠, 刘占凯, 陆安慧
2025, 41(4): 100034  doi: 10.3866/PKU.WHXB202406012
[摘要]  (1382) [HTML全文] (1382) [PDF 2723KB] (1382)
摘要:
含硼分子筛可催化丙烷氧化脱氢(ODHP)制丙烯。提升含硼分子筛中活性硼氧物种的数量以及调控硼氧物种的落位形式是开发高效硼基催化剂面临的主要挑战。本文通过尿素辅助的水热合成法制备了暴露(010)晶面的片状MFI型含硼分子筛催化剂(BMFI)。研究表明,适量添加尿素可调控分子筛形貌,其短b轴片状结构增强活性硼位点的可及性,并通过氢键作用锚定更高含量的活性硼氧物种,显著提升催化剂的ODHP活性和烯烃选择性。在520 ℃下的丙烷转化率达到20%,丙烯选择性为62.3%,总烯烃选择性为81.3%。与不加尿素形成的椭球型含硼催化剂相比,片状BMFI催化剂的丙烷反应速率提高了近20倍。片状BMFI具有更多的骨架四配位硼(B[4])和缺陷型硼物种(B[3]a和B[3]b),反应过程中发生了活性硼结构演变,B[3]a和B[3]b是催化反应的活性位点。本研究为低碳烷烃氧化脱氢硼基催化剂的结构设计调控提供了参考。
用于糠醇加氢的稳定型Rh/羟基磷灰石催化剂:氧化型金属-载体强相互作用在还原条件下的应用
唐海莲, 陈思远, 刘巧云, 白国义, 乔波涛, 刘菲
2025, 41(4): 100036  doi: 10.3866/PKU.WHXB202408004
[摘要]  (1523) [HTML全文] (1523) [PDF 2212KB] (1523)
摘要:
金属-载体强相互作用(SMSI)是多相催化中的一个重要概念,其发生可以显著提高催化剂稳定性并可能调变催化剂性能。然而,由于SMSI效应一般是可逆的,在与其构建的氧化还原条件相反的情况下会发生消退,因此其应用一般需要反应条件与构建条件相同或接近,因而受到限制。本研究报道了在羟基磷灰石负载的Rh催化剂(Rh/HAP)体系上构建的氧化型SMSI(O-SMSI)在还原性环境—糠醇加氢中的应用。通过CO吸附原位漫反射红外傅立叶变换光谱和电镜表征,发现经过500 ℃的高温氧化处理后在Rh/HAP催化剂上形成了O-SMSI效应,该效应伴随着载体对Rh颗粒的包裹行为。在O-SMSI作用下,Rh物种稳定存在于载体表面,其烧结和液相反应下的流失被显著抑制,因此催化剂在循环测试中表现出了稳定的糠醇转换活性和环戊酮选择性。另外,我们还观察到,Rh/HAP体系上的O-SMSI效应及其伴随的包裹行为只是部分可逆而非完全可逆。即使在高达600 ℃的高温还原后,部分SMSI效应仍然保留,确保了催化剂在还原反应中的稳定性。这一发现极大地拓展了SMSI催化剂的应用范围,并为稳定的加氢催化剂的研发提供了新途径。
通过简单的浆料添加剂调整电极-电解液界面以实现稳定的高电压锂离子电池
黄奥羽, 许君, 黄玉, 储圭, 王卯, 王黎丽, 孙永奇, 蒋臻, 朱晓波
2025, 41(4): 100037  doi: 10.3866/PKU.WHXB202408007
[摘要]  (1596) [HTML全文] (1596) [PDF 8054KB] (1596)
摘要:
5 Ⅴ级LiNi0.5Mn1.5O4 (LNMO)作为无钴正极材料,满足了对廉价高性能锂离子电池(LIBs)日益增长的需求。然而,由于高工作电位,LNMO在与商用电解液的界面上存在不稳定性问题。本文提出使用硅酸四乙酯作为LNMO正极浆料添加剂。这种简单的方法能够在电极制备过程中在正极表面原位形成乙氧基官能化的聚硅氧烷薄膜。它不仅有助于形成稳固的人工正极-电解液界面,还能清除氢氟酸(HF)以抑制有害的化学串扰影响。因此,与原始正极相比,优化后的LNMO正极在半电池中表现出显著提高的循环稳定性(1000次循环后容量保持率为84.6% vs. 51.4%),在与商用石墨负极配对的全电池中也是如此(500次循环后保持率为83.3% vs. 53.4%),并在50 ℃的高温测试环境下和软包电池中进一步得到验证,这一简单策略有望为开发下一代高性能锂离子电池铺平道路。
光增强CuOx/TiO2催化丙烯氧气直接环氧化反应
吕卓岩, 丁杨铭, 康磊磊, 李林, 刘晓艳, 王爱琴, 张涛
2025, 41(4): 100038  doi: 10.3866/PKU.WHXB202408015
[摘要]  (1589) [HTML全文] (1589) [PDF 2544KB] (1589)
摘要:
丙烯氧气直接环氧化(DEP)反应是合成环氧丙烷(PO)一种理想途径,但这一过程极具挑战性。本工作发现通过光热协同催化作用,在CuOx/TiO2催化剂上可以提升PO的生成速率和选择性。在180 ℃时,引入光照可使PO的生成速率提高20倍以上(从8.2增加到180.6 μmol·g−1·h−1),同时选择性提高了3倍以上(从8%增加到27%),打破了半导体在DEP反应中活性和选择性极低的传统认知。动力学研究结果表明,光照可显著降低PO生成的活化能(从95降至40 kJ·mol−1)。采用原位电子顺磁共振(EPR)、X射线光电子能谱(XPS)、拉曼光谱和漫反射红外傅里叶变换光谱(DRIFTS)技术,对铜氧化物物种的价态进行了动态表征,确定了氧气分子活化中间体的构型,首次捕捉到促进PO生成的活性氧物种。光生电子能够促进Cu+活性物种的形成以及μ侧过氧化二铜结构的产生,削弱O―O键,从而提高PO的生成速率和选择性。本工作为设计用于DEP反应的半导体光催化剂奠定良好的基础。

编委会

发布时间:


《物理化学学报》第4届编委会

(按拼音排序)

名誉主编

唐有祺

北京大学

顾问编委

包信和

中国科学院大连化学物理研究所

段雪

北京化工大学

付贤智

福州大学

侯建国

中国科学技术大学

黄维

南京工业大学

LIEBER Charles M.

Harvard University

田中群

厦门大学

万立骏

中国科学院化学研究所

吴云东

北京大学

谢晓亮

Harvard University, 北京大学

杨伟涛

 Duke University

姚建年

中国科学院化学研究所

赵新生

北京大学

主编

刘忠范

北京大学

副主编

韩布兴

中国科学院化学研究所

刘鸣华

国家纳米科学中心

申文杰

中国科学院大连化学物理研究所

吴凯

北京大学

杨金龙

中国科学技术大学

庄林

武汉大学

迟力峰

苏州大学

编委

曹勇

复旦大学

陈经广

University of Delaware

陈军

南开大学

崔屹

Stanford University

邓风

中国科学院武汉物理与数学研究所

邓友全

中国科学院兰州化学物理研究所

樊卫斌

中国科学院山西煤炭化学研究所

房喻

陕西师范大学

付红兵

中国科学院化学研究所

傅强

中国科学院大连化学物理研究所

高毅勤

北京大学

郭林

北京航空航天大学

郝京诚

山东大学

侯文华

南京大学

金荣超

Carnegie Mellon University

来鲁华

北京大学

李朝军

McGill University

李隽

清华大学

李象远

四川大学

梁万珍

厦门大学

刘海超

北京大学

刘洪来

华东理工大学

刘述斌

University of North Carolina

刘义

武汉大学

刘志敏

中国科学院化学研究所

罗小民

中国科学院上海药物研究所

马晶

南京大学

孟庆波

中国科学院物理研究所

邵翔

中国科学技术大学

孙俊奇

吉林大学

谭蔚泓

湖南大学

唐智勇

国家纳米科学中心

王键吉

河南师范大学

王鹏

中国科学院长春应用化学研究所

王心晨

福州大学

王永锋

北京大学

魏子栋

重庆大学

翁羽翔

中国科学院物理研究所

吴鹏

华东师范大学

夏永姚

复旦大学

许国勤

National University of Singapore

杨俊林

国家自然科学基金委员会

余家国

武汉理工大学

尉志武

清华大学

占肖卫

北京大学

张东辉

中国科学院大连化学物理研究所

张浩力

兰州大学

张锦

北京大学

章俊良

上海交通大学

周永贵

中国科学院大连化学物理研究所

联系我们

发布时间: 2018-05-02


编辑部工作人员联系方式
 

张小娟
主任
010-62756388
黄路
编辑
010-62751724
欧阳贱华
编辑
010-62751721
於秀芝
编辑
010-62751724
熊英
编辑
010-62751724
周虹
技术编辑
010-62751724

 

通讯地址:北京市北京大学化学学院物理化学学报编辑部

邮政编码:100871

 

发布日期:2009-06-24 浏览: