首页 > 期刊 > 物理化学学报
栏目

  

论文
镍钒水滑石电极用于可放大电催化5-羟甲基糠醛氧化耦合产氢
李美然, 宋英杰, 万鑫, 李洋, 罗毅奇, 贺业亨, 夏博文, 周华, 邵明飞
2024, 40(9): 230600  doi: 10.3866/PKU.WHXB202306007
[摘要]  (296) [HTML全文] (296)
摘要:
可再生能源驱动的电催化水裂解是获取绿氢的重要途径,但受到缓慢的阳极析氧反应(OER)限制。使用热力学有利的5-羟甲基糠醛氧化反应(HMFOR)代替OER的电解水制氢耦合氧化策略提供了一种降低能耗的有效策略,同时可以生产高附加值的有机含氧化合物,如2,5-呋喃二甲酸(FDCA)。在该领域,大量工作集中于催化剂工程以获得更好的催化活性和产物选择性。然而,很少有研究关注到5-羟甲基糠醛(HMF)的规模化氧化制备FDCA。为此,我们合成了一种镍钒水滑石(NiV-LDH)催化剂用于高效HMFOR,在1.52 V vs. RHE (可逆氢电极)下,电流密度达到100 mA∙cm−2 FDCA的法拉第效率高达94.6%。与OER相比,HMFOR将对应的氢气生产率提高了两倍。作为概念验证,我们使用流动反应器展示了连续且可规模化的HMFOR,在10 A条件下,实现了94.8%的高HMF单程转化率和98.5%的高FDCA选择性。
采用原位成孔法制备热闭孔特性的高强度聚酰亚胺多孔薄膜
柏雨婷, 严岑琪, 李祯, 秦家强, 程沛
2024, 40(9): 230601  doi: 10.3866/PKU.WHXB202306010
[摘要]  (249) [HTML全文] (249)
摘要:
提高电池隔膜的热稳定性、化学稳定性和力学强度,可以避免电池发生热失控等安全事故,对于提高电池的安全性能具有至关重要的作用。聚酰亚胺(Polyimide,PI)热稳定性优异、化学稳定性好、力学强度高,是电池隔膜材料的理想选择之一。本文研究了一种具有高温自闭孔性质的热塑性PI多孔薄膜的制备方法,通过将聚酰胺酸与有机碱三乙胺(Triethylamine,TEA)成盐,经热酰亚胺化后释放出TEA,原位成孔制备出具有高强度的PI多孔薄膜。通过红外,扫描电镜,力学性能表征等手段研究了PI多孔薄膜的成孔机理,微观形貌及影响因素,受热自闭孔历程,构效关系。研究结果表明:PI薄膜在热酰亚胺化过程中TEA脱除原位形成孔洞结构,孔洞的尺寸可以通过TEA的含量进行调控。该PI多孔薄膜具有热闭孔特性,且在闭孔前、后均呈现出优异的力学强度(~120 MPa)。本文采用原位成孔法构筑了具有优异热稳定性、高力学强度的PI多孔薄膜,该PI多孔薄膜在高温时可自闭孔,隔绝物质、热量的传输,有望为电池提供更有力的安全保障。
熔融盐法制备Mo2CTx MXene及其电催化析氢性能
李玉琼, 兰冰, 管斌, 代春龙, 张帆, 林紫锋
2024, 40(9): 230603  doi: 10.3866/PKU.WHXB202306031
[摘要]  (276) [HTML全文] (276)
摘要:
钼基MXenes在电化学生物分子传感、电催化和能源储存等领域具有重要应用潜力。然而,制备钼基MXenes的传统方法是使用强腐蚀性HF溶液刻蚀Mo基MAX相(三元层状碳化物)制得,实验危险性高且制备周期长。本文提出通过路易斯酸熔盐法选择性刻蚀Mo2Ga2C前驱体制备Mo2CTx MXene,降低危险性并大幅提升制备效率,并研究了刻蚀温度和保温时间对Mo2CTx MXene物相和微观结构的影响。研究表明,使用HF无法完全刻蚀Mo2Ga2C前驱体制得高纯度Mo2CTx MXene,而熔融盐法在600 °C下仅需30 min即实现完全刻蚀。此外,熔融盐法制备的Mo2CTx MXene在碱性电解液中具有优异的电催化析氢(HER)电催化活能,并具有长期稳定性,在10 mA∙cm−2的电流密度下有着较低的过电位和Tafel斜率,分别为114 mV和124 mV∙dec−1
磷酸苄酯和亚磷酸苄酯衍生物与二氧化碳的电化学羧化反应
刘晓菲, 王贺, 陶力, 任伟民, 吕小兵, 张文珍
2024, 40(9): 230700  doi: 10.3866/PKU.WHXB202307008
[摘要]  (240) [HTML全文] (240)
摘要:
二氧化碳是无毒、储量丰富、廉价易得的可再生能源,以二氧化碳作为碳源,将其催化转化为高附加值的化学品比如羧酸化合物,对实现碳循环可持续利用具有重要的意义。由于二氧化碳的热力学稳定性和动力学惰性,传统的二氧化碳参与的羧化反应通常需要苛刻的反应条件。与经典的有机合成方法相比,有机电化学合成利用电能驱动反应,不需要额外的化学氧化剂或还原剂,是更安全、可持续和环保经济的有机合成方法。其中,碳卤键或碳杂键与二氧化碳的电化学还原羧化反应可高效获得高附加值羧酸化合物。磷酸酯作为一种良好的离去基团广泛应用于众多有机合成反应。本文发展了在牺牲阳极及非牺牲阳极两种体系中磷酸苄酯和亚磷酸苄酯衍生物与二氧化碳的电化学羧化反应高效合成重要的芳基乙酸类化合物。该反应表现出优异的官能团耐受性,高效且容易放大,为布洛芬、非诺洛芬等芳基乙酸类药物分子提供了一种高效经济绿色的合成方法。通过循环伏安实验和多组对照实验证实磷酸苄酯和亚磷酸苄酯底物在阴极还原生成的苄基自由基和碳负离子是反应关键中间体,同时也不能排除二氧化碳在阴极还原生成CO2•−的可能性。
Au/Co3O4-ZnO催化剂上CO2-丙三醇羰基化合成丙三醇碳酸酯
李亚晋, 刘会敏, 马兰, 刘佳雄, 贺德华
2024, 40(9): 230800  doi: 10.3866/PKU.WHXB202308005
[摘要]  (240) [HTML全文] (240)
摘要:
CO2与丙三醇羰基化合成丙三醇碳酸酯是一项前景广阔的CO2利用途径。尽管该反应可以通过热驱动的催化途径实现,但受热力学平衡的限制。在本研究中,我们开发了xAu/20Co3O4-ZnO系列催化剂,并引入太阳光辐射能量来实现光热协同催化反应,以突破热力学限制。由p型半导体Co3O4和n型半导体ZnO复合而成的Co3O4-ZnO氧化物具有异质结构,而负载于Co3O4-ZnO表面的Au纳米粒子具有局域表面等离子体共振(LSPR)效应。我们研究了xAu/20Co3O4-ZnO的可见光吸收性能、光生电子-空穴对分离效率以及Au添加对xAu/20Co3O4-ZnO催化剂光热协同催化性能的影响。此外,我们还研究了Au掺杂对xAu/20Co3O4-ZnO的体相和表面性质(晶相结构、形貌、比表面积、元素结合能、表面酸碱性、还原行为)的影响。研究结果显示,Au/20Co3O4-ZnO的异质结构有助于吸收可见光并提高电子-空穴对的分离效率。负载于Co3O4-ZnO表面的Au纳米颗粒约为50 nm,Au的加入改变了Zn和Co的电子密度,增强了Co物种的还原性,并增加了Co3O4-ZnO表面的氧空位。此外,Au纳米粒子的LSPR进一步提高了Au/20Co3O4-ZnO的可见光吸收能力,并改善了光生电子-空穴对的分离,从而提高了光热协同催化性能。在优化的条件下(150 °C、5 MPa、6 h、25 W可见光照射),2%Au/20Co3O4-ZnO表现出良好的光热协同催化性能,丙三醇碳酸酯的产率为6.5%。这项工作有望为合理设计更好的CO2-丙三醇羰基化制丙三醇碳酸酯光热催化剂提供参考。
超短c轴盘簇L沸石介晶的晶种诱导合成:形貌控制、解耦机理和增强吸附
严珂欣, 叶兆祺, 孔令涛, 李贺, 杨雪, 张亚红, 张宏斌, 唐颐
2024, 40(9): 230801  doi: 10.3866/PKU.WHXB202308019
[摘要]  (240) [HTML全文] (240)
摘要:
缩短沸石材料的微孔孔道能有效提升客体分子的扩散传质性能。但目前一维L沸石(LTL)的合成中,缩短其沿一维微孔孔道方向(c轴方向)的长度至20到50 nm仍是一个挑战。本文首次在简单无机体系中通过加入纳米棒簇状L沸石作为晶种,快速(仅需4 h)合成了一种新型的L沸石介观结构晶体,且无需外加任何晶化修饰剂与模板剂。该介晶呈现出一种由超薄(约29 nm)的圆盘纳米晶沿c轴定向堆叠而成的盘簇形貌。这一独特的晶种诱导策略能够有效解耦L沸石的成核和生长阶段,为精确调控每个阶段的晶化行为以获得所需形貌结构提供了更大的操作空间。通过分析合成体系中介观尺度的晶核和微观尺度的基本构建单元衍化规律,实现了对晶种具体作用及衍化规律的解构:晶种溶解出的环笼结构加速了凝胶有序化,缩短了诱导期;而晶种溶解后的残余部分为生长期提供了密集的初始晶核,导向了新型盘簇结构的形成。通过对沸石生长条件进行调节,证实了其生长期存在蠕虫状前驱颗粒组装的行为,并实现了对盘簇中圆盘沿c轴方向厚度在18到55 nm范围内的精细调控。此外,通过选择直径为0.43到4.5 nm的系列模型分子作为吸附质,证明了该超短c轴样品在气相和液相体系大幅增强的吸附应用潜力。样品在小分子的扩散速率和大分子在气相的吸附量方面确实具有优势。在实际应用中,该样品在芳烃的吸附和分离以及染料和蛋白质的吸附方面具有一定的优势。
磷化调控构筑分层结构的Ni2P催化剂用于高效电氧化尿素
李清, 张光勋, 徐玉霞, 孙洋洋, 庞欢
2024, 40(9): 230804  doi: 10.3866/PKU.WHXB202308045
[摘要]  (244) [HTML全文] (244)
摘要:
尿素电解对于发展可持续、清洁的能源转化技术,以应对全球能源短缺和环境问题的挑战具有重要意义。因此,设计有效的尿素氧化电催化剂,深入了解中心金属离子的电子环境,对实现高性能的尿素基能量转换技术具有重要意义。在本文中,我们成功合成了分层结构的Ni2P纳米片@纳米棒,简称P-Ni2P HNNs,作为能够提高尿素氧化反应效率的高效电催化剂。这一催化剂的设计采用了水解共沉淀-氧化工艺和磷取代法。X射线吸收精细结构谱分析表明,P-Ni2P HNNs具有较高的尿素氧化电化学活性,其中Nin+金属的电子结构能够增强Ni―O―O键的耦合,从而提高了尿素氧化反应的动力学性能。由于Nin+金属活性中心以及结构的巧妙设计,P-Ni2P HNNs表现出卓越的尿素氧化反应活性和稳定性。在10 mA∙cm−2时,其过电位低至132 mV,Tafel斜率为33.7 mV∙dec−1,同时在10 mA∙cm−2时的稳定性可达6 h。此外,采用P-Ni2P HNNs-2/NF作为阳极组装成尿素电解电池。该装置在10 mA∙cm−2时获得1.411 V的低电位,在1.595 V时可达100 mA∙cm−2的高电流密度。本研究提供了一种有效可行的方法,用于设计高效的镍基磷化催化剂,有望推动磷化物在各种能源相关应用方面的进一步研究。
PC基电解液对Li/CrOx一次电池高倍率性能的影响
杨睿, 李惠, 孟庆飞, 李文杰, 吴际良, 方永进, 黄驰, 曹余良
2024, 40(9): 230805  doi: 10.3866/PKU.WHXB202308053
[摘要]  (227) [HTML全文] (227)
摘要:
Li/CrOx电池具有高能量密度和优异的倍率性能,成为高性能一次锂电池的研究热点。而基于发展具有宽温域和高介电常数的碳酸丙烯酯(PC)电解液体系,对于开发功率高和环境耐受性强的锂一次电池具有重要的应用价值。在本工作中,我们研究了CrOx在PC基电解液中的放电行为,筛选了适配于大电流放电的电解液体系:1 mol∙L−1 LiTFSI PC : DOL (1,3-二氧环戊烷) = 1 : 2;并揭示了在PC基电解液中影响CrOx大电流放电的规律:Li+溶剂化鞘层中溶剂分子配位数以及参与配位的粒子类型,会极大地影响Li/CrOx电池体系的倍率放电性能。低的配位数以及阴离子参与的溶剂化鞘层结构更加适配Li/CrOx电池体系,能够实现大电流放电。这些规律的认识对于推动PC基电解液应用于大倍率Li/CrOx电池体系具有重要指导意义。
二维亚稳态自组装网格主客体识别中的催组装
薛仁杰, 马超, 何晶, 李雪超, 唐雁宁, 迟力峰, 张海明
2024, 40(9): 230901  doi: 10.3866/PKU.WHXB202309011
[摘要]  (182) [HTML全文] (182)
摘要:
催组装是用于描述催组剂帮助下的分子组装的新概念,目前还未报道过催组装过程的分子水平表征。本文中,我们利用扫描隧道显微镜(STM),在辛酸和高序热解石墨之间的液固界面,观察到了1,3,5-三(4-羧基苯基)-苯(BTB)亚稳态自组装网格在主客体识别过程中的催组装过程。实验中采用的是低浓度的客体分子酞菁铜(CuPc),以及晕苯(COR)分子。我们对比了单客体(COR/BTB或CuPc/BTB)体系和多客体(COR&CuPc/BTB)体系中客体分子在主客体组装过程中的不同吸附特征。在多客体分子(COR&CuPc/BTB)体系中,晕苯分子优先填入主体六边形网络中,随着组装的进行逐渐被酞菁铜分子取代。晕苯分子在组装过程中发挥了催组装剂的作用,帮助低浓度酞菁铜完成了其本身无法形成的、大面积的CuPc/BTB共组装。这是首次在分子尺度观察到的完整的催组装过程,有助于指导构建更高复杂度的二维分子组装单层膜。
综述
长寿命高镍锂电池界面重构电解液添加剂研究进展
韩卓, 张丹丰, 王海先, 郑国瑞, 柳明, 贺艳兵
2024, 40(9): 230703  doi: 10.3866/PKU.WHXB202307034
[摘要]  (214) [HTML全文] (214)
摘要:
高镍正极匹配锂金属负极是实现高比能锂电池的重要发展方向之一,然而,高比能锂电池体系存在体相结构稳定性差、与表界面难以兼容等共性问题,特别是在高截止电压、宽温域的实际工况条件下,表界面退化往往加速体相结构的破坏,造成电极材料性能快速衰退。相较于离子掺杂和表面包覆等改性手段,基于溶剂-锂盐优化或功能性添加剂主导的电解液诱导界面重构改性工程,可以同时实现对高比能正负极材料电化学循环改性,易于大规模工业生产应用。其中,功能性添加剂能极大提升电极/电解液界面兼容性,同时有利于调控电解液溶剂化结构,利用其电化学氧化/还原活性特征改变高比能电极/电解液电化学界面行为,从而实现高比能锂电池稳定循环。本文论述了不同功能性电解液添加剂在高镍正极和负极表面的成膜性、界面吸附稳定性、界面协同演变、酸水杂质清除等方面改性作用,为筛选和设计特定功能化添加剂实现高比能高镍锂全电池的稳定循环提供了新思路。
外加物理场调控二维材料的HER和OER性能
秦春玲, 陈爽, Hassanien Gomaa, Mohamed A. Shenashen, Sherif A. El-Safty, 刘倩, 安翠华, 刘熙俊, 邓齐波, 胡宁
2024, 40(9): 230705  doi: 10.3866/PKU.WHXB202307059
[摘要]  (192) [HTML全文] (192)
摘要:
长期以来,氢燃料一直被认为是一种有前途和可行的传统化石燃料的替代品,可以支撑我们未来的能源格局。电催化水分解是一种可用于大规模高效生产高纯度氢气的可持续和环保的技术。该技术的工业化需要我们不断地提高两个电极上的析氢反应(HER)和析氧反应(OER)的反应动力学。此外,催化剂催化活性和结构稳定性的持续优化对于该技术的实际实施同样关键。因此,合适的催化剂的选取是影响电催化水分解的关键因素之一。二维(2D)纳米材料由于其独特的物理化学性质和丰富的活性位点成为了电解水领域的热点。此外,2D材料独特的物理化学特性能与外加物理场之间高度契合,可以产生一些独特的效果来增强电催化性能。因此,近些年,外加物理场在辅助改善HER和OER方面的作用和机制越来越受到关注。外加物理场,如电场,磁场,应变,光,温度和超声波,可以应用于催化剂合成和电催化过程。本文首先总结了物理场辅助电解水催化剂合成的研究。随后,根据外场在电催化过程中作用机制的不同,对外场辅助HER和OER的研究进行了分类。最后,本文指出了本领域快速发展所面临的主要挑战和前景。
单晶高镍三元正极材料:挑战与策略
黄辰悦, 郑鸿飞, 秦宁, 王灿沛, 王利光, 陆俊
2024, 40(9): 230805  doi: 10.3866/PKU.WHXB202308051
[摘要]  (267) [HTML全文] (267)
摘要:
进一步提高锂离子电池的能量密度、循环寿命和安全性对电动汽车的普及至关重要。三元层状正极材料因其高比容量、低温性能良好、成本较低等优势,近年来在动力电池领域备受关注。高镍化和高电压化被认为是提高三元材料能量密度的有效途径。然而,基于传统多晶三元正极的高镍化和高压化可能会显著降低材料的循环稳定性和热安全性,设计单晶三元正极材料被认为可以有效缓解高压多晶三元正极稳定性问题的可行途径。但是,单晶三元正极仍然面临着离子传输动力学受阻、非均匀荷电状态、晶格参数各向异性变化、阳离子混排、化学机械降解等挑战。因此,本文从三元正极材料的本质结构演化角度系统地分析和总结了多晶与单晶结构失效的共性问题。此外,还归纳了单晶高镍三元材料的合成工艺调控、元素掺杂、表界面改性等策略,梳理了结构设计与电化学性能之间的构效关系,并对单晶高镍三元正极材料的未来发展方向进行了展望,能够为高比能三元正极材料的开发提供理论指导。

  

综述
基于碳化钼材料CO2加氢制备高附加值化学品的热催化研究进展
徐勇庆, 杨玉瑶, 武孟娜, 杨潇潇, 别璇, 张时语, 李清海, 张衍国, 张宸伟, Robert E. Przekop, Bogna Sztorch, Dariusz Brzakalski, 周会
2024, 40(4): 230400  doi: 10.3866/PKU.WHXB202304003
[摘要]  (131) [HTML全文] (131) [PDF 8882KB] (131)
摘要:
CO2加氢对于CO2转化制备高附加值化学品和燃料以实现二氧化碳利用及能源储存至关重要。CO2加氢包括甲烷化、逆水煤气变换、甲醇化和CO2直接费托合成等。碳化钼,尤其是其二维材料,由于其低成本和良好的性能而备受关注。在CO2加氢反应中,由于碳的渗入,导致晶格膨胀以及价电子增加,碳化钼基催化剂展现出了类似于贵金属催化剂的性质。碳化钼可以通过程序升温渗碳法、选择性蚀刻法、机械合金合成法、化学气相沉积法、原位热渗碳法以及溶液相合成法等来制备。到目前为止,学者已经对基于碳化钼的材料的CO2转化进行大量研究,这些材料具有良好的CO2转化活性和对目标产物的选择性。碳化钼材料的催化性能可以通过调节碳化钼中的C/Mo比、在碳化钼与负载金属之间建立强的金属-载体相互作用以及调整材料的界面结构来实现。然而,基于碳化钼的热催化CO2转化仍处于初级阶段。本文综述基于碳化钼的热催化CO2加氢制备高附加值化学品和燃料的研究进展,并分析其面临的挑战和机遇。
PNIPAm温敏纳米纤维膜:交联作用下的形貌稳定性和响应行为
田晓靖, 黄至纯, 张青松, 王旭, 杨宁, 邓南平
2024, 40(4): 230403  doi: 10.3866/PKU.WHXB202304037
[摘要]  (82) [HTML全文] (82) [PDF 4028KB] (82)
摘要:
N-异丙基丙烯酰胺(PNIPAm)交联温敏纳米纤维膜作为一种相变温度易于控制的新兴响应性材料,克服了传统PNIPAm块状水凝胶的生产成本高、响应速率慢和PNIPAm非交联温敏纳米纤维耐水性差的缺点,受到广泛研究并应用于智能开关、温度致动器、水油分离、药物、细胞控制释放和伤口敷料等领域。形貌稳定性和快速响应性是温敏纳米纤维膜在重复体积变化过程中最大的挑战,同时也作为评价PNIPAm温敏纳米纤维膜的实用性最重要指标引起了人们广泛的关注。本文全面综述了PNIPAm温敏纳米纤维膜近二十年来国内外的突破性进展和非交联作用下PNIPAm温敏纳米纤维膜的形貌变化和响应性,重点综合分析了物理和化学交联中交联反应类型、交联度、交联时间和交联分子量对PNIPAm温敏纳米纤维膜的形貌稳定性和响应行为的影响,为之后纤维膜的交联处理提供了理论支持,并对PNIPAm温敏纳米纤维膜的发展及应用前景进行了展望。
单原子催化剂在电催化CO2还原中的应用进展
冯雪婷, 商孜昂, 秦荣, 韩云虎
2024, 40(4): 230500  doi: 10.3866/PKU.WHXB202305005
[摘要]  (84) [HTML全文] (84) [PDF 7527KB] (84)
摘要:
电催化CO2还原(ECR)是减少碳排放和促进碳循环的理想方法之一。单原子催化剂(SACs)由于其最大的原子利用率、优异的活性和选择性,已成为多相催化领域的前沿之一进以得到广泛应用。鉴于SACs在ECR领域的探索和应用,本文综述了基于SACs在ECR中应用的研究进展,并提出了SACs在ECR中应用的挑战和前景。具体介绍:(1)介绍了ECR的反应机理,(2) SACs的常用制备策略,(3) SACs在新型Zn-CO2电池中的应用。最后,提出了SACs在ECR中所面临的挑战和机遇。
电催化两电子水氧化制备过氧化氢的研究进展
林柳, 孙泽民, 陈华添, 赵莲, 孙明月, 杨逸涛, 廖振升, 吴鑫宇, 李欣欣, 唐城
2024, 40(4): 230501  doi: 10.3866/PKU.WHXB202305019
[摘要]  (126) [HTML全文] (126) [PDF 6169KB] (126)
摘要:
过氧化氢(H2O2)是一种环境友好的化学氧化剂,广泛应用于水处理、医疗消毒、化学合成等工业领域。电催化两电子水氧化反应(2e WOR)是一种可以在温和条件下直接从水中生产H2O2的方法。然而,受限于反应机理认识和催化材料设计的不足,2e WOR的催化选择性和活性仍然较低。本文综述了近年来通过2e WOR反应路径电合成H2O2的研究进展,首先介绍了2e WOR的催化机理和研究方法,强调了理论计算加速高选择性、高活性和高稳定性催化剂研究的作用,并讨论了电合成H2O2的不同定量方法和原位表征手段;然后详细总结了高性能2e WOR电催化剂的调控策略,包括缺陷、掺杂、晶面和界面工程,同时指出了反应器创新设计的重要性;最后展望了电合成H2O2的研究挑战和机遇。
铋基光催化剂的金属或非金属改性研究进展
丁慧伟, 彭博, 王志豪, 韩巧凤
2024, 40(4): 230504  doi: 10.3866/PKU.WHXB202305048
[摘要]  (88) [HTML全文] (88) [PDF 15164KB] (88)
摘要:
随着经济的快速增长,环境和能源问题日益突出。太阳能作为一种可再生、环保的能源,受到了许多研究人员的关注,最大限度地利用太阳能资源成为未来的研究热点。众所周知,光催化技术可以将太阳能转化为化学能或电能,为环境污染提供解决方案。因此,半导体光催化技术被认为是解决能源危机和环境问题的最环保的技术之一。铋基半导体材料由于合适的能带结构、丰富的种类、无毒性和低成本,在光催化领域受到欢迎。然而,纯Bi基光催化剂存在光激发电子-空穴对复合效率高、量子产率低和光吸收能力有限的问题,导致光催化性能低。为了克服这些限制,人们设计了各种策略,比如金属或非金属掺杂、金属沉积、异质结构建和诱导缺陷生成来提高它们的光催化活性。在这些策略中,元素掺杂或金属沉积被认为是调整铋基材料能带结构和物化性质的有效方法。这个方法拓宽了光响应范围和提高了光催化性能。这篇综述总结了金属掺杂、非金属掺杂、金属和非金属共掺杂以及金属沉积改性铋基材料的最新研究进展。它也探索了它们在光催化降解污染物和重金属离子、氮气还原、二氧化碳还原、光催化抗菌等各个领域的应用。关于金属掺杂,我们将其分为三类:碱金属或碱土金属掺杂、过渡金属掺杂和稀土金属掺杂,并详细介绍了每种掺杂的优缺点。非金属掺杂则被分为卤素掺杂和非卤素掺杂,并重点研究非金属掺杂对铋基材料的影响。此外,我们还纵向比较了每个元素的优点。结合最近的研究进展,简要介绍了结合金属和非金属元素优点的共掺杂。对于金属沉积,我们主要从肖特基势垒和局域表面等离子体共振(LSPR)效应两个方面介绍了对Bi基材料的影响。最后,我们也呈现了金属或非金属改性Bi基光催化剂目前面临的挑战和前景。
在过渡金属催化剂上的C―C键断裂以实现生物质的升级
卢卓然, 李圣凯, 逯宇轩, 王双印, 邹雨芹
2024, 40(4): 230600  doi: 10.3866/PKU.WHXB202306003
[摘要]  (88) [HTML全文] (88) [PDF 4577KB] (88)
摘要:
将当前能源生产和消费结构从过度依赖化石能源转变为高效利用可再生能源,是解决能源危机、实现碳中和的有效途径。生物质是最有前途的可再生能源之一,可以取代化石燃料以获得有价值的有机化合物。近年来,大力利用生物质能已成为一种必然趋势。用于生物质转化的传统热化学催化方法通常需要高温、高压等恶劣条件,甚至还需要外部氢或氧源。相比之下,在相对温和的条件下进行的生物质有机分子电催化转化为生产高价值化学品提供了一种绿色高效的策略。特别是,通过C―C键裂解将生物质衍生的分子转化为高价值的短链化学品至关重要。近年来,大量的研究证明过渡金属(TM)电催化剂由于其丰富的三维电子结构和独特的eg轨道增强了过渡金属-氧之间的共价键合,从而在有机物的C―C键断裂中起着至关重要的作用。此外,TM电催化剂的配位环境或电子结构会影响产物的选择性。毫无疑问,明确的反应活性位点和途径有助于深入理解催化剂结构与反应活性之间的构效关系。然而,TM电催化剂介导的生物质衍生有机分子的C―C键裂解反应用于生物质升级的研究目前尚处于起步阶段,其反应机理和催化反应过程尚不清楚。因此,有必要在原子水平上系统地了解电催化剂在C―C键裂解过程中的作用。在本综述中,我们首先依次介绍了广泛研究的TM电催化剂介导的生物质衍生有机分子(包括甘油、环己醇、木质素和糠醛)的C―C键裂解反应,并给出了一些典型的例子和相应的反应途径。然后,系统回顾了过渡金属化合物催化C―C键裂解的反应机理,揭示了界面行为,并构建了TM电催化剂的结构与裂解反应活性之间的构效关系。最后,我们简要总结了上述内容,并强调了在TM电催化剂上研究C―C键裂解的挑战和展望。我们期望这项工作可以为生物质的可控转化和合理设计C―C键裂解的TM电催化剂提供指导。
咪唑鎓盐基材料电催化二氧化碳还原研究进展
张强, 黄远标, 曹荣
2024, 40(4): 230604  doi: 10.3866/PKU.WHXB202306040
[摘要]  (86) [HTML全文] (86) [PDF 3837KB] (86)
摘要:
随着化石能源的使用日益增加,大气中CO2的浓度不断上升,给环境带来了挑战。通过催化将CO2转化为高附加值化学品为解决这些问题提供了一个机会,并为燃料合成开辟了一条新的途径,最终有助于减少CO2排放并实现碳中和。在众多的方法中,利用可再生清洁能源进行CO2电还原反应(CO2RR)以其反应条件温和、反应进度可控、环境友好以及可以产生大量的附加值产品而受到重视。在此背景下,咪唑鎓基材料及其衍生物已成为CO2RR的有潜力的候选材料。这些材料对CO2有很强的亲和力,并且在CO2RR系统中作为电解质和电催化剂都有应用。所以它们的主要优点之一是能够在催化体系中富集CO2,有效地抑制析氢副反应(HER),并提高CO2RR产物的选择性。了解电催化条件下咪唑鎓基离子液体(Im-ILs)与CO2分子之间的相互作用机制对于从分子角度深入了解为什么添加Im-ILs可以改善CO2RR性能至关重要。此外在非均相电催化剂中,Im-ILs作为表面修饰基团和捕集剂,可以显著改变催化剂的表面环境和疏水性,从而促进CO2RR。值得注意的是,Lehn型和金属卟啉分子催化剂中的咪唑鎓基团已被发现对这些催化剂在CO2RR中的性能有影响。N-杂环卡宾(NHC)基电催化剂作为咪唑鎓与CO2相互作用的活性形式之一,表现出优异的CO2RR性能。将NHC基电催化剂引入多孔多相催化剂和分子催化剂中,可以稳定金属纳米颗粒,提高捕获CO2的能力,从而提高CO2RR活性。总之,在CO2RR中使用咪唑鎓基材料对于推进CO2转化,实现可持续、有效合成高附加值化学品具有巨大的前景。
二氧化碳转化为氨基甲酸酯的研究进展
郭艳辉, 魏丽, 温中林, 戚朝荣, 江焕峰
2024, 40(4): 230700  doi: 10.3866/PKU.WHXB202307004
[摘要]  (87) [HTML全文] (87) [PDF 1611KB] (87)
摘要:
二氧化碳(CO2)是大气中主要的温室气体,同时也是一种丰富、无毒和可再生的碳一资源。因此,将CO2转化为有价值的化学品对实现可持续发展具有重要意义。然而,由于CO2的热力学稳定性和动力学惰性,其活化转化非常具有挑战性。氨基甲酸酯是一类具有生物活性的重要化合物,广泛存在于天然产物、农用化学品和医药相关分子中,同时也是重要的有机合成中间体。近年来,利用CO2作为光气的替代品用于合成氨基甲酸酯吸引了广泛的关注。本文主要综述了CO2和胺在不同的催化体系下合成氨基甲酸酯的最新研究进展,主要分为无过渡金属催化、过渡金属催化、电催化、光催化四种反应体系来归纳总结,并对CO2转化为氨基甲酸酯的未来研究方向进行了展望。
论文
调控金纳米花表面凸起的策略及其表面增强拉曼散射活性
冯瑞沁, 樊晔, 方云, 夏咏梅
2024, 40(4): 230402  doi: 10.3866/PKU.WHXB202304020
[摘要]  (110) [HTML全文] (110) [PDF 3713KB] (110)
摘要:
以聚乙烯吡咯烷酮(PVP)与十二烷基硫酸钠(SDS)通过阳离子架桥形成的拟聚阴离子为软模板,通过改变PVP、SDS和纳米材料前驱体氯金酸(HAuCl4)浓度以及反应时间等因素,调控还原产物金纳米花形貌及粒径。表面张力、电导率、毛细管电泳及Zeta电位等实验结果表明PVP-SDS-HAuCl4形成新的拟聚阴离子,透射电子显微镜和X射线衍射结果表明SDS、PVP和HAuCl4的较低浓度组合更易获得表面凸起丰富的金纳米花。PVP-SDS拟聚阴离子发挥了二级软模板作用,在PVP (50 g∙L−1)-SDS (2 mmol∙L−1)-HAuCl4 (0.25 mmol∙L−1)溶液中调控合成的金纳米花为{111}晶面为主的面心立方结构,其平均等效粒径为108 nm,且表面上密集分布约16.5 nm的凸起。该金纳米花有较强的表面增强拉曼散射(SERS)活性,探针分子罗丹明6G的SERS信号强度依赖于金纳米花的表面凸起形貌。该研究中金纳米花的SERS增强因子最高达6.71×107,优于同类金纳米花的文献报道水平(106);尽管低于石墨负载的金纳米粒子(1×108)或阳离子软模板合成的金纳米棒(5×109),但成功避免了基质干扰或阳离子强吸附使应用受限。
激光诱导羟基磷灰石夹层纸表面碳化实现无墨打印
王俊鉴, 于清泉, 刘舜尧, 陈玉客, 刘晓雨, 李国栋, 刘晓燕, 刘宏, 周伟家
2024, 40(4): 230402  doi: 10.3866/PKU.WHXB202304024
[摘要]  (77) [HTML全文] (77) [PDF 5761KB] (77)
摘要:
传统的油墨打印具有方便快捷的优势,但打印过程中墨水或碳粉的大量使用对人体和环境造成了不可忽视的危害。基于激光的高能粒子特性和光热辐射热效应,利用激光欠焦和聚焦两种工作模式,可实现激光无墨打印和微区加工。本文报道了一种基于羟基磷灰石的“有机-无机-有机”三明治结构多功能纸,并利用激光的光热辐射效应使功能纸表层有机材料——纤维素纤维表面温度升高,实现表层均匀碳化,夹层无机材料——羟基磷灰石阻挡能量继续传导防止纸张烧穿,以此来达到无墨打印的效果。基于激光烧蚀的无墨打印,能够显著降低打印成本,有利于激光烧蚀打印技术的推广。此外,采用激光烧蚀打印技术作用于功能纸上的打印效果具有稳定、绿色环保等特点,在档案存储用纸、食品包装用纸和后天致盲患者阅读等方面具有广泛的应用。
用于检测痕量铅离子的功能化反射结构光纤干涉传感器
赵可, 刘震, 刘露遥, 余长源, 潘竞顺, 黄旭光
2024, 40(4): 230402  doi: 10.3866/PKU.WHXB202304029
[摘要]  (74) [HTML全文] (74) [PDF 3278KB] (74)
摘要:
铅离子(Pb2+)是日常生活中常接触的有毒重金属污染物之一。本研究开发了一种新型反射式光纤干涉传感器,用于检测痕量铅离子。该传感器结构由单模光纤、无芯光纤和细芯光纤(TCF)依次拼接而成。TCF的包层被氢氟酸部分腐蚀并涂覆功能化的水凝胶传感膜。该传感膜选用甲基丙烯酸2-羟基乙酯(2-HEMA)作为识别单体。2-HEMA中的氧原子能与Pb2+发生配体-受体相互作用,形成“-O-Pb-O-”交联结构,从而改变TCF的新包层有效折射率。因此,可以通过观察反射光谱中光信号的变化来检测水溶液中Pb2+的浓度。所提出的传感器具有很高的检测灵敏度(1.926×109 nm∙mol−1∙L),其检测极限为4.14 ppt (1 ng∙L−1 = 1 ppt),比世界卫生组织(WHO)规定的饮用水中Pb2+ (10 ppb,1 μg∙L−1= 1 ppb)浓度低1000倍。此外,利用一个方程组实现了该传感器的温度自校准功能,成功地消除了环境温度的干扰。由于该传感器良好的特异性、稳定性以及反射式结构,非常便于实时远程检测,为环境和人类健康监测提供了广阔的前景。
高级氧化和可见光照射协同作用下Bi2WO6对有机污染物降解的催化活性增强
汪园青, 潘育松, 朱红梧, 向妍蕾, 韩蓉, 黄润, 杜超, 潘成岭
2024, 40(4): 230405  doi: 10.3866/PKU.WHXB202304050
[摘要]  (108) [HTML全文] (108) [PDF 4678KB] (108)
摘要:
随着工业化社会的不断发展,环境问题日益严重。尤其是工业废水问题一直是催化降解领域的研究热点。光催化与高级氧化工艺(AOPs)耦合技术因为具有高效、无选择性、处理条件温和等特点,被认为是一种高效的有机污染物降解技术。本文以十六烷基三甲基溴化铵(CTAB)表面活性剂作为模板,采用简单的水热法制备了钨酸铋(Bi2WO6)纳米花。通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(DRS)技术对其微观形貌、晶相、表面化学元素状态和光学性质进行了表征。为了研究钨酸铋(Bi2WO6)纳米花的催化性能,在不同催化体系下降解有机污染物罗丹明B (RhB),实验发现,于vis/过硫酸盐(PMS)/Bi2WO6体系下,40 min内对RhB的去除率高达96.39%,明显优于PMS/Bi2WO6 (40 min内去除率为38.77%)和vis/Bi2WO6 (40 min内去除率为31.82%)体系,表明可见光照射和PMS的协同作用加速了Bi2WO6对RhB降解的催化活性。此外,还研究了催化剂剂量、PMS浓度、pH值和离子浓度等环境参数对催化体系催化性能的影响。结果表明,环境参数对vis/PMS/Bi2WO6系统中RhB的去除率影响不大,RhB的去除率也高达90%。相反,环境参数对vis/PMS/ Bi2WO6体系下催化降解率(K)有明显影响,K值会随着催化剂剂量和PMS浓度的增加而增大。在pH不同环境下,K值会随着催化体系中pH值的升高,先增大后减小。当催化体系中的pH = 7时,催化降解率达到最大值(0.1502 min−1)。有趣的是,体系中Cl的存在有利于提高催化降解效率。相反,体系中CO32−的存在会明显抑制催化降解效率。循环实验的结果也验证了催化剂在降解有机染料方面具有良好的稳定性。此外,淬灭实验和EPR测试结果表明,超氧自由基(•O− 2)和单线态氧(1O2)对有机污染物的降解起着重要作用。Bi2WO6在vis/PMS协同催化体系中的优异催化活性得益于其显著的可见光响应下光催化活性和铋离子对PMS的超强活化能力。
金属有机框架衍生镍纳米颗粒在宽电位窗口内高效电催化二氧化碳还原
邵碧珠, 董慧君, 龚云南, 梅剑华, 蔡锋石, 刘金彪, 钟地长, 鲁统部
2024, 40(4): 230502  doi: 10.3866/PKU.WHXB202305026
[摘要]  (94) [HTML全文] (94) [PDF 1613KB] (94)
摘要:
电催化二氧化碳(CO2)还原被认为是将CO2转化为可再生能源产品的一种有前途的方法。开发性能优异的电催化剂高效完成这一重要反应是关键。镍基催化剂广泛应用于电催化CO2还原研究,但是,镍纳米颗粒经常表现较差的催化性能。在本文中,通过在氮气气氛中高温热解镍基金属有机骨架(MOF)、尿素和炭黑混合物,获得了镍纳米颗粒负载于多孔碳氮中的催化材料(NiNPs-NC)。有趣的是,NiNPs-NC在H型和流动相电池中都表现出优异的CO2电还原性能。在H型电解池和−0.67 –−1.07 V vs. RHE (可逆氢电极)电位窗口内,NiNPs-NC催化CO2还原为CO的法拉第效率大于90%,其中,在−0.87 V vs. RHE时,CO的法拉第效率约为100%。在流动相电解池和−0.50 – −0.70 V vs. RHE电位窗口内,NiNPs-NC催化CO2还原为CO的选择性大于95%。电化学阻抗谱图和塔菲尔斜率表征显示,NiNPs-NC的高催化活性归因于其在催化过程中的快速电荷转移。本文提供了一种制备高效CO2电还原催化剂的方法。
通讯
一例整合了三联吡啶钌和卟啉锌的金属-有机框架材料用于光催化二氧化碳还原全反应
陈慧滢, 朱浩林, 廖培钦, 陈小明
2024, 40(4): 230604  doi: 10.3866/PKU.WHXB202306046
[摘要]  (107) [HTML全文] (107) [PDF 1126KB] (107)
摘要:
利用源源不断的太阳能,将CO2和水转化为增值化学品,是缓解温室效应与能源危机的一种有前途的方法。由于催化体系中的不同功能性部分难以实现氧化与还原反应的耦合,使用水作为还原剂实现光催化CO2还原是一项具有挑战性的工作。金属有机框架(metal-organic framework,MOF)由于其较大的比表面积、多样化的活性位点和结构可调性,是CO2光催化还原全反应的良好备选材料。本文中,我们首先整合了具有光活性的锌(II)卟啉基元与联吡啶钌(II)基元,构建了一种MOF光催化剂,记作PCN-224(Zn)-Bpy(Ru)。为了进行比较,还合成了两种仅具有锌(II)卟啉或联吡啶钌(II)基元的同构MOF,分别记作PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)。由测试结果可知,PCN-224(Zn)-Bpy(Ru)在乙腈和水混合溶液中表现出对CO2还原可观的光催化活性(CO产率为7.6 µmol·g−1·h−1),无需额外添加助催化剂、光敏剂或牺牲剂。通过质谱仪观测到13CO (m/z = 29)、13C18O (m/z= 31)、16O18O (m/z =34)和18O2 (m/z = 36)信号,表明CO2和H2O分别作为CO和O2的碳源和氧源,这进一步证实了光催化CO2还原与H2O氧化的耦合。然而,在相同条件下对PCN-224-Bpy(Ru)与PCN-224(Zn)-Bpy的光催化性能进行测试,CO产率分别仅为1.5与0 µmol·g−1·h−1。机理研究表明,PCN-224(Zn)-Bpy(Ru)的最低未占据分子轨道(LUMO)电位比CO2/CO的氧化还原电位更负,而最高占据分子轨道(HOMO)电位比H2O/O2的氧化还原电位更正,在热力学上满足了光催化CO2还原全反应的要求。相比之下,不含联吡啶钌(II)基元的PCN-224(Zn)-Bpy的HOMO电位更负于H2O/O2的氧化还原电位,这表明联吡啶钌(II)基元在热力学上是光催化CO2还原全反应所必需的。此外,光致发光光谱中,荧光几乎被PCN-224(Zn)-Bpy(Ru)猝灭,且平均光致发光寿命比PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)更长,这表明PCN-224中光生载流子的复合率较低。与PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)相比,PCN-224的光电流更高,这一现象也支持了中后者光生载流子的复合率较低这一结论。总而言之,在光催化CO2还原过程中,锌卟啉(II)配体既作为光敏单元,又作为CO2还原活性位点,而联吡啶钌(II)基元与锌(II)卟啉基元的结合可以优化光催化剂的能带结构,进而促进光催化CO2还原与H2O氧化的耦合,从而实现了高效光催化CO2还原全反应。
亮点
揭示S型电荷转移机理
余维来, 别传彪
2024, 40(4): 230702  doi: 10.3866/PKU.WHXB202307022
[摘要]  (95) [HTML全文] (95) [PDF 1261KB] (95)
摘要:

编委会

发布时间:


《物理化学学报》第4届编委会

(按拼音排序)

名誉主编

唐有祺

北京大学

顾问编委

包信和

中国科学院大连化学物理研究所

段雪

北京化工大学

付贤智

福州大学

侯建国

中国科学技术大学

黄维

南京工业大学

LIEBER Charles M.

Harvard University

田中群

厦门大学

万立骏

中国科学院化学研究所

吴云东

北京大学

谢晓亮

Harvard University, 北京大学

杨伟涛

 Duke University

姚建年

中国科学院化学研究所

赵新生

北京大学

主编

刘忠范

北京大学

副主编

韩布兴

中国科学院化学研究所

刘鸣华

国家纳米科学中心

申文杰

中国科学院大连化学物理研究所

吴凯

北京大学

杨金龙

中国科学技术大学

庄林

武汉大学

迟力峰

苏州大学

编委

曹勇

复旦大学

陈经广

University of Delaware

陈军

南开大学

崔屹

Stanford University

邓风

中国科学院武汉物理与数学研究所

邓友全

中国科学院兰州化学物理研究所

樊卫斌

中国科学院山西煤炭化学研究所

房喻

陕西师范大学

付红兵

中国科学院化学研究所

傅强

中国科学院大连化学物理研究所

高毅勤

北京大学

郭林

北京航空航天大学

郝京诚

山东大学

侯文华

南京大学

金荣超

Carnegie Mellon University

来鲁华

北京大学

李朝军

McGill University

李隽

清华大学

李象远

四川大学

梁万珍

厦门大学

刘海超

北京大学

刘洪来

华东理工大学

刘述斌

University of North Carolina

刘义

武汉大学

刘志敏

中国科学院化学研究所

罗小民

中国科学院上海药物研究所

马晶

南京大学

孟庆波

中国科学院物理研究所

邵翔

中国科学技术大学

孙俊奇

吉林大学

谭蔚泓

湖南大学

唐智勇

国家纳米科学中心

王键吉

河南师范大学

王鹏

中国科学院长春应用化学研究所

王心晨

福州大学

王永锋

北京大学

魏子栋

重庆大学

翁羽翔

中国科学院物理研究所

吴鹏

华东师范大学

夏永姚

复旦大学

许国勤

National University of Singapore

杨俊林

国家自然科学基金委员会

余家国

武汉理工大学

尉志武

清华大学

占肖卫

北京大学

张东辉

中国科学院大连化学物理研究所

张浩力

兰州大学

张锦

北京大学

章俊良

上海交通大学

周永贵

中国科学院大连化学物理研究所

联系我们

发布时间: 2018-05-02


编辑部工作人员联系方式
 

张小娟
主任
010-62756388
黄路
编辑
010-62751724
欧阳贱华
编辑
010-62751721
於秀芝
编辑
010-62751724
熊英
编辑
010-62751724
周虹
技术编辑
010-62751724

 

通讯地址:北京市北京大学化学学院物理化学学报编辑部

邮政编码:100871

 

发布日期:2009-06-24 浏览: