首页 > 期刊 > 物理化学学报

  

专论
仿鲍鱼壳石墨烯多功能纳米复合材料
彭景淞, 程群峰
2022, 38(5): 2005006-0  doi: 10.3866/PKU.WHXB202005006
[摘要]  (98) [HTML全文] (98) [PDF 4717KB] (4)
摘要:
石墨烯具有力学性能高、电导率优异等特点,然而单层石墨烯纳米片在组装成为宏观纳米复合材料的过程中,往往会出现片层团聚、界面作用弱、无规取向等问题,导致宏观石墨烯纳米复合材料性能远低于单片石墨烯。因此,如何将微观石墨烯纳米片层的高性能在宏观纳米复合材料中体现出来,是目前研究的热点和难点。本专论结合目前石墨烯纳米复合材料的研究现状,简要讨论了受天然鲍鱼壳的“砖-泥”结构的启发,仿生构筑高性能石墨烯纳米复合材料的最新研究进展。并对本课题组在仿鲍鱼壳石墨烯多功能纳米复合材料领域近年来的工作进行介绍,包括石墨烯纤维、薄膜和块材等多种宏观石墨烯纳米复合材料,系统总结构筑仿鲍鱼壳结构和反鲍鱼壳结构两种策略,在一定程度上解决了石墨烯在组装过程中的科学问题。同时,详细阐述了仿鲍鱼壳石墨烯多功能纳米复合材料的增强增韧机制和功能化策略,分析了今后研究工作中可能遇到的问题,并展望了未来的发展趋势。
论文
TiN/HfxZr1-xO2/TiN铁电电容器的原位生长与表征
殷宇豪, 沈阳, 王虎, 陈肖, 邵林, 华文宇, 王娟, 崔义
2022, 38(5): 2006016-0  doi: 10.3866/PKU.WHXB202006016
[摘要]  (69) [HTML全文] (69) [PDF 1361KB] (2)
摘要:
HfO2基铁电电容器,特别是TiN/HfxZr1-xO2/TiN金属-绝缘体-金属电容器,由于其良好的稳定性、高性能和互补金属氧化物半导体(CMOS)兼容性,在新一代非易失性存储器中有着广阔的应用前景。由于TiN/HfxZr1-xO2/TiN电容器的电性能与HfxZr1-xO2铁电薄膜与TiN电极层界面质量相关,因此控制TiN/HfxZr1-xO2/TiN异质结构的制备和表征至关重要。本文报道了一种三明治结构:HfxZr1-xO2铁电薄膜夹在两个TiN电极之间的新的制备方法,通过超高真空系统互连的原子层沉积(ALD)和磁控溅射设备实现。原位生长和表征结果表明,ZrO2掺杂浓度和快速热退火温度可以调节TiN/HfxZr1-xO2/TiN异质结的铁电性能,并能很好地被互连系统监控。在该体系中,通过在HfO2中掺杂50% (molar fraction, x) ZrO2并且在600 ℃下快速热退火(RTA),获得了21.5 μC·cm-2的高剩余极化率和1.35 V的低矫顽电压。
聚吡咯@二氧化锰/碳纳米管薄膜电极的制备及在高性能锌离子电池中的应用
沈晓帆, 王晓娜, 俞能晟, 杨薇, 周雨融, 石艳红, 王玉莲, 董立忠, 邸江涛, 李清文
2022, 38(5): 2006059-0  doi: 10.3866/PKU.WHXB202006059
[摘要]  (81) [HTML全文] (81) [PDF 1430KB] (3)
摘要:
中性/弱酸性水系锌锰电池因其能量密度高、价格低廉、环境友好等优势受到广泛关注。然而,现有的二氧化锰正极材料存在导电性能差,在充放电过程中易于溶解等问题。这严重影响了电池的倍率性能和循环稳定性,阻碍了中性锌锰电池的应用。为了解决上述问题,本文设计了以碳纳米管(CNT)网络薄膜为导电基底沉积聚吡咯(PPy)包覆二氧化锰(PPy@MnO2/CNT)的多级结构电极。碳纳米管和聚吡咯组装形成高比表面积的三维交联导电网络,为活性材料提供了快速的电子、离子传输通道;聚吡咯包覆纳米级二氧化锰能够有效地抑制二氧化锰的溶解,进而提升电池的倍率特性和循环稳定性。以PPy@MnO2/CNT作为正极材料组装的水系锌锰电池在1 A·g-1的电流密度下,比容量达到210 mAh·g-1,循环1000圈后,电池依然具有较高的容量保持率(85.7%)。本工作的导电聚合物包覆活性物质的策略可为发展高稳定柔性储能器件提供新思路。
气驱油油气混相过程的界面传质特性及其分子机制
俞宏伟, 李实, 李金龙, 朱韶华, 孙成珍
2022, 38(5): 2006061-0  doi: 10.3866/PKU.WHXB202006061
[摘要]  (74) [HTML全文] (74) [PDF 2648KB] (0)
摘要:
油气混相过程的界面传质特性对气驱提高原油采收率技术非常重要。本文针对吉林某油田的实际油组分,采用分子动力学模拟研究了气驱油过程,分析了不同气体和驱替压力下油气两相的状态变化以及界面特性,获得不同驱替气体的最小混相压力(MMP)。结果表明,随着驱替气体压力的升高,气相的密度逐渐增大,油相膨胀密度降低,气相与油相的混合程度增强,油气两相界面厚度增加,界面张力随之减小。同时发现,驱替相中二氧化碳浓度越高,在同等气体压力下,油气界面更厚,油气混合程度更高。纯CO2驱油得到的MMP远远小于纯N2驱油,当这两种气体摩尔比为1 : 1混合时MMP介于两种纯气体之间,说明要达到同样的驱油效果二氧化碳需要的压力更小。最后,本文从分子微观作用力角度解释了驱替气体不同时影响油气混相程度的机制,通过分子平均作用势曲线发现油相分子对CO2的吸引力要大于N2分子,因此CO2分子更容易与油相混合,驱替效果更明显。
纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟
卢浩然, 魏雅清, 龙闰
2022, 38(5): 2006064-0  doi: 10.3866/PKU.WHXB202006064
[摘要]  (93) [HTML全文] (93) [PDF 2250KB] (0)
摘要:
通常认为缺陷加速黑磷的非辐射电子-空穴复合,阻碍器件性能的持续提高。实验打破了这一认识。采用含时密度泛函理论结合非绝热分子动力学,我们发现P-P伸缩振动驱动非辐射电子-空穴复合,使纳米孔修饰的单层黑磷的激发态寿命比完美体系延长了约5.5倍。这主要归因于三个因素。一,纳米孔结构不但没有在禁带中引入深能级缺陷,而且由于价带顶下移使带隙增加了0.22 eV。二,除了带隙增加,纳米孔减小了电子和空穴波函数重叠,并抑制了原子核热运动,从而使非绝热耦合降低至完美体系的约1/2。三,退相干时间比完美体系延长了1.5倍。前两个因素战胜了第三个因素,使纳米孔结构激发态寿命延长至2.74 ns,而其在完美体系中约为480 ps。我们的研究表明可以制造合理数量和形貌的缺陷,如纳米孔,降低黑磷非辐射电子-空穴复合,提高光电器件效率。这一研究对于理解和调控黑磷和其它二维材料的激发态性质有重要意义。
高镍正极材料中钴元素的替代方案及其合成工艺优化
吴锋, 李晴, 陈来, 王紫润, 陈刚, 包丽颖, 卢赟, 陈实, 苏岳锋
2022, 38(5): 2007017-0  doi: 10.3866/PKU.WHXB202007017
[摘要]  (97) [HTML全文] (97) [PDF 2448KB] (1)
摘要:
高镍三元正极材料LiNixMnyCo1-x-yO2 (x > 0.8)因其高能量密度而备受瞩目。在高镍三元正极材料中,Co不但有助于增强层状正极材料结构稳定性,而且能够提高正极材料导电性能,因此被认为是一种非常重要的元素。但是由于目前全球范围内钴矿资源紧缺,在一定程度上限制了含钴正极材料在新能源电动汽车领域的发展应用。基于此,本文将不同的过渡金属离子掺杂到高镍层状材料中形成无钴化正极材料,并进行高镍正极材料无钴化的可行性分析。通过实验对比发现,资源存储量丰富并且价格低廉的Zr在一定程度上可以取代Co元素,得到的正极材料LiNi0.85Mn0.1Zr0.05O2表现出良好的电化学性能,在0.2C倍率以及2.75–4.3 V的截止电压范围内,其放电比容量为179.9 mAh·g-1,80周容量保持率为96.52%。
紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制
卢岳, 葛杨, 隋曼龄
2022, 38(5): 2007088-0  doi: 10.3866/PKU.WHXB202007088
[摘要]  (79) [HTML全文] (79) [PDF 5002KB] (0)
摘要:
随着光伏产业的不断发展,有机无机杂化钙钛矿太阳能电池的研发成为科学与工业界广泛关注的焦点。到目前为止,其光电转换效率已经提高到了25.2%,成为替代硅基太阳能电池的核心方案之一。然而,钙钛矿太阳能电池的稳定性较差,容易受到环境中氧气、水分、温度甚至光照的影响,这严重制约了其大规模推广与应用。大量科学研究表明,如何避免紫外辐照下有机无机杂化钙钛矿太阳能电池的性能衰减,对于提高钙钛矿太阳能电池的光照稳定性至关重要。然而到目前为止,仍然没有系统的工作来对紫外辐照下钙钛矿太阳能电池性能以及微结构演化过程进行详细的表征与分析。本文中,我们利用聚焦离子束-扫描电子显微分析(FIB-SEM)以及球差校正透射电子显微分析(TEM)等技术,全面地研究了紫外辐照过程中有机无机杂化钙钛矿太阳能电池性能变化规律以及电池微结构演化特征。实验结果表明,紫外辐照过程中太阳能电池内部会形成0.5–0.6 V的内建电场,钙钛矿中的I-离子在电场的驱动下向金属Au电极和空穴传输层2, 2’, 7, 7’-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)一侧迁移;随后,空穴传输层与金电极的界面处,碘离子与光生空穴一起与金电极发生反应,将金属态Au氧化成离子态Au+。而Au+离子则在内建电场的驱动下反向迁移穿过钙钛矿MAPbI3层,直接被SnO2和MAPbI3界面处的电子还原形成金属Au纳米团簇。除此之外,紫外辐照过程中钙钛矿太阳能电池性能降低的同时,往往伴随着Spiro-OMeTAD与钙钛矿界面处物质迁移、钙钛矿薄膜内晶界展宽以及Au纳米颗粒周围MAPbI3物相分解等现象。以上各种因素的协同作用,共同导致了紫外光照下有机无机杂化钙钛矿太阳能电池光电转换性能(PCE)、开路电压(Voc)以及短路电流(Jsc)等性能参数的急剧下降。
一维碳纳米管/二维二硫化钼混合维度异质结的原位制备及其电荷转移性能
邹菁云, 高冰, 张小品, 唐磊, 冯思敏, 金赫华, 刘碧录, 成会明
2022, 38(5): 2008037-0  doi: 10.3866/PKU.WHXB202008037
[摘要]  (71) [HTML全文] (71) [PDF 4330KB] (0)
摘要:
一维(1D)材料与二维(2D)材料的结合可形成独特的混合维度异质结,其在继承2D/2D范德瓦尔斯异质结的独特物性之外,还具有丰富的堆叠构型,为进一步调控异质结的结构及性能提供了新的可操控自由度。p型1D单壁碳纳米管(SWCNT)与n型2D二硫化钼(MoS2)的结合,为调控异质结的能带结构及器件性能提供了丰富的选择。本文直接在高密度、手性窄分布的SWCNT定向阵列及无序薄膜表面原位生长MoS2,制备出高质量1D SWCNT/2D MoS2混合维度异质结。深入分析形核点的表面形貌与结构,提出了“吸附-扩散-吸附”生长机制,用于解释混合维度异质结的生长。利用拉曼光谱分析,证实SWCNT与MoS2间存在显著的电荷转移作用,载流子可在界面处快速传输,为后续基于此类1D/2D异质结的新型电子及光电器件的设计与制备提供了新思路。
综述
电容去离子除氯电极的构建及其脱盐性能研究进展
熊岳城, 于飞, 马杰
2022, 38(5): 2006037-0  doi: 10.3866/PKU.WHXB202006037
[摘要]  (78) [HTML全文] (78) [PDF 3045KB] (1)
摘要:
电容去离子技术(Capacitive deionization,CDI)是一种新兴的脱盐技术,通过在电极两端施加较低的外加电场除去水中的带电离子和分子,由于其较低的能耗和可持续性而备受关注。基于储能电池领域近年来的迅猛发展,CDI电极材料实现了从以双电层作用机理为代表的碳材料到法拉第电极材料的跨越,使得脱盐性能有了大幅度提升。Na+的去除与Cl-的去除同等重要,然而,CDI中针对氯离子高效去除的电极材料研究关注较少。本文从CDI装置的构型演变发展出发,系统地归纳与梳理了CDI中关于脱氯电极材料的分类,对比了不同类型脱氯电极材料的特点,并总结了Cl-去除的机理,分别为基于双电层的电吸附、转化反应、离子插层和氧化还原反应。本文是首篇关于CDI阳极材料的进展综述和展望,为CDI除氯电极的后续研究提供理论基础和研究思路。
VOCs分子的半导体型传感器识别检测研究进展
刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东
2022, 38(5): 2008018-0  doi: 10.3866/PKU.WHXB202008018
[摘要]  (69) [HTML全文] (69) [PDF 4149KB] (3)
摘要:
具有体积小、功耗低、灵敏度高、硅工艺兼容性好等优点的金属氧化物半导体(MOS)气体传感器现已广泛地应用于军事、科研和国民经济的各个领域。然而MOS传感器的低选择性阻碍了其在物联网(IoT)时代的应用前景。为此,本文综述了解决MOS传感器选择性的研究进展,主要介绍了敏感材料性能提升、电子鼻和热调制三种改善MOS传感器选择性的技术方法,阐述了三种方法目前所存在的问题及其未来的发展趋势。同时,本文还对比介绍了机器嗅觉领域主流的主成分分析(PCA)、线性判别分析(LDA)和神经网络(NN)模式识别/机器学习算法。最后,本综述展望了具有数据降维、特征提取和鲁棒性识别分类性能的卷积神经网络(CNN)深度学习算法在气体识别领域的应用前景。基于敏感材料性能的提升、多种调制手段与阵列技术的结合以及人工智能(AI)领域深度学习算法的最新进展,将会极大地增强非选择性MOS传感器的挥发性有机化合物(VOCs)分子识别能力。

  

综述
石墨烯纤维材料的化学气相沉积生长方法
程熠, 王坤, 亓月, 刘忠范
2022, 38(2): 2006046-0  doi: 10.3866/PKU.WHXB202006046
[摘要]  (181) [HTML全文] (181) [PDF 3786KB] (181)
摘要:
石墨烯纤维材料是以石墨烯为主要结构基元沿某一特定方向组装而成或由石墨烯包覆纤维状基元形成的宏观一维材料。根据组成基元的不同可将石墨烯纤维材料分为石墨烯纤维和石墨烯包覆复合纤维。石墨烯纤维材料在一维方向上充分发挥了石墨烯高强度、高导电、高导热等特点,在智能纤维与织物、柔性储能器件、便携式电子器件等领域具有广阔的应用前景。随着化学气相沉积(Chemical Vapor Deposition,CVD)制备石墨烯薄膜技术的发展,CVD技术也逐渐应用于石墨烯纤维材料的制备。利用CVD法制备石墨烯纤维可避免传统纺丝工艺中繁琐的氧化石墨烯(Graphene Oxide,GO)还原过程。同时,通过CVD法直接将石墨烯沉积至纤维表面可以保证石墨烯与纤维基底之间强的粘附作用,提高复合纤维的稳定性,同时可实现对石墨烯质量的有效调控。本文综述了石墨烯纤维材料的CVD制备方法,石墨烯纤维材料优异的力学、电学、光学性质及其在智能传感、光电器件、柔性电极等领域的应用,并展望了CVD法制备石墨烯纤维材料未来的发展方向。
石墨烯晶圆的制备:从高品质到规模化
姜蓓, 孙靖宇, 刘忠范
2022, 38(2): 2007068-0  doi: 10.3866/PKU.WHXB202007068
[摘要]  (130) [HTML全文] (130) [PDF 2832KB] (130)
摘要:
石墨烯晶圆是引领未来的战略材料,在集成电路、微机电系统和传感器等领域具有广阔的应用前景。实现石墨烯晶圆广泛应用的前提是高品质材料的规模化制备。可控性高、工艺兼容性强、成本低的化学气相沉积(chemical vapor deposition,CVD)法,是高品质石墨烯晶圆规模化制备的首选方法。本文将综述石墨烯晶圆的CVD制备进展:首先探讨石墨烯晶圆的制备需求,从实用牵引和应用场景出发,提出石墨烯晶圆的制备品质等级;随后重点介绍石墨烯的晶圆级制备方法和石墨烯晶圆材料的规模化制备技术;最后,对石墨烯晶圆可行的制备路线进行总结,并展望未来可能的发展方向。
石墨烯纤维:制备、性能与应用
蹇木强, 张莹莹, 刘忠范
2022, 38(2): 2007093-0  doi: 10.3866/PKU.WHXB202007093
[摘要]  (130) [HTML全文] (130) [PDF 4029KB] (130)
摘要:
石墨烯纤维是一种由石墨烯片层紧密有序排列而成的一维宏观组装材料。通过合理的结构设计和可控制备,石墨烯纤维能够将石墨烯在微观尺度的优异性能有效传递至宏观尺度,展现出优异的力学、电学、热学等性能,从而应用于功能织物、传感、能源等领域。目前,石墨烯纤维主要通过湿法纺丝、限域水热组装等方法制备得到,其性能可以通过对材料体系和制备工艺的优化而进一步提升。本文首先介绍了石墨烯纤维的制备方法,然后详细阐述了石墨烯纤维的性能,讨论了其性能提升策略,并总结了石墨烯纤维的应用,最后对石墨烯纤维的未来发展、挑战和前景进行了展望。
超级电容器用石墨烯薄膜:制备、基元结构及表面调控
姜美慧, 盛利志, 王超, 江丽丽, 范壮军
2022, 38(2): 2012085-0  doi: 10.3866/PKU.WHXB202012085
[摘要]  (139) [HTML全文] (139) [PDF 5836KB] (139)
摘要:
石墨烯薄膜是一种以石墨烯纳米片为基元结构的宏观体,通过合理的结构设计和表面修饰使其具有优异的电学、力学和热学性能,将在电化学储能、电子器件、健康和环保等领域具有潜在的应用。本文主要综述了从石墨烯基元调控到二维宏观膜组装以及石墨烯薄膜在超级电容器应用中的研究进展。主要介绍了石墨烯薄膜的简易制备方法,并详细介绍了通过对石墨烯基元的结构调控和表面修饰来优化石墨烯薄膜电化学性能的两大策略,最后对石墨烯薄膜应用所面临的挑战和未来的发展进行了总结与展望。
石墨烯作为硫载体在锂硫电池中的研究进展
张梦迪, 陈蓓, 吴明铂
2022, 38(2): 2101001-0  doi: 10.3866/PKU.WHXB202101001
[摘要]  (143) [HTML全文] (143) [PDF 4380KB] (143)
摘要:
锂硫电池因其超高的理论能量密度以及硫资源丰富、成本低廉、无毒的优点,被认为是极具发展潜力与应用前景的新一代储能设备。然而,硫正极导电性差、体积膨胀以及穿梭效应严重等问题严重制约了其商业化应用。石墨烯具有高比表面积、高导电性和高柔韧性,并且易于进行表面化学修饰及组装,是一种理想的硫载体材料。本文主要综述了近年来三维石墨烯、表面化学修饰的石墨烯、石墨烯基复合材料以及石墨烯基柔性材料在锂硫电池正极中的研究现状,并展望了石墨烯作为硫载体在锂硫电池正极中的发展趋势。
石墨烯基二氧化碳电化学还原催化剂的研究进展
杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山
2022, 38(2): 2101009-0  doi: 10.3866/PKU.WHXB202101009
[摘要]  (117) [HTML全文] (117) [PDF 3719KB] (117)
摘要:
利用电催化技术将CO2转化为小分子燃料或高值化学品是实现原子经济、构建人工碳循环的绿色能源技术之一。电催化还原CO2 (ECR)的反应条件温和、产物多样(C1、C2和C2+),有极大的发展潜力。然而,ECR技术面临一些需要解决的挑战性问题,包括电极过电势高、C2及C2+产物选择性低、伴随析氢反应等。解决这些问题的关键在于创制低成本、高性能电催化剂。近年来,石墨烯基电催化剂的研究成为ECR领域的热点之一,原因包括:1)在电化学环境中稳定性好;2)表面原子、电子结构可调,进而实现材料催化活性的调控;3)维度可调,易暴露较大的比表面积和形成层次孔结构;4)耦合石墨烯的高导电性与特定材料的高活性,可协同提升ECR催化性能。本文评述了石墨烯基材料在ECR中的研究进展,详述了石墨烯基电催化剂的构筑方法,探讨并梳理了石墨烯的点/线缺陷、表面官能团、掺杂原子构型、金属单原子种类、材料表界面性质等与ECR性能之间的本征构效关系。最后展望了石墨烯基催化剂在ECR领域中的挑战和未来发展。
Article
Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction
Xiaoxiong Huang, Yingjie Ma, Linjie Zhi
2022, 38(2): 2011050-0  doi: 10.3866/PKU.WHXB202011050
[摘要]  (107) [HTML全文] (107) [PDF 2315KB] (107)
摘要:
The gradual increase of CO2 concentration in the atmosphere is believed to have a profound impact on the global climate and environment. To address this issue, strategies toward effective CO2 conversion have been developed. As one of the most available strategies, the CO2 electrochemical reduction approach is particularly attractive because the required energy can be supplied from renewable sources such as solar energy. Electrochemical reduction of CO2 to chemical feedstocks offers a promising strategy for mitigating CO2 emissions from anthropogenic activities; however, a critical challenge for this approach is to develop effective electrocatalysts with ultrahigh activity and selectivity. Herein, we report the facile synthesis of a highly efficient and stable atomically isolated nickel catalyst supported by ultrathin nitrogenated carbon nanosheets (Ni-N-C) for CO2 reduction through pyrolysis of Ni-doped metal-organic frameworks (MOFs) and dicyandiamide (DCDA). MOFs are crystalline and assembled by metal-containing nodes and organic linkers, which have a large specific surface area, tunable pore size and porosity, and highly dispersed unsaturated metal centers. Thus, Ni-doped MOFs were chosen as the precursors to endow Ni-N-C with a porous carbon structure and nickel ions. The nitrogen in Ni-N-C came from DCDA, which acts as the active site to anchor nickel ions. Because of the porous structure and numerous nitrogen sites, the Ni content of Ni-N-C was as high as 7.77% (w). There were two types of nickel ion-containing structures, including Ni+-N-C and Ni2+-N-C. The structure transformation of the Ni+-N-C species from the initial Ni2+ (Ni-MOF) was achieved by pyrolysis, and the ratio of Ni+ and Ni2+ varied with the pyrolysis temperature. Compared to other Ni-N-C prepared at other temperatures, Ni-N-C-800 contained more Ni+-N-C species that possessed the optimum *CO binding energy and thus boosted the CO desorption and evolution rate, thereby exhibiting higher CO Faradaic efficiency (FE) up to 94.6% at -0.9 V (vs. the reversible hydrogen electrode, RHE) in 0.1 mol·L-1 KHCO3. In addition, it has been found that the rate of CO formation on the Ni-N-C-800 electrode relies on the electrolyte concentration. With the optimal electrolyte concentration, the Ni-N-C-800 electrode achieved a superior Faraday efficiency of > 90% for CO over a wide potential range of -0.77 to -1.07 V (vs. RHE) and displayed a CO FE as high as 97.9% with a current density of 12.6 mA·cm-2 at -0.77 V (vs. RHE) in 0.5 mol·L-1 KHCO3. After testing at -0.77 V for 12 h, the Ni-N-C-800 electrode maintained a CO FE of approximately 95%, indicating superior long-term stability. We believe that this study will contribute to the design and synthesis of highly catalytically active atomically dispersed monovalent metal sites for metal-N-C catalysts.
Is there a Demand of Conducting Agent of Acetylene Black for Graphene-Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries?
Xuewei Liu, Ying Niu, Ruixiong Cao, Xiaohong Chen, Hongyan Shang, Huaihe Song
2022, 38(2): 2012062-0  doi: 10.3866/PKU.WHXB202012062
[摘要]  (91) [HTML全文] (91) [PDF 2987KB] (91)
摘要:
Graphene-wrapped natural spherical graphite (G/SG) composites were prepared using the encapsulation–carbonization approach. The morphology and structure of the composites were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the composites with different graphene contents as anode materials for lithium-ion batteries was investigated by various electrochemical techniques. In the absence of acetylene black (AB), the G/SG composites were found to exhibit high specific capacity with high first-cycle coulombic efficiency, good cycling stability, and high rate performance. Compared with the natural spherical graphite (SG) electrode, the G/SG composite electrode with 1% graphene exhibited higher reversible capacity after 50 cycles; this capacity performance was equal to that of the SG + 10%AB electrode. Moreover, when the addition of 2.5% graphene, the composite electrode exhibited higher initial charge capacity and reversible capacity during 50 cycles than the SG+10%AB electrode. The significant improvement of the electrochemical performance of the G/SG composite electrodes could be attributed to graphene wrapping. The graphene shell enhances the structural integrity of the natural SG particles during the lithiation and delithiation processes, further improving the cycling stability of the composites. Moreover, the bridging of adjacent SG particles allows the formation of a highly conductive network for electron transfer among SG particles. Graphene in the composites serves as not only an active material but also a conductive agent and promotes the improvement of electrochemical performance. When 5%AB was added, the reversible capacity of the 5%G/SG electrodes significantly increased from 381.1 to 404.5 mAh·g-1 after 50 cycles at a rate of 50 mA·g-1 and from 82.5 to 101.9 mAh·g-1 at 1 A·g-1, suggesting that AB addition improves the performance of the G/SG composite electrodes. AB particles connect to G/SG particles through point contact type and fill the gaps between G/SG. A more effective conductive network is synergistically formed via graphene-AB connection. Although graphene wrapping and AB addition improve the performance of natural graphite electrodes, such as through increase in electrical conductivity and enhancement of Li-storage performance, including improvement of reversible capacity, rate performance, and cycling stability, electrode density typically decreases with graphene or AB addition, which should consider the balance between the gravimetric and volumetric capacities of graphite anode materials in practical applications. These results have great significance for expanding the commercial application scope of natural graphite. Our work provides new understanding and insight into the electrochemical behavior of natural SG electrodes in lithium-ion batteries and is helpful for the fabrication of high-performance anode materials.
论文
还原氧化石墨烯改性少层剥离石墨增强石墨基钾离子电池负极稳定性
王键, 尹波, 高天, 王星懿, 李望, 洪兴星, 汪竹青, 何海勇
2022, 38(2): 2012088-0  doi: 10.3866/PKU.WHXB202012088
[摘要]  (135) [HTML全文] (135) [PDF 3327KB] (135)
摘要:
钾在石墨中嵌入电位较低,因此石墨负极可使钾离子电池具有较高的能量密度,是一种理想的钾离子电池负极材料。然而,石墨嵌钾后的体积膨胀率高达60%,导致钾离子电池的循环稳定性较差。此外,钾嵌入石墨层间的动力学过程缓慢,制约了钾离子电池倍率性能的提升。在本工作中,我们用还原氧化石墨烯(rGO)包覆剥离石墨(EG),得到一种具有协同效应的层状复合材料。一方面,以少层的EG代替石墨可以减少由于钾的嵌入/脱嵌所引起的体积膨胀和内部应力;另一方面,外层rGO可以避免EG的堆叠,这有利于加速动力学过程并在钾化/去钾化过程中稳定结构。当复合材料所用EG和GO的质量比为1 : 1时,其性能达到最优,在50 mA·g-1的电流密度下能够提供443 mAh·g-1的比容量;在电流密度为800 mA·g-1时,比容量为190 mAh·g-1,保持率为42.9%。相同测试条件下,纯EG和rGO的容量保持率仅为14.2%和27.2%。测试结果说明EG-1/rGO-1复合材料在比容量和倍率性能两个方面得到了提升。
前言
石墨烯的功能与应用——规模制备和能源相关应用
王斌, 智林杰
2022, 38(2): 2103060-0  doi: 10.3866/PKU.WHXB202103060
[摘要]  (88) [HTML全文] (88) [PDF 296KB] (88)
摘要:

编委会

发布时间:


《物理化学学报》第4届编委会

(按拼音排序)

名誉主编

唐有祺

北京大学

顾问编委

包信和

中国科学院大连化学物理研究所

段雪

北京化工大学

付贤智

福州大学

侯建国

中国科学技术大学

黄维

南京工业大学

LIEBER Charles M.

Harvard University

田中群

厦门大学

万立骏

中国科学院化学研究所

吴云东

北京大学

谢晓亮

Harvard University, 北京大学

杨伟涛

 Duke University

姚建年

中国科学院化学研究所

赵新生

北京大学

主编

刘忠范

北京大学

副主编

韩布兴

中国科学院化学研究所

刘鸣华

国家纳米科学中心

申文杰

中国科学院大连化学物理研究所

吴凯

北京大学

杨金龙

中国科学技术大学

庄林

武汉大学

迟力峰

苏州大学

编委

曹勇

复旦大学

陈经广

University of Delaware

陈军

南开大学

崔屹

Stanford University

邓风

中国科学院武汉物理与数学研究所

邓友全

中国科学院兰州化学物理研究所

樊卫斌

中国科学院山西煤炭化学研究所

房喻

陕西师范大学

付红兵

中国科学院化学研究所

傅强

中国科学院大连化学物理研究所

高毅勤

北京大学

郭林

北京航空航天大学

郝京诚

山东大学

侯文华

南京大学

金荣超

Carnegie Mellon University

来鲁华

北京大学

李朝军

McGill University

李隽

清华大学

李象远

四川大学

梁万珍

厦门大学

刘海超

北京大学

刘洪来

华东理工大学

刘述斌

University of North Carolina

刘义

武汉大学

刘志敏

中国科学院化学研究所

罗小民

中国科学院上海药物研究所

马晶

南京大学

孟庆波

中国科学院物理研究所

邵翔

中国科学技术大学

孙俊奇

吉林大学

谭蔚泓

湖南大学

唐智勇

国家纳米科学中心

王键吉

河南师范大学

王鹏

中国科学院长春应用化学研究所

王心晨

福州大学

王永锋

北京大学

魏子栋

重庆大学

翁羽翔

中国科学院物理研究所

吴鹏

华东师范大学

夏永姚

复旦大学

许国勤

National University of Singapore

杨俊林

国家自然科学基金委员会

余家国

武汉理工大学

尉志武

清华大学

占肖卫

北京大学

张东辉

中国科学院大连化学物理研究所

张浩力

兰州大学

张锦

北京大学

章俊良

上海交通大学

周永贵

中国科学院大连化学物理研究所

联系我们

发布时间: 2018-05-02


编辑部工作人员联系方式
 

张小娟
主任
010-62756388
黄路
编辑
010-62751724
欧阳贱华
编辑
010-62751721
於秀芝
编辑
010-62751724
熊英
编辑
010-62751724
周虹
技术编辑
010-62751724

 

通讯地址:北京市北京大学化学学院物理化学学报编辑部

邮政编码:100871

 

发布日期:2009-06-24 浏览: