
Citation: Jun Huang, Pengfei Nie, Yongchao Lu, Jiayang Li, Yiwen Wang, Jianyun Liu. Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization[J]. Acta Physico-Chimica Sinica, 2025, 41(7): 100066. doi: 10.1016/j.actphy.2025.100066

丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子
English
Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization

-
Key words:
- Self-supporting
- / Carbon nanofiber
- / Capacitive deionization
- / Selective adsorption
- / Hardness ion
-
-
[1]
Ayaz, M.; Namazi, M. A.; Din, M. A. U.; Ershath, M. I. M.; Mansour, A.; Aggoune, E. -H. M. Desalination 2022, 540, 116022. doi: 10.1016/j.desal.2022.116022
-
[2]
Egbueri, J. C. Environ. Sci. Pollut. Res. Int. 2023, 30 (22), 61626. doi: 10.1007/s11356-023-26396-5
-
[3]
Gitis, V.; Hankins, N. J. Water Process Eng. 2018, 25, 34. doi: 10.1016/j.jwpe.2018.06.003
-
[4]
Wu, Q.; Liang, D.; Lu, S.; Wang, H.; Xiang, Y.; Aurbach, D.; Avraham, E.; Cohen, I. Desalination 2022, 542, 116043. doi: 10.1016/j.desal.2022.116043
-
[5]
Alaei Shahmirzadi, M. A.; Hosseini, S. S.; Luo, J.; Ortiz, I. J. Environ. Manage. 2018, 215, 324. doi: 10.1016/j.jenvman.2018.03.040
-
[6]
Dou, W.; Zhou, Z.; Jiang, L. M.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. J. Environ. Manage. 2017, 196, 518. doi: 10.1016/j.jenvman.2017.03.054
-
[7]
Afsari, M.; Shon, H. K.; Tijing, L. D. Adv. Colloid Interface Sci. 2021, 289, 102362. doi: 10.1016/j.cis.2021.102362
-
[8]
熊岳城, 于飞, 马杰. 物理化学学报, 2022, 38 (5), 2006037. doi: 10.3866/PKU.WHXB202006037Xiong, Y.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2022, 38 (5), 2006037 doi: 10.3866/PKU.WHXB202006037
-
[9]
王雷, 于飞, 马杰. 物理化学学报, 2017, 33 (7), 1338. . doi: 10.3866/PKU.WHXB201704113Wang, L.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2017, 33 (7), 1338. doi: 10.3866/PKU.WHXB201704113
-
[10]
Sivasubramanian, P.; Kumar, M.; Kirankumar, V. S.; Samuel, M. S.; Dong, C. -D.; Chang, J. -H. Desalination 2023, 559, 116652. doi: 10.1016/j.desal.2023.116652
-
[11]
Zhao, X.; He, Z.; Li, M.; He, C.; Xu, Y.; Wang, Y.; Ma, J.; Yang, H. Y. Desalination 2025, 597, 118377. doi: 10.1016/j.desal.2024.118377
-
[12]
Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater Sci. 2013, 58 (8), 1388. doi: 10.1016/j.pmatsci.2013.03.005
-
[13]
Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Water Res. 2019, 150, 225. doi: 10.1016/j.watres.2018.11.064
-
[14]
卢淼, 刘建允, 程健, 王世平, 杨健茂. 物理化学学报, 2014, 30 (12), 2263. doi: 10.3866/PKU.WHXB201410141Lu, M.; Liu, J. Y.; Cheng, J.; Wang, S. P.; Yang, J. M. Acta Phys. Chim. Sin. 2014, 30 (12), 2263. doi: 10.3866/PKU.WHXB201410141
-
[15]
Wang, D.; Zhang, Y.; Dong, H.; Chen, H.; SenGupta, A. Environ. Sci. Water Res. Technol. 2024, 10 (6), 1319. doi: 10.1039/d4ew00125g
-
[16]
Sharma, V.; Mishra, S.; raj, S. K.; Upadhyay, P.; Kulshrestha, V. Colloids Surf. A 2023, 676, 132064. doi: 10.1016/j.colsurfa.2023.132064
-
[17]
Li, J.; Corma, A.; Yu, J. Chem. Soc. Rev. 2015, 44 (20), 7112. doi: 10.1039/c5cs00023h
-
[18]
Gao, S.; Wang, S.; Sun, Y.; Wang, J.; Hu, P.; Shang, J.; Ma, Z.; Liang, Y. Renewable Energy 2023, 215, 119033. doi: 10.1016/j.renene.2023.119033
-
[19]
Nakamoto, K.; Ohshiro, M.; Kobayashi, T. J. Environ. Chem. Eng. 2017, 5 (1), 513. doi: 10.1016/j.jece.2016.12.031
-
[20]
Liu, Y.; Ma, W.; Cheng, Z.; Xu, J.; Wang, R.; Gang, X. Desalination 2013, 326, 109. doi: 10.1016/j.desal.2013.07.022
-
[21]
Kim, C.; Lee, J.; Kim, S.; Yoon, J. Desalin. Water Treat. 2016, 57 (51), 24682. doi: 10.1080/19443994.2016.1152638
-
[22]
Nie, P.; Hu, B.; Shang, X.; Xie, Z.; Huang, M.; Liu, J. Sep. Purif. Technol. 2020, 250, 117240. doi: 10.1016/j.seppur.2020.117240
-
[23]
Liu, J.; Wang, S.; Yang, J.; Liao, J.; Lu, M.; Pan, H.; An, L. Desalination 2014, 344, 446. doi: 10.1016/j.desal.2014.04.015
-
[24]
Pan, H.; Yang, J.; Wang, S.; Xiong, Z.; Cai, W.; Liu, J. J. Mater. Chem. A 2015, 3 (26), 13827. doi: 10.1039/c5ta02954f
-
[25]
Wang, R.; Hu, D.; Du, P.; Weng, X.; Tang, H.; Zhang, R.; Song, W.; Lin, S.; Huang, K.; Zhang, R.; et al. Front. Chem. 2021, 9, 812375. doi: 10.3389/fchem.2021.812375
-
[26]
Xu, Z.; Ye, J.; Pan, Y.; Liu, K.; Liu, X.; Shui, J. Energy Technol. 2022, 10 (4), 2101024. doi: 10.1002/ente.202101024
-
[27]
Zhang, H.; Xie, Z.; Wang, Y.; Shang, X.; Nie, P.; Liu, J. RSC Adv. 2017, 7 (87), 55224. doi: 10.1039/c7ra12001j
-
[28]
Nie, P.; Wang, S.; Shang, X.; Hu, B.; Huang, M.; Yang, J.; Liu, J. Desalination 2021, 520, 115340. doi: 10.1016/j.desal.2021.115340
-
[29]
Luo, M.; Chen, J.; Li, Q.; Wang, Y. Industrial & Engineering Chemistry Research 2023, 62 (22), 8744. doi: 10.1021/acs.iecr.3c00807
-
[30]
Zhou, Q.; Lv, G.; Li, H.; Hu, S.; Liu, H.; Li, L.; He, L.; Li, H.; Hu, P.; Wang, J. J. Power Sources 2024, 623, 235509. doi: 10.1016/j.jpowsour.2024.235509
-
[31]
Lankapati, H. M.; Lathiya, D. R.; Choudhary, L.; Dalai, A. K.; Maheria, K. C. ChemistrySelect 2020, 5 (3), 1193. doi: 10.1002/slct.201903715
-
[32]
Kalijadis, A.; Gavrilov, N.; Jokić, B.; Gilić, M.; Krstić, A.; Pašti, I.; Babić, B. Mater. Chem. Phys. 2020, 239, 122120. doi: 10.1016/j.matchemphys.2019.122120
-
[33]
Ajravat, K.; Rajput, S.; Brar, L. K. Diamond Relat. Mater. 2022, 129, 109373. doi: 10.1016/j.diamond.2022.109373
-
[34]
Tan, B.; Li, H.; Yuan, Q.; An, F. Mater. Today Commun. 2024, 41, 110459. doi: 10.1016/j.mtcomm.2024.110459
-
[35]
Zheng, Y.; Chen, K.; Jiang, K.; Zhang, F.; Zhu, G.; Xu, H. J. Energy Storage. 2022, 56, 105995. doi: 10.1016/j.est.2022.105995
-
[36]
Abbas, Q.; Mirzaeian, M.; Ogwu, A. A.; Mazur, M.; Gibson, D. Int. J. Hydrogen Energy 2020, 45 (25), 13586. doi: 10.1016/j.ijhydene.2018.04.099
-
[37]
Hou, C. -H.; Huang, C. -Y. Desalination 2013, 314, 124. doi: 10.1016/j.desal.2012.12.029
-
[38]
Yoon, H.; Lee, J.; Kim, S. -R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Desalination 2016, 392, 46. doi: 10.1016/j.desal.2016.03.019
-
[39]
Leong, Z. Y.; Zhang, J.; Vafakhah, S.; Ding, M.; Guo, L.; Yang, H. Y. Desalination 2021, 520, 115374. doi: 10.1016/j.desal.2021.115374
-
[40]
Xu, Y.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2020, 12 (37), 41437. doi: 10.1021/acsami.0c11233
-
[41]
Xu, Y.; Xiang, S.; Zhou, H.; Wang, G.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2021, 13 (32), 38886. doi: 10.1021/acsami.1c09996
-
[42]
Gao, F.; Du, X.; Hao, X.; Ma, X.; Chang, L.; Han, N.; Guan, G.; Tang, K. Chem. Eng. J. 2020, 380, 122413. doi: 10.1016/j.cej.2019.122413
-
[43]
Niu, Y.; Meng, K.; Ming, S.; Chen, H.; Yu, X.; Rong, J.; Li, X. Diamond Relat. Mater. 2023, 136, 109925. doi: 10.1016/j.diamond.2023.109925
-
[44]
Wang, B.; Koike, N.; Iyoki, K.; Chaikittisilp, W.; Wang, Y.; Wakihara, T.; Okubo, T. Phys. Chem. Chem. Phys. 2019, 21 (7), 4015. doi: 10.1039/c8cp06975a
-
[45]
Huyskens, C.; Helsen, J.; de Haan, A. B. Desalination 2013, 328, 8. doi: 10.1016/j.desal.2013.07.002
-
[1]
-

计量
- PDF下载量: 1
- 文章访问数: 52
- HTML全文浏览量: 7