Citation: TIAN Ren, WANG Shi-yao, LIAN Chen-shuai, WU Xu, AN Xia, XIE Xian-mei. Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1476-1485. shu

Synthesis of the hierarchical Fe-substituted porous HBeta zeolite and the exploration of its catalytic performance

  • Corresponding author: XIE Xian-mei, xxmtougao@sina.com
  • Received Date: 9 September 2019
    Revised Date: 25 October 2019

    Fund Project: the National Natural Science Foundation of China 51541210The project was supported by the National Natural Science Foundation of China (51541210), Natural Science Foundation of Shanxi Province(201701D121042)Natural Science Foundation of Shanxi Province 201701D121042

Figures(14)

  • A series of hierarchical isomorphically Fe-substituted porous beta zeolites (BEAs) was synthesised in a one-step process via soft-template approach (nFe-HBeta, n=Fe/Al) and a series of Ni-based catalysts (10Ni/nFe-HBeta) was prepared by equal volume impregnation. The results showed that the nFe-HBeta zeolites possessed a sheet-like structure with a high crystallinity and numerous porous channels. The introduction of the heterogeneous iron atoms could reduce the degree of order of the mesoporous phase and decrease the size of the zeolite particles and the number of moderate and strong acidic sites. For the 10Ni/nFe-HBeta catalyst, a synergistic effect existed between the framework iron and NiO species, which could enhance the interaction between the active Ni and HBeta support, increase the dispersion of the active metal Ni, and reduce the NiO particle size. In the ethanol steam reforming (ESR) reaction, Fe introduction could inhibit the ethanol dehydration reaction through the shielding of acidic sites and could promote the steam reforming reaction of CO and CH4, effectively improving the H2 selectivity. Among the Fe-containing catalysts, 10Ni/0.15Fe-HBeta showed a H2 selectivity of up to 72.15% and an ethanol conversion rate of 99.6% at 500 ℃, while the amount of coke deposition was only 4.3% after a 12 h reaction.
  • 加载中
    1. [1]

      LI D, ZENG L, LI X Y, WANG X, MA H Y, ASSABUMRUNGRAT S, GONG J L. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Appl Catal B:Environ, 2015,176:532-541.  

    2. [2]

      VIZCAÍNO A J, CARRERO A, CALLES J A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg[J]. Fuel Process Technol, 2016,146:99-109. doi: 10.1016/j.fuproc.2016.02.020

    3. [3]

      LI Bao-ru, YIN Xue-mei, WU Xu, AN Xia, XIE Xian-mei. Study on hydrogen production by steam reforming of ethanol over Ni-Fe/montmorillonite catalyst[J]. J Fuel Chem Technol, 2016,44(8):993-1000. doi: 10.3969/j.issn.0253-2409.2016.08.014 

    4. [4]

      GOICOECHEA S, KRALEVA E, SOKOLOV S, SCHNEIDER M, POHL M, KOCKMANN N, EHRICH H. Support effect on structure and performance of Co and Ni catalysts for steam reforming of acetic acid[J]. Appl Catal A:Gen, 2016,514:182-191. doi: 10.1016/j.apcata.2015.12.025

    5. [5]

      BILAL M, JACKSON S D. Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts:The effect of impurities on selectivity and catalyst deactivation[J]. Appl Catal A:Gen, 2017,529:98-107. doi: 10.1016/j.apcata.2016.10.020

    6. [6]

      WANG Y J, YANG X X, WANG Y H. Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production[J]. In J Hydrogen Energy, 2016,41(40):17846-17857. doi: 10.1016/j.ijhydene.2016.07.258

    7. [7]

      LIU B Y, ZHENG L M, ZHU Z H, LI C, XI H X, QIAN Y. Hierarchically structured Beta zeolites with intercrystal mesopores and the improved catalytic properties[J]. Appl Catal A:Gen, 2014,470:412-419. doi: 10.1016/j.apcata.2013.11.015

    8. [8]

      LIU B Y, DUAN Q Q, LI C, ZHU Z H, XI H X, QIAN Y. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure[J]. New J Chem, 2014,38(9):4380-4387. doi: 10.1039/C4NJ00756E

    9. [9]

      LIU H, ZHANG S, XIE S J, ZHANG W S, XIN W J, LIU S L, XU L Y. Synthesis, characterization, and catalytic performance of hierarchical ZSM-11 zeolite synthesized via dual-template route[J]. Chin J Catal, 2018,39(1):167-180. doi: 10.1016/S1872-2067(17)62984-X

    10. [10]

      ZHANG X F, ZHANG K, ZHANG X G, FENG Y, YAO J F. Controlled synthesis of hierarchical beta zeolite through design template to enhance gas-phase beckmann rearrangement performance[J]. Microporous Mesoporous Mater, 2018,272:202-208. doi: 10.1016/j.micromeso.2018.06.034

    11. [11]

      PARLETT C M A, AYDIN A, DURNDELL L J, FRATTINI L, ISAACS M A, LEE A F, LIU X T, OLIVI L, TROFIMOVAITE R, WILSON K, WU C F. Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming[J]. Catal Commun, 2017,91:76-79. doi: 10.1016/j.catcom.2016.12.021

    12. [12]

      HOU T F, ZHANG S Y, CHEN Y D, WANG D Z, CAI W J. Hydrogen production from ethanol reforming:Catalysts and reaction mechanism[J]. Renewable Sustainable Energy Rev, 2015,44:132-148. doi: 10.1016/j.rser.2014.12.023

    13. [13]

      WANG S Y, HE B, TIAN R, SUN C, DAI R, LI X, WU X, AN X, XIE X M. Ni-hierarchical beta zeolite catalysts were applied to ethanol steam reforming:Effect of sol gel method on loading Ni and the role of hierarchical structure[J]. Mol Catal, 2018,453:64-73. doi: 10.1016/j.mcat.2018.04.034

    14. [14]

      KUMAR N, LINDFORS L E, BYGGNINGSBACKA R. Synthesis and characterization of H-ZSM-22, Zn-H-ZSM-22 and Ga-H-ZSM-22 zeolite catalysts and their catalytic activity in the aromatization of n-butane[J]. Appl Catal A:Gen, 1996,139(1/2):189-199.  

    15. [15]

      BAECK S H, LEE W Y. Skeletal isomerization of 1-butene to isobutene over Mg-ZSM-22[J]. Appl Catal A:Gen, 1997,164(1/2):291-301.  

    16. [16]

      XIAO Zhi-wen, HE Hong-yun. Synthesis, characterization and catalytic performance of double heteroatom Fe-V-β zeolite[J]. Chin J Catal, 2010,31(6):705-710.  

    17. [17]

      SONG S, WU G J, DAI W L, GUAN N J, LI L D. Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia[J]. Catal Sci Technol, 2016,6(23):8325-8335. doi: 10.1039/C6CY02124G

    18. [18]

      ZHANG Y H, GAO F, WAN H Q, WU C, KONG Y, WU X C, ZHAO B, DONG L, CHEN Y. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation[J]. Microporous Mesoporous Mater, 2008,113(1/3):393-401.  

    19. [19]

      SIG K Y, AHN W S. Isomorphous substitution of Fe3- in zeolite LTL[J]. Microporous Mater, 1997,9(3/4):131-140.

    20. [20]

      INUI T, MATSUDA H, YAMASE O, NAGATA H, FUKUDA K, UKAWA T, MIYAMOTO A. Highly selective synthesis of light olefins from methanol on a novel Fe-silicate[J]. J Catal, 1986,98(2):491-501.  

    21. [21]

      LIU S Y, REN J, ZHU S J, ZHANG H K, LV E, XU J, LI Y F. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal, 2015,330:485-496. doi: 10.1016/j.jcat.2015.07.027

    22. [22]

      JIANG X, SU X F, BAI X F, LI Y Z, YANG L, ZHANG K, ZHANG Y, LIU Y, WU W. Conversion of methanol to light olefins over nanosized[Fe, Al] ZSM-5 zeolites:Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater, 2018,263:243-250. doi: 10.1016/j.micromeso.2017.12.029

    23. [23]

      KOEKKOEK A J J, XIN H C, YANG Q H, LI C, HENSEN E J M. Hierarchically structured Fe/ZSM-5 as catalysts for the oxidation of benzene to phenol[J]. Microporous Mesoporous Mater, 2011,145(1/3):172-181.  

    24. [24]

      YUE Y Y, LIU H Y, YUAN P, YU C Z, BAO X J. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3[J]. Sci Rep-UK, 2015,59270. doi: 10.1038/srep09270

    25. [25]

      LI J Q, MIAO P J, LI Z, HE T, HAN D Z, WU J L, WANG Z Q, WU J H. Hydrothermal synthesis of nanocrystalline H[Fe, Al] ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energy Convers Manage, 2015,93:259-266. doi: 10.1016/j.enconman.2015.01.031

    26. [26]

      SUN Hui-yong, WU Dong. Synthesis and characterization of Heteroatom Fe-ZSM-5 molecular sieve[J]. J Fuel Chem Technol, 1999,27(1):7-10.  

    27. [27]

      NICHELE V, SIGNORETTO M, PINNA F, GHEDINI E, COMPAGNONI M, ROSSETTI I, CRUCIANI G, MICHELE A D. Bimetallic Ni-Cu catalysts for the low-temperature ethanol steam reforming:Importance of metal-support interactions[J]. Catal Lett, 2015,145(2):549-558.

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(13)
  • Abstract views(1002)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return