Citation: LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1112-1121. shu

Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content

  • Corresponding author: QING Shao-jun, qingshaojun@sxicc.ac.cn GAO Zhi-xian, gaozx@lnpu.edu.cn
  • Received Date: 6 August 2020
    Revised Date: 27 August 2020

    Fund Project: DNL Cooperation Fund DNL201908Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi 2019L0880the National Natural Science Foundation of China 21673270Ph. D. Research Funding of Jinzhong University 2019The project was supported by the National Natural Science Foundation of China (21673270), Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (2019L0880), Ph. D. Research Funding of Jinzhong University (2019) and DNL Cooperation Fund (DNL201908)

Figures(11)

  • Cu-Ni-Al ternary spinel solid solution catalysts with different Al content are prepared by the solid-phase ball milling method. The characterizations with XRD, H2-TPR, BET and XPS, and catalytic performance testing are carried out to study the effects of Al content on the physicochemical properties of the Cu-Ni-Al spinels and their sustained release catalytic performances in methanol steam reforming for hydrogen production. Characterization results show a significant increase in the specific surface area and pore volume of the catalysts with increasing the Al content (Al = 2, 3, 4) at a constant Cu/Ni molar ratio of 0.95:0.05. At the same time, both the cell parameters and crystallite sizes of Cu-Ni-Al spinel solid solutions decrease, and the catalysts become difficult to be reduced. Furthermore, the content of spinel Ni2+ increases slightly while the spinel Cu2+ decreases significantly, leading to a declined total content of spinel Cu2+ plus Ni2+. The results also indicate that the presence of Ni2+ inhibits the formation of spinel Cu2+. Surface analysis results show that the increase of Al content transforms the catalyst surface composition from Cu-rich to Al-rich, and the surface spinel Cu2+ decreases, but it is still higher than the spinel bulk. The catalyst testing results show that as the Al content in the catalysts increases, the initial activity increases notably, and the CO selectivity decreases, but too much Al results in an inferior catalytic stability. In general, the catalyst with an Al = 3 shows a better catalytic performance in terms of activity and stability. The results of this paper demonstrate that there is an optimal Al content for the Cu-Ni-Al spinel solid solutions used as the sustained release catalysts, playing a crucial role in obtaining high catalytic stability.
  • 加载中
    1. [1]

      FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019,45(10):15-21.  

    2. [2]

      FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185

    3. [3]

      MATSUKAT M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988,17(5):761-764. doi: 10.1246/cl.1988.761

    4. [4]

      FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009,10(14):1800-1803. doi: 10.1016/j.catcom.2009.06.001

    5. [5]

      MAITI S, DAS D, PAL K, LLORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019,570:73-83. doi: 10.1016/j.apcata.2018.11.011

    6. [6]

      HWANG B-Y, SAKTHINATHAN S, CHIU T-W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. Int J Hydrogen Energy, 2019,44(5):2848-2856. doi: 10.1016/j.ijhydene.2018.12.052

    7. [7]

      SICKAFUS K E, WILLS J M. Structure of spinel[J]. J Am Ceram Soc, 1999,82(12):3279-3292.

    8. [8]

      XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014,53(44):11886-11889. doi: 10.1002/anie.201405213

    9. [9]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018,10(24):5698-5706. doi: 10.1002/cctc.201801472

    10. [10]

      LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017,7(21):5069-5078. doi: 10.1039/C7CY01236E

    11. [11]

      LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol, 2020,48(3):338-348.  

    12. [12]

      QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017,45(12):1481-1488. doi: 10.1016/S1872-5813(17)30065-8

    13. [13]

      QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018,54(86):12242-12245. doi: 10.1039/C8CC06600K

    14. [14]

      HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, Qin Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019,45(1):477-489.

    15. [15]

      QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018,46(10):1210-1217.  

    16. [16]

      HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(ii) in a Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol, 2019,9(11):2993-3001. doi: 10.1039/C9CY00563C

    17. [17]

      HILL M R, BASTOW T J, CELOTTO S, HILL A J. Integrated study of the calcination cycle from gibbsite to corundum[J]. Chem Mater, 2007,19:2877-2883. doi: 10.1021/cm070078f

    18. [18]

      MILLER M E, MISTURE S T. Idealizing γ-Al2O3:In situ determination of nonstoichiometric spinel defect structure[J]. J Phys Chem C, 2010,114:13039-13046. doi: 10.1021/jp102759y

    19. [19]

      RYNKOWSKI J M, PARYJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts[J]. Appl Catal A:Gen, 1993,106:73-82. doi: 10.1016/0926-860X(93)80156-K

    20. [20]

      MORETTI G, FIERRO G, JACONO M L, PORTA P. Characterization of CuO-ZnO catalysts by X-ray photoelectron spectroscopy:Precursors, calcined and reduced samples[J]. Surf Interface Anal, 1989,14(6/7):325-336.

    21. [21]

      FIGUEIREDO R T, MARTÍNEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998,178:146-152. doi: 10.1006/jcat.1998.2106

    22. [22]

      BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, BARANOWSKI C J, SCHOUWINK P, RÖTHLISBERGER U, LUTERBACHER J S, KRÖCHER O. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Appl Catal B:Environ, 2020,266(118669):1-8.

    23. [23]

      ERTL G, HIERL R, KNÖZINGER H, THIELE N, URBACH H P. XPS study of copper aluminate catalysts[J]. Appl Surf Sci, 1980,5:49-64. doi: 10.1016/0378-5963(80)90117-8

    24. [24]

      WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal, 1981,3(5):211-225. doi: 10.1002/sia.740030506

    25. [25]

      SHIMIZU K-I, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000,2(10):2435-2439. doi: 10.1039/b000943l

    26. [26]

      NG K T, HERCULE D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80:2094-2102. doi: 10.1021/j100560a009

    27. [27]

      MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000,152:157-165. doi: 10.1016/S1381-1169(99)00282-4

    28. [28]

      FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973,35:3009-3014. doi: 10.1016/0022-1902(73)80531-7

    29. [29]

      LATHE C, GUSE W, SAALFELD H, HAMBURG , FREIMANN S, RAHMAN S H. Interpretation of σ-Al2O3 real structure by means of X-ray investigations and the videographic method[J]. N Jb Miner Abh, 1999,174:293-304.

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    18. [18]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(7)
  • Abstract views(1621)
  • HTML views(266)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return