Citation: YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 466-475. shu

Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation

  • Corresponding author: ZHOU An-ning, psu564@139.com
  • Received Date: 30 December 2019
    Revised Date: 26 March 2020

    Fund Project: the Shaanxi Key Industry Innovation Chain Industrial Field Project 2017ZDCXL-GY-10-01-02The project was supported by the Shaanxi Key Industry Innovation Chain Industrial Field Project (2017ZDCXL-GY-10-01-02)

Figures(10)

  • CeO2 supports with different morphologies (including spherical CeO2-S, bud-shaped CeO2-F, and polyhedral CeO2-P) were synthesized and the supported Ni/CeO2 catalysts were prepared by ammonia-water coordination impregnation method; the effect of CeO2 morphology on the catalytic performance of Ni/CeO2 in CO methanation was then investigated. The results indicate that CeO2-S, CeO2-F, and CeO2-P supports are rather different in the exposed crystal planes and oxygen vacancies, which have a significant effect on the catalytic performance of Ni/CeO2 in CO methanation. In particular, CeO2-S has the most oxygen vacancies; for CO methanation over the Ni/CeO2-S catalyst, the conversion of CO and selectivity to CH4 at 350 ℃ reach 99.19% and 88.88%, respectively. After 10 h thermal stability test, the Ni/CeO2-S catalyst displays lowest carbon deposit (2.5%); the selectivity to CH4 over the Ni/CeO2-S catalyst remains above 80%, which is 1.3 times of that over Ni/CeO2-F and 17.6 times of that over Ni/CeO2-P. The excellent catalytic performance of Ni/CeO2-S may be ascribed to that CeO2-S support has large surface area and mainly exposes the [111] crystal plane with a large amount of oxygen vacancies, which can enhance the interaction between the support and the active center and alleviate the carbon deposition.
  • 加载中
    1. [1]

      YANG X Z, WANG X, GAO G J, WENDURIMA , LIU E M, SHI Q Q, ZHANG J N, HAN C H, WANG J, LU H L, LIU J, TONG M. Nickel on a macro-mesoporous Al2O3@ZrO2 core/shell nanocomposite as a novel catalyst for CO methanation[J]. Int J Hydrogen Energy, 2013,38(32):13926-13937. doi: 10.1016/j.ijhydene.2013.08.083

    2. [2]

      BOESCH F T. Synthesis of reliable networks:A survey[J]. IEEE Trans Reliab, 2007,35(3):240-246.  

    3. [3]

      GALLETTI C, SPECCHIA S, SARACCO G, SPECCHIA V. Co-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM-FC applications[J]. Chem Eng Sci, 2008,65(1):590-596.  

    4. [4]

      TRIMM D, ILSENÖNSAN Z. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles[J]. Catal Rev, 2000,43(1/2):31-84.  

    5. [5]

      LI Mao-hua, YANG Bo, LU Yi, LIU Yu-mei. Research advance in methanation catalysts for synthetic natural gas and their catalytic mechanisms[J]. Ind Catal, 2014,22(1):10-24. doi: 10.3969/j.issn.1008-1143.2014.01.002

    6. [6]

      AHMAD ZAMANI AB HALIM, RUSMIDAH ALI, WAN AZELEE WAN ABU BAKAR. CO2/H2 methanation over M*/Mn/Fe-Al2O3 (M*:Pd, Rh, and Ru) catalysts in natural gas; optimization by response surface methodology-central composite design[J]. Clean Technol Environ, 2015,17(3):627-636. doi: 10.1007/s10098-014-0814-8

    7. [7]

      LI Chun-qi. Preparation of a novel catalyst of La2O3-ZrO2-Ni/Al2O3 and its performance in syngas methanation[J]. Chem Ind Eng Prog, 2019,38(6):2776-2783.  

    8. [8]

      WANG Hui, ZHANG Jun-feng, BAI Yun-xing, WANG Wen-feng, TAN Yi-sheng, HAN Yi-zhuo. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. J Fuel Chem Technol, 2016,44(5):548-556. doi: 10.3969/j.issn.0253-2409.2016.05.006 

    9. [9]

      LE T A, KANG J K, PARK E D. CO and CO2 methanation over Ni/SiC and Ni/SiO2 catalysts[J]. Top Catal, 2018,61(15/17):1537-1544.  

    10. [10]

      HAN Y, WEN B, ZHU M Y, DAI B. Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst[J]. J Rare Earth, 2018,36(4):367-373.  

    11. [11]

      ZHOU Ting, GUO Fang, XU Jun-qiang, CHEN Zhi, LI Jun, LIU Qi. Research progress in the Ni-based molecular sieve catalysts for the methanation of carbon dioxide[J]. J Funct Mater, 2017,48(6):6029-6033.  

    12. [12]

      LIN Y, ZHU Y, PAN X, BAO X. Modulating the methanation activity of Ni by the crystal phase of TiO2[J]. Catal Sci Technol, 2017,7.  

    13. [13]

      LIU Q, LIAO L, LIU Z, DONG X. Effect of ZrO2 crystalline phase on the performance of Ni-B/ZrO2 catalyst for the CO selective methanation[J]. Chin J Chem Eng, 2011,19(3):434-438.  

    14. [14]

      ZYRYANOVA M M, SNYTNIKOV P V, GULYAEV R V, AMOSOV Y I, BORONIN A I, SOBYANIN V A. Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas[J]. Chem Eng J, 2014,238:189-197. doi: 10.1016/j.cej.2013.07.034

    15. [15]

      ZHANG X, RUI N, JIA X, HU X, LIU C. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chin J Catal, 2019,40(4):495-503. doi: 10.1016/S1872-2067(19)63289-4

    16. [16]

      WANG J B, TAI Y L, DOW W P, HUANG T J. Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2001,218(1/2):69-79.  

    17. [17]

      ODEDAIRO T, CHEN J, ZHU Z. Metal-support interface of a novel Ni-CeO2 catalyst for dry reforming of methane[J]. Catal Commun, 2013,31(Complete):25-31.  

    18. [18]

      ZHANG Tao, ZHANG Ya-wen. Research advances on strong metal-support interactions at metal-oxide interfaces and their roles in regulating catalytic properties of noble metal-ceria supported catalysts[J]. J Rare Earth, 2014,32(2):129-142.  

    19. [19]

      MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005,109(51):24380-24385. doi: 10.1021/jp055584b

    20. [20]

      LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, BAI Jin, CHEN Lin, LIU Dao sheng. Effect of CeO2 morphology on the performance of CuO/CeO2 catalysts for methanol steam reforming[J]. Fine Chem, 2018,35(12):71-77+112.  

    21. [21]

      LIU Hao-wen, LIU He-fen, YUE Qi, HAN Xiao-yan. Microwave synthesis of butterfly-type superfine CeO2 and its properties[J]. J South-Cent Univ Natl (Nat Sci Ed), 2016,35(3):17-20.  

    22. [22]

      LE T A, KIM M S, LEE S H, KIM T W, PARK E D. CO and CO2 methanation over supported Ni catalysts[J]. Catal Today, 2016,293(4):1-7.  

    23. [23]

      SHAN W, LUO M, YING P, SHEN W, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A:Gen, 2003,246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2

    24. [24]

      WANG L H, LIU H, LIU Y, CHEN Y, YANG S Q. Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction[J]. J Rare Earth, 2013,31969. doi: 10.1016/S1002-0721(13)60014-9

    25. [25]

      TAN H Y, WANG J, YU S Z, ZHOU K B. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation[J]. Environ Sci Technol, 2015,49(14):8675-82. doi: 10.1021/acs.est.5b01264

    26. [26]

      GROSVENOR A P, BIESINGER M C, SMART R S C, MCINTYRE N S. New interpretations of XPS spectra of nickel metal and oxides[J]. Surf Sci, 2006,600(9):1771-1779. doi: 10.1016/j.susc.2006.01.041

    27. [27]

      ZHANG S, HUANG Z Q, MA Y, GAO W, LI J, CAO F. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2[J]. Nat Commun, 2017,815266. doi: 10.1038/ncomms15266

    28. [28]

      HENDERSON M A, PERKINS C L, ENGELHARD M H, THEVUTHASN S, PEDEN C H F. Redox properties of water on the oxidized and reduced surfaces of CeO2(111)[J]. Surf Sci, 2003,526(1):1-18.  

    29. [29]

      MCCARTY J G, WISE H. Hydrogenation of surface carbon on alumina-supported nickel[J]. J Catal, 1979,57(3):406-416. doi: 10.1016/0021-9517(79)90007-1

    30. [30]

      YANG Xia, TIAN Da-yong, SUN Shou-li, SUN Qi. Effect of CeO2 on the performance of nickel-based catalysts for methanation[J]. Ind Catal, 2014,22(2):137-143. doi: 10.3969/j.issn.1008-1143.2014.02.012

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    10. [10]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    11. [11]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    12. [12]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    13. [13]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    20. [20]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

Metrics
  • PDF Downloads(18)
  • Abstract views(1454)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return