Citation: YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Catalytic performance of silicalite-1 modified HY zeolite in the hydrolysis of cellulose[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1447-1453. shu

Catalytic performance of silicalite-1 modified HY zeolite in the hydrolysis of cellulose

  • Corresponding author: ZHOU Ming-dong, haiyanwang@lnpu.edu.cn WANG Hai-yan, haiyanwang@lnpu.edu.cn
  • Received Date: 29 June 2018
    Revised Date: 10 August 2018

    Fund Project: the National Science Foundation of China 21101085the Fushun Science & Technology Program FSKJHT 201423Talent Scientific Research Fund of LSHU 2016XJJ-063Natural Science Foundation of Liaoning Province 20170540590Natural Science Foundation of Liaoning Province 2015020196The project was supported by the National Science Foundation of China(21101085), Natural Science Foundation of Liaoning Province(2015020196, 20170540590), the Fushun Science & Technology Program(FSKJHT 201423), the Liaoning Excellent Talents Program in University(LJQ2012031) and Talent Scientific Research Fund of LSHU(2016XJJ-063)the Liaoning Excellent Talents Program in University LJQ2012031

Figures(4)

  • A core-shell composite zeolite (HY/silicalite-1) was prepared by modifying HY zeolite with silicalite-1 and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscope (TEM), N2 sorption and IR spectra of pyridine adsorption (Py-FTIR); the catalytic performance of HY/silicalite-1 composite zeolite in the hydrolysis of cellulose was then investigated in comparison with that of HY. The results show that the crystallization time has a significant influence on the crystal growth of the HY/silicalite-1 composite zeolite and the relative content of two components. With the optimum crystallization time of 16-24 h, a core-shell structure for the HY/silicalite-1 composite zeolite is achieved, where the silicalite-1 crystal grows over the surface of HY zeolite; with the prolongation of the crystallization time, the morphology of the composite zeolite changes from rough turbid to smooth and eventually to scale-like surface. The amount of Br nsted acid sites decreases first and then increases with the increase of the crystallization time, whereas the amount of Lewis acid sites changes in the opposite direction. In particular, the HY/silicalite-1 composite zeolite obtained with a crystallization time of 24 h exhibits excellent catalytic performance in the hydrolysis of cellulose to glucose; over it, the yield of glucose reaches 45.8% at 130℃, much higher than the value of 28.0% over the HY zeolite.
  • 加载中
    1. [1]

      GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources:A review[J]. Renewable Sustainable Energy Rev, 2008,12:504-517. doi: 10.1016/j.rser.2006.07.014

    2. [2]

      DENG W P, ZHANG Q H, WANG Y. Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid[J]. Sci China Chem, 2015,58(1):29-46. doi: 10.1007/s11426-014-5283-8

    3. [3]

      HERBST A, JANIAK C. Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101 CrMOF-derivatives[J]. New J Chem, 2016,40:7958-7967. doi: 10.1039/C6NJ01399F

    4. [4]

      XU Qing-li, LAN Ping, SUI Miao, ZHOU Ming, YAN Yong-jie. Progress in the hydrolysis of lignocellulosic biomass for fuel-ethanol[J]. Chem Ind Eng Prog, 2009,28(11):1906-1912.  

    5. [5]

      RINALDI R, SCHVTH F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes[J]. ChemSusChem, 2009,21:1096-1107.  

    6. [6]

      WEITKAMP J. Zeolite and catalysis[J]. Solid State Ionics, 2000,131:175-188. doi: 10.1016/S0167-2738(00)00632-9

    7. [7]

      KUNG H H, WILLIAMS B A, BABITZ S M, MILLER J T, HAAG W O. Enhanced hydrocarbon cracking activity of Y zeolites[J]. Top Catal, 2000,10(1):59-64.  

    8. [8]

      ODEDAIRO T, AL-KHATTAF S. Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length:H-ZSM-5 versus mordenite[J]. Catal Today, 2013,204(15):73-84.  

    9. [9]

      CHAO P H, TSAI S T, CHANG S L, WANG I, TSAI T C. Hexane isomerization over Hierarchical Pt/MFI Zeolite[J]. Top Catal, 2010,53(3):231-237.  

    10. [10]

      XU Tie-gang, WU Xian-jun, WANG Gang, LI Rui-feng. Light paraffin isomerizadon catalyst and its development[J]. Chem Ind Eng Prog, 2015,34(2):397-401.  

    11. [11]

      KIRUMAKKI R S, NAGARAJU N, CHARY V R K. Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM-5[J]. Appl Catal A:Gen, 2006,299(1):185-192.  

    12. [12]

      ZHOU L P, LIU Z, BAI Y Q, LU T L, YANG X M, XU J. Hydrolysis of cellobiose catalyzed by zeolites-the role of acidity and micropore structure[J]. J Energy Chem, 2016,25:141-145. doi: 10.1016/j.jechem.2015.11.010

    13. [13]

      CAI H, LI C Z, WANG A Q, XU G L, ZHANG T. Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid[J]. Appl Catal B:Environ, 2012,123/124:333-338. doi: 10.1016/j.apcatb.2012.04.041

    14. [14]

      ZHAO Bo, HU Shang-lian, GONG Dao-yong, LI Hui-ping. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chem Ind Eng Prog, 2017,36(2):555-567.  

    15. [15]

      QIAO K, LI X J, YANG Y, SUBHAN F, LIU X M, YAN Z F, XING W, QIN L H, DAI B Q, ZHANG Z H. Modification of USY zeolites with malic-nitric acid for hydrocracking[J]. Appl Petrochem Res, 2016,6(4):353-359. doi: 10.1007/s13203-015-0145-7

    16. [16]

      GOLA A, REBOURS B, MILAZZO E, LYNCH J, BENAZZI E, LACOMBE S, DELEVOYE L, FEMANDEZ C. Effect of leaching agent in the dealumination of stabilized Y zeolites[J]. Microporous Mesoporous Mater, 2000,40:73-83. doi: 10.1016/S1387-1811(00)00243-2

    17. [17]

      HOSSEINI M, ZANJANCHI M A, GHALAMI-CHOOBAR B, GOLMOJDEH H. Ultrasound-assisted dealumination of zeolite Y[J]. J Chem Sci, 2015,127(1):25-31. doi: 10.1007/s12039-014-0745-2

    18. [18]

      PUENTE G D L, SOUZA-AGUIAR E F, ZOTIN F M Z, CAMORIM V L D, SEDRAN U. Influence of different rare earth ions on hydrogen transfer over Y zeolite[J]. Appl Catal A:Gen, 2000,197(1):41-46. doi: 10.1016/S0926-860X(99)00531-1

    19. [19]

      JIN D F, ZHU B, HOU Z Y, FEI J H, LOU H, ZHENG X M. Dimethyl ether synthesis via methanol and syngas over rare earth metals modified zeolite Y and dual Cu-Mn-Zn catalysts[J]. Fuel, 2007,86(17/18):2707-2713.  

    20. [20]

      SUN Lin-ping, LI Fei, ZHANG Long. Effects of rare-earth metal oxides on the desulfurization of Y zeolite[J]. J Fuel Chem Technol, 2013,41(4):499-505. doi: 10.3969/j.issn.0253-2409.2013.04.017 

    21. [21]

      SANTOS R C R, VALENTINI A, LIMA C L, FILHO J M, OLIVEIRA A C. Modifications of an HY zeolite for n-octane hydroconversion[J]. Appl Catal A:Gen, 2011,403:65-74. doi: 10.1016/j.apcata.2011.06.011

    22. [22]

      MURAKAMI Y. Super selective catalysis by CVD zeolite[J]. Stud Surf Sci Catal, 1989,44:177-188. doi: 10.1016/S0167-2991(09)61292-1

    23. [23]

      JIA L X, SUN X Y, YE X Q, ZOU C L, GU H F, HUANG Y, NIU G X, ZHAO D Y. Core-shell composites of USY@Mesosilica:Synthesis and application in cracking heavy molecules with high liquid yield[J]. Microporous Mesoporous Mater, 2013,176:16-24. doi: 10.1016/j.micromeso.2013.03.029

    24. [24]

      LI H S, HE S C, MA K, WU Q, JIAO Q Z, SUN K N. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether:Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Appl Catal A:Gen, 2013,450:152-159. doi: 10.1016/j.apcata.2012.10.014

    25. [25]

      ZHENG J J, SUN X B. Structural features of core-shell zeolite-zeolite composite and its performance for methanol conversion into gasoline and diesel[J]. J Mater Res, 2016,31(15):2302-2316. doi: 10.1557/jmr.2016.208

    26. [26]

      MORES D, STAVITSKI E, VERKLEIJ S P, LOMBARD A, CABIAC A, ROULEAU L, PATARIN J, SIMON-MASSERON A, WECKHUYSEN B M. Core-shell H-ZSM-5/silicalite-1 composites:Brønsted acidity andcatalyst deactivation at the individual particle level[J]. Phys Chem Chem Phys, 2011,13:15985-15994. doi: 10.1039/c1cp21324e

    27. [27]

      VU D V, MIYAMOTO M, NISHIYAMA N, EGASHIRA Y, UEYAMA K. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals[J]. J Catal, 2006,243(2):389-394. doi: 10.1016/j.jcat.2006.07.028

    28. [28]

      YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. J Fuel Chem Technol, 2018,46(4):419-426. doi: 10.3969/j.issn.0253-2409.2018.04.007 

    29. [29]

      MILLER G L. Use of dinitrosaIicyIic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959,31:426-428. doi: 10.1021/ac60147a030

    30. [30]

      HUANG Y, WANG K, DONG D H, LI D, HILL M R, HILL A J, WANG H T. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes[J]. Microporous Mesoporous Mater, 2010,127:167-175. doi: 10.1016/j.micromeso.2009.07.026

    31. [31]

      SMALLOD L M, WHITE R L. Zeolite catalyzed hydrolysis in aqueous and ionic liquid media[J]. J Biomass Biofuel, 2014,1:1-7.

    32. [32]

      JEONG H, KIM Y, LEE Y, KANG M. Control of acidity on the external surface of zeolite Y for m-xylene isomerization using a mechanochemical neutralization method[J]. Korean J Chem Eng, 2009,26(2):371-376. doi: 10.1007/s11814-009-0062-5

    33. [33]

      XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry-Zeolites and Porous Materials[M]. Beijing:Science press, 2004.

    34. [34]

      QI X H, WATANABE M, AIDA T M, SMITH R L. Catalytic conversion of cellulose into 5-hydroxymethylfurfural in high yields via a two-step process[J]. Cellulose, 2011,18:1327-1333. doi: 10.1007/s10570-011-9568-1

  • 加载中
    1. [1]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    2. [2]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    15. [15]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    16. [16]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    17. [17]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

Metrics
  • PDF Downloads(8)
  • Abstract views(969)
  • HTML views(143)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return