Citation: YAN Zheng-hao, HE Run-xia, WANG Dan-dan, BAN Yan-peng, SONG Yin-min, LI Na, LIU Quan-sheng. Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 411-418. shu

Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation

  • Corresponding author: HE Run-xia, runxiahe@imut.edu.cn LIU Quan-sheng, liuqs@imut.edu.cn
  • Received Date: 12 November 2018
    Revised Date: 31 January 2019

    Fund Project: the National Natural Science Foundation of China 21676149the National Natural Science Foundation of China 21566028The project was supported by the National Natural Science Foundation of China(21566028, 21676149) and Major Basic Research Open Programs of Inner Mongolia and Program on Scientific Research Project of Inner Mongolia

Figures(7)

  • A Shengli lignite from Inner Mongolia was selected as the research object, with which the low-temperature oxidation experiments were carried out at different temperatures (200-300℃) in a fixed bed reactor. The structure of coal samples after oxidation treatment was characterized by FT-IR, Raman and XPS. The effects of low-temperature oxidation at different temperatures on the microstructure and mass change of lignite were investigated and the combustion performance was determined by TGA. The results show that the temperature has a significant influence on mass change rate of Shengli lignite during low-temperature oxidation. The mass change rate of lignite is very limited when temperature is below 220℃ and it changes obviously when the temperature is higher than 220℃. Especially at 220-230℃, the mass change rate of coal samples is changed from 5.80% (220℃) to 42.55% (230℃). The FT-IR/Raman/XPS characterization results show that the analogous benzoquinone structure forms after oxidized at 220℃, and these lead to the stretching vibration absorption peak of the aromatic C=C shift to lower wavenumber. In Raman spectra, the position of the D peak shifts, and the distance between the peaks of D and G increases. The content of C-O-and C=O on the surface of coal samples increases at oxidation temperature lower than 220℃. It is speculated that the jump of mass change rate of coal samples at 220-230℃ is mainly related to the oxidative decomposition of analogous benzoquinone structure.
  • 加载中
    1. [1]

      SONG Hong-zhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of China[D]. Beijing: China University of Geosciences, 2013.

    2. [2]

      WANG Mei-jun, FU Chun-hui, CHANG Li-ping, XIE Ke-chang. Effect of fractional step acid treatment process on the structure and pyrolysis characteristics of Ximeng brown coal[J]. J Fuel Chem Technol, 2012,40(8):906-911. doi: 10.3969/j.issn.0253-2409.2012.08.002 

    3. [3]

      BARIS K, KIZGUT S, DIDARI V. Low-temperature oxidation of some Turkish coals[J]. Fuel, 2012,93(1):423-432.  

    4. [4]

      KUCUK A, KADIOGLU Y, GULABOGLU M S. A study of spontaneous combustion characteristics of a Turkish lignite:Particle size, moisture of coal, humidity of air[J]. Combust Flame, 2003,133(3):255-261. doi: 10.1016/S0010-2180(02)00553-9

    5. [5]

      SU H T, ZHOU F B, LI J S, QI H N. Effects of oxygen supply on low-temperature oxidation of coal:A case study of Jurassic coal in Yima, China[J]. Fuel, 2017,202:446-454. doi: 10.1016/j.fuel.2017.04.055

    6. [6]

      ZHOU Pei-ran. Infrared spectroscopy study on the change of low temperature oxidation structure of coal[J]. Coal Convers, 2014,37(1):15-18. doi: 10.3969/j.issn.1004-4248.2014.01.004

    7. [7]

      LI B, CHEN G, ZHANG H, SHENG G D. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014,118(8):385-391.  

    8. [8]

      ZHOU C H, ZHANG Y L, WANG J F, XUE S, WU J M, CHANG L P. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. Int J Coal Geol, 2017,171:212-222. doi: 10.1016/j.coal.2017.01.013

    9. [9]

      QI X Y, CHEN L Z, ZHANG L B, BAI C W, XIN H H, RAO Z. In situ FT-IR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions[J]. J Energy Inst, 2018:1-10.

    10. [10]

      WANG H, DLUGOGORSKI B Z, KENNEDY E M. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures[J]. Fuel, 2002,81(15):1913-1923. doi: 10.1016/S0016-2361(02)00122-9

    11. [11]

      XUE Bing, LI Zai-feng, CHEN Xing-quan, LI Yong-xin, AGARWAL P K. Mechanism study on low temperature oxidation process of low rank coal under dry oxygen[J]. Coal Convers, 2006,29(2):12-15. doi: 10.3969/j.issn.1004-4248.2006.02.004

    12. [12]

      GE Ling-mei, XUE Han-ling, XU Jing-cai, DENG Jun, ZHANG Xin-hai. Analysis of the oxidation mechanism of reactive groups in coal molecules[J]. Coal Convers, 2001,24(3):23-28. doi: 10.3969/j.issn.1004-4248.2001.03.006

    13. [13]

      WANG Cai-ping, DENG Jun, WANG Wei-feng. FT-IR experimental study of active groups in low temperature oxidation of coal[J]. Electron World, 2012(18):74-75.

    14. [14]

      LI Tao, ZHANG Xin-hai, WU Kang-hua, WANG Nan. Research on coal low temperature oxidation with FTIR[J]. Value Eng, 2011,30(21):32-33. doi: 10.3969/j.issn.1006-4311.2011.21.022

    15. [15]

      CHU Ting-xiang, YANG Sheng-qiang, SUN Yan, SUN Jing-kai, LIU Zeng-ping. Experimental study on low temperature oxidization of coal and its infrared spectrum analysis[J]. CSSJ, 2008,18(1):171-177. doi: 10.3969/j.issn.1003-3033.2008.01.030

    16. [16]

      WANG G H, ZHOU A N. Time evolution of coal structure during low temperature air oxidation[J]. Int J Min Sci Technol, 2012,22(4):517-521. doi: 10.1016/j.ijmst.2012.01.013

    17. [17]

      QI X Y, WANG D M, XIN H H, QI G S. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures[J]. Spectr Lett, 2014,47(7):495-503. doi: 10.1080/00387010.2013.817433

    18. [18]

      FUJITSUKA H, ASHIDA R, KAWASE M, MIURA K. Examination of low-temperature oxidation of low-rank coals, aiming at understanding their self-ignition tendency[J]. Energy Fuels, 2014,28(4):2402-2407. doi: 10.1021/ef402484u

    19. [19]

      DONG Qing-nian, CHEN Xue-yi, JIN Guo-qiang, GU Yong-da. In-situ study of low temperature oxidation of lignite by infrared emission spectroscopy[J]. J Fuel Chem Technol, 1997,25(4):333-338.  

    20. [20]

      SONG Yin-min, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Microstructure evolution characteristics of Shengli lignite during combustion process[J]. J Fuel Chem Technol, 2017,45(12):1417-1423. doi: 10.3969/j.issn.0253-2409.2017.12.002 

    21. [21]

      LI Y, WANG Z H, HUANG Z Y, LIU J Z, ZHOU J H, CEN K F. Effect of pyrolysis temperature on lignite char properties and slurrying ability[J]. Fuel Process Technol, 2015,134:52-58. doi: 10.1016/j.fuproc.2015.01.007

    22. [22]

      SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. CIESC J, 2010,61:3220-3227.  

    23. [23]

      YURUM Y, ALTUNTAS N. Air oxidation of Beypazari lignite at 50℃, 100℃ and 150℃[J]. Fuel, 1998,77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2

    24. [24]

      WU Q S, LI S P. Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin[J]. J Wuhan Univ Technol, 2011,26(3):514-518. doi: 10.1007/s11595-011-0259-4

    25. [25]

      FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000,61(20):14095-14107. doi: 10.1103/PhysRevB.61.14095

    26. [26]

      FERREIRA E H M, MOUTINHO M V O, STAVALE F, LUCCHESE M M, CAPAZ R B, ACHETE C A, JORIO A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder[J]. Phys Rev B, 2010,82(12):4079-4085.  

    27. [27]

      CHEN Wang, JIAO Na, XU Liang-hua, CAO Wei-yu. Transition of sp2 hybridization structure during graphitization of carbon fiber[J]. Aerosp Mater Technol, 2013,43(5):46-48. doi: 10.3969/j.issn.1007-2330.2013.05.010

    28. [28]

      LI X J, HAYASHI J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10):1518-1525.

    29. [29]

      DATSYUK V, GUERRET-PIECOURT C, DAGREOU S, BILLON L, DUPIN J C, FLAHAUT E, PEIGNEY A, LAURENT C. Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers[J]. Carbon, 2005,43(4):873-876. doi: 10.1016/j.carbon.2004.10.052

    30. [30]

      ZHANG N, XIE J, VARADAN V. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst[J]. Smart Mater Struct, 2002,11(6):962-965. doi: 10.1088/0964-1726/11/6/318

    31. [31]

      AGO H, KUGLER T, CACIALLI F, SALANECK W R, SHAFFER M S P, WINDLE A H, FRIEND R H. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999,103(38):8116-8121. doi: 10.1021/jp991659y

    32. [32]

      CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006,34(4):389-394. doi: 10.3969/j.issn.0253-2409.2006.04.002 

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(9)
  • Abstract views(1183)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return