Citation: YAN Zheng-hao, HE Run-xia, WANG Dan-dan, BAN Yan-peng, SONG Yin-min, LI Na, LIU Quan-sheng. Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(4): 411-418. shu

Study on the transformation characteristics of microstructure in Shengli lignite during low-temperature oxidation

  • Corresponding author: HE Run-xia, runxiahe@imut.edu.cn LIU Quan-sheng, liuqs@imut.edu.cn
  • Received Date: 12 November 2018
    Revised Date: 31 January 2019

    Fund Project: the National Natural Science Foundation of China 21676149the National Natural Science Foundation of China 21566028The project was supported by the National Natural Science Foundation of China(21566028, 21676149) and Major Basic Research Open Programs of Inner Mongolia and Program on Scientific Research Project of Inner Mongolia

Figures(7)

  • A Shengli lignite from Inner Mongolia was selected as the research object, with which the low-temperature oxidation experiments were carried out at different temperatures (200-300℃) in a fixed bed reactor. The structure of coal samples after oxidation treatment was characterized by FT-IR, Raman and XPS. The effects of low-temperature oxidation at different temperatures on the microstructure and mass change of lignite were investigated and the combustion performance was determined by TGA. The results show that the temperature has a significant influence on mass change rate of Shengli lignite during low-temperature oxidation. The mass change rate of lignite is very limited when temperature is below 220℃ and it changes obviously when the temperature is higher than 220℃. Especially at 220-230℃, the mass change rate of coal samples is changed from 5.80% (220℃) to 42.55% (230℃). The FT-IR/Raman/XPS characterization results show that the analogous benzoquinone structure forms after oxidized at 220℃, and these lead to the stretching vibration absorption peak of the aromatic C=C shift to lower wavenumber. In Raman spectra, the position of the D peak shifts, and the distance between the peaks of D and G increases. The content of C-O-and C=O on the surface of coal samples increases at oxidation temperature lower than 220℃. It is speculated that the jump of mass change rate of coal samples at 220-230℃ is mainly related to the oxidative decomposition of analogous benzoquinone structure.
  • 加载中
    1. [1]

      SONG Hong-zhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of China[D]. Beijing: China University of Geosciences, 2013.

    2. [2]

      WANG Mei-jun, FU Chun-hui, CHANG Li-ping, XIE Ke-chang. Effect of fractional step acid treatment process on the structure and pyrolysis characteristics of Ximeng brown coal[J]. J Fuel Chem Technol, 2012,40(8):906-911. doi: 10.3969/j.issn.0253-2409.2012.08.002 

    3. [3]

      BARIS K, KIZGUT S, DIDARI V. Low-temperature oxidation of some Turkish coals[J]. Fuel, 2012,93(1):423-432.  

    4. [4]

      KUCUK A, KADIOGLU Y, GULABOGLU M S. A study of spontaneous combustion characteristics of a Turkish lignite:Particle size, moisture of coal, humidity of air[J]. Combust Flame, 2003,133(3):255-261. doi: 10.1016/S0010-2180(02)00553-9

    5. [5]

      SU H T, ZHOU F B, LI J S, QI H N. Effects of oxygen supply on low-temperature oxidation of coal:A case study of Jurassic coal in Yima, China[J]. Fuel, 2017,202:446-454. doi: 10.1016/j.fuel.2017.04.055

    6. [6]

      ZHOU Pei-ran. Infrared spectroscopy study on the change of low temperature oxidation structure of coal[J]. Coal Convers, 2014,37(1):15-18. doi: 10.3969/j.issn.1004-4248.2014.01.004

    7. [7]

      LI B, CHEN G, ZHANG H, SHENG G D. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014,118(8):385-391.  

    8. [8]

      ZHOU C H, ZHANG Y L, WANG J F, XUE S, WU J M, CHANG L P. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. Int J Coal Geol, 2017,171:212-222. doi: 10.1016/j.coal.2017.01.013

    9. [9]

      QI X Y, CHEN L Z, ZHANG L B, BAI C W, XIN H H, RAO Z. In situ FT-IR study on real-time changes of active groups during lignite reaction under low oxygen concentration conditions[J]. J Energy Inst, 2018:1-10.

    10. [10]

      WANG H, DLUGOGORSKI B Z, KENNEDY E M. Thermal decomposition of solid oxygenated complexes formed by coal oxidation at low temperatures[J]. Fuel, 2002,81(15):1913-1923. doi: 10.1016/S0016-2361(02)00122-9

    11. [11]

      XUE Bing, LI Zai-feng, CHEN Xing-quan, LI Yong-xin, AGARWAL P K. Mechanism study on low temperature oxidation process of low rank coal under dry oxygen[J]. Coal Convers, 2006,29(2):12-15. doi: 10.3969/j.issn.1004-4248.2006.02.004

    12. [12]

      GE Ling-mei, XUE Han-ling, XU Jing-cai, DENG Jun, ZHANG Xin-hai. Analysis of the oxidation mechanism of reactive groups in coal molecules[J]. Coal Convers, 2001,24(3):23-28. doi: 10.3969/j.issn.1004-4248.2001.03.006

    13. [13]

      WANG Cai-ping, DENG Jun, WANG Wei-feng. FT-IR experimental study of active groups in low temperature oxidation of coal[J]. Electron World, 2012(18):74-75.

    14. [14]

      LI Tao, ZHANG Xin-hai, WU Kang-hua, WANG Nan. Research on coal low temperature oxidation with FTIR[J]. Value Eng, 2011,30(21):32-33. doi: 10.3969/j.issn.1006-4311.2011.21.022

    15. [15]

      CHU Ting-xiang, YANG Sheng-qiang, SUN Yan, SUN Jing-kai, LIU Zeng-ping. Experimental study on low temperature oxidization of coal and its infrared spectrum analysis[J]. CSSJ, 2008,18(1):171-177. doi: 10.3969/j.issn.1003-3033.2008.01.030

    16. [16]

      WANG G H, ZHOU A N. Time evolution of coal structure during low temperature air oxidation[J]. Int J Min Sci Technol, 2012,22(4):517-521. doi: 10.1016/j.ijmst.2012.01.013

    17. [17]

      QI X Y, WANG D M, XIN H H, QI G S. An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures[J]. Spectr Lett, 2014,47(7):495-503. doi: 10.1080/00387010.2013.817433

    18. [18]

      FUJITSUKA H, ASHIDA R, KAWASE M, MIURA K. Examination of low-temperature oxidation of low-rank coals, aiming at understanding their self-ignition tendency[J]. Energy Fuels, 2014,28(4):2402-2407. doi: 10.1021/ef402484u

    19. [19]

      DONG Qing-nian, CHEN Xue-yi, JIN Guo-qiang, GU Yong-da. In-situ study of low temperature oxidation of lignite by infrared emission spectroscopy[J]. J Fuel Chem Technol, 1997,25(4):333-338.  

    20. [20]

      SONG Yin-min, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Microstructure evolution characteristics of Shengli lignite during combustion process[J]. J Fuel Chem Technol, 2017,45(12):1417-1423. doi: 10.3969/j.issn.0253-2409.2017.12.002 

    21. [21]

      LI Y, WANG Z H, HUANG Z Y, LIU J Z, ZHOU J H, CEN K F. Effect of pyrolysis temperature on lignite char properties and slurrying ability[J]. Fuel Process Technol, 2015,134:52-58. doi: 10.1016/j.fuproc.2015.01.007

    22. [22]

      SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. CIESC J, 2010,61:3220-3227.  

    23. [23]

      YURUM Y, ALTUNTAS N. Air oxidation of Beypazari lignite at 50℃, 100℃ and 150℃[J]. Fuel, 1998,77(15):1809-1814. doi: 10.1016/S0016-2361(98)00067-2

    24. [24]

      WU Q S, LI S P. Effect of surfactant/silica and hydrothermal time on the specific surface area of mesoporous materials from coal-measure kaolin[J]. J Wuhan Univ Technol, 2011,26(3):514-518. doi: 10.1007/s11595-011-0259-4

    25. [25]

      FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000,61(20):14095-14107. doi: 10.1103/PhysRevB.61.14095

    26. [26]

      FERREIRA E H M, MOUTINHO M V O, STAVALE F, LUCCHESE M M, CAPAZ R B, ACHETE C A, JORIO A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder[J]. Phys Rev B, 2010,82(12):4079-4085.  

    27. [27]

      CHEN Wang, JIAO Na, XU Liang-hua, CAO Wei-yu. Transition of sp2 hybridization structure during graphitization of carbon fiber[J]. Aerosp Mater Technol, 2013,43(5):46-48. doi: 10.3969/j.issn.1007-2330.2013.05.010

    28. [28]

      LI X J, HAYASHI J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10):1518-1525.

    29. [29]

      DATSYUK V, GUERRET-PIECOURT C, DAGREOU S, BILLON L, DUPIN J C, FLAHAUT E, PEIGNEY A, LAURENT C. Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers[J]. Carbon, 2005,43(4):873-876. doi: 10.1016/j.carbon.2004.10.052

    30. [30]

      ZHANG N, XIE J, VARADAN V. Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst[J]. Smart Mater Struct, 2002,11(6):962-965. doi: 10.1088/0964-1726/11/6/318

    31. [31]

      AGO H, KUGLER T, CACIALLI F, SALANECK W R, SHAFFER M S P, WINDLE A H, FRIEND R H. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999,103(38):8116-8121. doi: 10.1021/jp991659y

    32. [32]

      CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006,34(4):389-394. doi: 10.3969/j.issn.0253-2409.2006.04.002 

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    5. [5]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    6. [6]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(9)
  • Abstract views(1326)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return