Citation: MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 787-795. shu

Morphology and structure evolution of flaky char particles during CO2 gasification

  • Corresponding author: CHEN Xue-li, cxl@ecust.edu.cn
  • Received Date: 12 February 2018
    Revised Date: 29 April 2018

    Fund Project: the National Key Research and Development Project 2016YFB060040202The project was supported by the National Key Research and Development Project (2016YFB060040202).

Figures(9)

  • High temperature stage microscope was applied to observe morphology evolution of flaky char particles during gasification. Raman spectroscopy was used to analyze crystalline structures of gasification semicoke. Effect of gasification temperature (1000-1200℃) and initial equivalent diameter (1.00-1.60 mm) on morphology and structure evolution were examined. The results show that particle shrinkage in later stage of gasification is more intense than that in early stage. Within tested gasification temperature, the particle ASR (area shrinkage ratio) and VSR (volumetric shrinkage ratio) decrease with increasing temperature. The initial particle size of char has a significant effect on particle shrinkage. At 1100℃ the shrinkage trend of particle marks a turning point at initial diameter of 1.30 mm. The variation of char apparent density is dominated by carbon consumption. When the carbon conversion reaches 80%, the apparent density ratio linearly decreases below 0.4. At the same gasification temperature, with increasing carbon conversion the graphitization of char reduces first and then increases, while the amorphous carbon is opposite.
  • 加载中
    1. [1]

      AHMED I I, GUPTA A K. Particle size, porosity and temperature effects on char conversion[J]. Appl Energy, 2011,88(12):4667-4677. doi: 10.1016/j.apenergy.2011.06.001

    2. [2]

      LI Shao-feng, WU Shi-yong. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010,38(5):513-517.  

    3. [3]

      LIN Shan-jun, LI Xian-yu, DING Lu, ZHOU Zhi-jie, YU Guang-suo. Structure evolution characteristics of Inner Mongolia coal char during CO2 gasification[J]. J Fuel Chem Technol, 2016,44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001

    4. [4]

      DAI P, DENNIS J S, SCOTT S A. Using an experimentally-determined model of the evolution of pore structure for the gasification of chars by CO2[J]. Fuel, 2016,171:29-43. doi: 10.1016/j.fuel.2015.12.041

    5. [5]

      COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Pore development during gasification of South African inertinite-rich chars evaluated using small angle X-ray scattering[J]. Carbon, 2015,95:250-260. doi: 10.1016/j.carbon.2015.08.030

    6. [6]

      COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Particle size influence on the pore development of nanopores in coal gasification chars:from micron to millimeter particles[J]. Carbon, 2017,112:37-46. doi: 10.1016/j.carbon.2016.10.088

    7. [7]

      LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012,95:127-136. doi: 10.1016/j.fuproc.2011.12.006

    8. [8]

      LI T, ZHANG L, DONG L, ZHANG S, QIU P, WANG S, LI C Z. Effects of gasification temperature and atmosphere on char structural evolution and AAEM retention during the gasification of Loy Yang brown coal[J]. Fuel Process Technol, 2017,159:48-54. doi: 10.1016/j.fuproc.2017.01.022

    9. [9]

      BAI Y, WANG Y, ZHU S, LI F, XIE K. Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures[J]. Energy, 2014,74:464-470. doi: 10.1016/j.energy.2014.07.012

    10. [10]

      MERMOUD F, GOLFIER F, SALVADOR S, STEENE L V, DIRION J L. Experimental and numerical study of steam gasification of a single charcoal particle[J]. Combust Flame, 2006,145(1):59-79.

    11. [11]

      MOLINTAS H, GUPTA A K. Combustion of spherically shaped large wood char particles[J]. Fuel Process Technol, 2016,148:332-340. doi: 10.1016/j.fuproc.2016.02.029

    12. [12]

      HAUGEN N E L, TILGHMAN M B, MITCHELL R E. The conversion mode of a porous carbon particle during oxidation and gasification[J]. Combust Flame, 2014,161(2):612-619. doi: 10.1016/j.combustflame.2013.09.012

    13. [13]

      TILGHMAN M B, HAUGEN N E L, MITCHELL R E. A comprehensive char-particle gasification model adequate for entrained-flow and fluidized-bed gasifiers[J]. Energy Fuels, 2017,31:2652-2662. doi: 10.1021/acs.energyfuels.6b03241

    14. [14]

      ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. J Fuel Chem Technol, 2014,42(4):427-433.  

    15. [15]

      SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015,160:560-567. doi: 10.1016/j.fuel.2015.08.010

    16. [16]

      SHEN Z, LIANG Q, XU J, ZHANG B, HAN D, LIU H. In situ experimental study on the combustion characteristics of captured chars on the molten slag surface[J]. Combust Flame, 2016,166:333-342. doi: 10.1016/j.combustflame.2016.02.002

    17. [17]

      SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018

    18. [18]

      BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy, 2015,88:703-710. doi: 10.1016/j.energy.2015.05.100

    19. [19]

      GUIZANI C, JEGUIRIM M, GADIOU R, SANZ F J E, SALVADOR S. Biomass char gasification by H2O, CO2 and their mixture:Evolution of chemical, textural and structural properties of the chars[J]. Energy, 2016,112:133-145. doi: 10.1016/j.energy.2016.06.065

    20. [20]

      ESSENHIGH R H. Influence of initial particle density on the reaction mode of porous carbon particles[J]. Combust Flame, 1994,99(2):269-279. doi: 10.1016/0010-2180(94)90131-7

    21. [21]

      HURT R H, DUDEK D R, LONGWELL J P, SAROFIM A F. The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution[J]. Carbon, 1988,26(4):433-449. doi: 10.1016/0008-6223(88)90142-X

    22. [22]

      ESSENHIGH R H, KLIMESH H E, FÖRTSCH D. Combustion characteristics of carbon:Dependence of the zone Ⅰ-zone Ⅱ transition temperature (Tc) on particle radius[J]. Energy Fuels, 1999,13(4):826-831. doi: 10.1021/ef980241g

    23. [23]

      ALVARADO P N, CADAVID F J, SANTAMARÍA A, RUIZ W. Reactivity and structural changes of coal during its combustion in a low-oxygen environment[J]. Energy Fuels, 2016,30(11):9891-9899. doi: 10.1021/acs.energyfuels.6b01913

    24. [24]

      CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011,92(4):750-756. doi: 10.1016/j.fuproc.2010.09.006

    25. [25]

      ZHU X, SHENG C. Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO[J]. Fuel Process Technol, 2010,91(8):837-842. doi: 10.1016/j.fuproc.2009.10.015

    26. [26]

      SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007,86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029

    27. [27]

      LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015,157:97-106. doi: 10.1016/j.fuel.2015.04.025

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    13. [13]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    20. [20]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

Metrics
  • PDF Downloads(10)
  • Abstract views(1724)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return