Morphology and structure evolution of flaky char particles during CO2 gasification
- Corresponding author: CHEN Xue-li, cxl@ecust.edu.cn
Citation:
MENG De-xi, ZHANG Ke-yi, DU Hao-yu, XU Jian-liang, CHEN Xue-li. Morphology and structure evolution of flaky char particles during CO2 gasification[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(7): 787-795.
AHMED I I, GUPTA A K. Particle size, porosity and temperature effects on char conversion[J]. Appl Energy, 2011,88(12):4667-4677. doi: 10.1016/j.apenergy.2011.06.001
LI Shao-feng, WU Shi-yong. Evolvement behavior of carbon minicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010,38(5):513-517.
LIN Shan-jun, LI Xian-yu, DING Lu, ZHOU Zhi-jie, YU Guang-suo. Structure evolution characteristics of Inner Mongolia coal char during CO2 gasification[J]. J Fuel Chem Technol, 2016,44(12):1409-1415. doi: 10.3969/j.issn.0253-2409.2016.12.001
DAI P, DENNIS J S, SCOTT S A. Using an experimentally-determined model of the evolution of pore structure for the gasification of chars by CO2[J]. Fuel, 2016,171:29-43. doi: 10.1016/j.fuel.2015.12.041
COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Pore development during gasification of South African inertinite-rich chars evaluated using small angle X-ray scattering[J]. Carbon, 2015,95:250-260. doi: 10.1016/j.carbon.2015.08.030
COETZEE G H, SAKUROVS R, NEOMAGUS H W J P, MORPETH L, EVERSON R C, MATHEWS J P, BUNT J R. Particle size influence on the pore development of nanopores in coal gasification chars:from micron to millimeter particles[J]. Carbon, 2017,112:37-46. doi: 10.1016/j.carbon.2016.10.088
LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012,95:127-136. doi: 10.1016/j.fuproc.2011.12.006
LI T, ZHANG L, DONG L, ZHANG S, QIU P, WANG S, LI C Z. Effects of gasification temperature and atmosphere on char structural evolution and AAEM retention during the gasification of Loy Yang brown coal[J]. Fuel Process Technol, 2017,159:48-54. doi: 10.1016/j.fuproc.2017.01.022
BAI Y, WANG Y, ZHU S, LI F, XIE K. Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures[J]. Energy, 2014,74:464-470. doi: 10.1016/j.energy.2014.07.012
MERMOUD F, GOLFIER F, SALVADOR S, STEENE L V, DIRION J L. Experimental and numerical study of steam gasification of a single charcoal particle[J]. Combust Flame, 2006,145(1):59-79.
MOLINTAS H, GUPTA A K. Combustion of spherically shaped large wood char particles[J]. Fuel Process Technol, 2016,148:332-340. doi: 10.1016/j.fuproc.2016.02.029
HAUGEN N E L, TILGHMAN M B, MITCHELL R E. The conversion mode of a porous carbon particle during oxidation and gasification[J]. Combust Flame, 2014,161(2):612-619. doi: 10.1016/j.combustflame.2013.09.012
TILGHMAN M B, HAUGEN N E L, MITCHELL R E. A comprehensive char-particle gasification model adequate for entrained-flow and fluidized-bed gasifiers[J]. Energy Fuels, 2017,31:2652-2662. doi: 10.1021/acs.energyfuels.6b03241
ZHAO Ying-jie, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Transfer of potassium in different forms during pyrolysis of rice straw in a fixed bed reactor[J]. J Fuel Chem Technol, 2014,42(4):427-433.
SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015,160:560-567. doi: 10.1016/j.fuel.2015.08.010
SHEN Z, LIANG Q, XU J, ZHANG B, HAN D, LIU H. In situ experimental study on the combustion characteristics of captured chars on the molten slag surface[J]. Combust Flame, 2016,166:333-342. doi: 10.1016/j.combustflame.2016.02.002
SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J]. Carbon, 2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
BOURAOUI Z, JEGUIRIM M, GUIZANI C, LIMOUSY L, DUPONT C, GADIOU R. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity[J]. Energy, 2015,88:703-710. doi: 10.1016/j.energy.2015.05.100
GUIZANI C, JEGUIRIM M, GADIOU R, SANZ F J E, SALVADOR S. Biomass char gasification by H2O, CO2 and their mixture:Evolution of chemical, textural and structural properties of the chars[J]. Energy, 2016,112:133-145. doi: 10.1016/j.energy.2016.06.065
ESSENHIGH R H. Influence of initial particle density on the reaction mode of porous carbon particles[J]. Combust Flame, 1994,99(2):269-279. doi: 10.1016/0010-2180(94)90131-7
HURT R H, DUDEK D R, LONGWELL J P, SAROFIM A F. The phenomenon of gasification-induced carbon densification and its influence on pore structure evolution[J]. Carbon, 1988,26(4):433-449. doi: 10.1016/0008-6223(88)90142-X
ESSENHIGH R H, KLIMESH H E, FÖRTSCH D. Combustion characteristics of carbon:Dependence of the zone Ⅰ-zone Ⅱ transition temperature (Tc) on particle radius[J]. Energy Fuels, 1999,13(4):826-831. doi: 10.1021/ef980241g
ALVARADO P N, CADAVID F J, SANTAMARÍA A, RUIZ W. Reactivity and structural changes of coal during its combustion in a low-oxygen environment[J]. Energy Fuels, 2016,30(11):9891-9899. doi: 10.1021/acs.energyfuels.6b01913
CHABALALA V P, WAGNER N, POTGIETER-VERMAAK S. Investigation into the evolution of char structure using Raman spectroscopy in conjunction with coal petrography; Part 1[J]. Fuel Process Technol, 2011,92(4):750-756. doi: 10.1016/j.fuproc.2010.09.006
ZHU X, SHENG C. Influences of carbon structure on the reactivities of lignite char reacting with CO2 and NO[J]. Fuel Process Technol, 2010,91(8):837-842. doi: 10.1016/j.fuproc.2009.10.015
SHENG C. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007,86(15):2316-2324. doi: 10.1016/j.fuel.2007.01.029
LIU X, ZHENG Y, LIU Z, DING H, HUANG X, ZHENG C. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy[J]. Fuel, 2015,157:97-106. doi: 10.1016/j.fuel.2015.04.025
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
(a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃
(a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃
(a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃
(a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃
(a): equivalent diameter of 1.30 mm; (b): gasification temperature of 1100 ℃