Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101
- Corresponding author: ZHENG Qing-rong, zhengqr@jmu.edu.cn
Citation:
ZHAO Guo-bin, ZHENG Qing-rong, ZHANG Wei-dong, ZHANG Xuan. Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(12): 1529-1536.
ZHANG H D, DERIA P, FARHA O K, HUPP J T, SNURR R Q. A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy Environ Sci, 2015,8(5):1501-1510. doi: 10.1039/C5EE00808E
KAYAL S, SUN B, CHAKRABORTY A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)[J]. Energy, 2015,91:772-781. doi: 10.1016/j.energy.2015.08.096
WU Y, TANG D, VERPLOEGH R J, XI H X, SHOLL D S. Impacts of gas impurities from pipeline natural gas on methane storage in metal-organic frameworks during long term cycling[J]. J Phys Chem C, 2017,121(29):15735-15745. doi: 10.1021/acs.jpcc.7b03459
KUMAR K V, PRESUU K, TITIRICI M M, RODRIGUEZ-RRINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev, 2017,117(3):1796-1825. doi: 10.1021/acs.chemrev.6b00505
KONDO M, YOSHITOMI T, MATSUZAKA H, MATSUZAKA H, KITAGAWA S. Three-dimensional framework with channeling cavities for small molecules:{M2(4, 4'-bpy)3(NO3)4]·xH2O}n(M=Co, Ni, Zn)[J]. Angew Chem (Int Ed Engl), 1997,36(16):1725-1727. doi: 10.1002/anie.199717251
MA S, ZHOU H C. A metal-organic framework with entatic metal centers exhibiting high gas-adsorption affinity[J]. J Am Chem Soc, 2006,128(36):11734-11735. doi: 10.1021/ja063538z
DÜREN T, SARKISOV L, YAGHI O M, SNURR R Q. Design of new materials for methane storage[J]. Langmuir, 2004,20(7):2683-2689. doi: 10.1021/la0355500
LIANG C, SHI Z, HE C T, TAN J, ZHOU H D, ZHOU H L, LEE Y J, ZHANG Y B. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks[J]. J Am Chem Soc, 2017,139(38):13300-13303. doi: 10.1021/jacs.7b08347
FEREY C, MELLOT-DRAZNIEKS C, SERRE C, MILLANGE F, DUTOUR J, SURBLE S, MARGIOLAKI I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275
BIMBO N, PHYSICK J A, NOGUERA-DIAZ A, PUGSLEY A, HOLYFIELD L T, TING V P, MAYS T J. High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures[J]. Chem Eng J, 2015,272:38-47. doi: 10.1016/j.cej.2015.02.088
THORNTON A W, SIMON C M, KIM J, KWON O, DEEG K S, KONSTAS K, PAS S J, HILL M R, WINKLER D A, HARANCZYK M, SMIT B. Materials genome in action:Identifying the performance limits of physical hydrogen storage[J]. Chem Mater, 2017,29(7):2844-2854. doi: 10.1021/acs.chemmater.6b04933
WILMER C E, LEAF M, LEE C Y, FARHA O K, HAUSER B G, HUPP J T, SNURR R Q. Large-scale screening of hypothetical metal-organic frameworks[J]. Nat Chem, 2011,4(2):83-89.
CHUNG Y G, CAMP J, HARANCZYK M, SIKORA B J, BURY W, KRUNGLEVICIUTE V, YILDIRIM T, FARHA , O K, SHOLL D S, SNURR R Q. Experimental metal-organic frameworks:A tool to enable high-throughput screening of nanoporous crystals[J]. Chem Mater, 2014,26(21):6185-6192. doi: 10.1021/cm502594j
RAHMAN K A, LOH W S, CHAKRABORTYA , BIDYUT B S, WON G C, KIM C N. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011,31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002
LIU S, SUN L, XU F, ZHANG J, JIAO C L, LI F, LI Z B, WANG S, WANG Z Q, JIANG X, ZHOU H Y, YANG L N, SCHICK C. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity[J]. Energy Environ Sci, 2013,6(3):818-823. doi: 10.1039/c3ee23421e
SZCZESNIAK B, CHOMA J, JARONIEC M. Development of activated graphene-MOF composites for H2 and CH4 adsorption[J]. Adsorpt, 2019,25(3):521-528. doi: 10.1007/s10450-019-00024-6
RAHMAN K A, LOH W S, CHAKRABORTY A, SAHA B B, CHUN W G, NG K C. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011,31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002
ZHENG Q R, ZHU Z W, WANG X H. Experimental studies of storage by adsorption of domestically used natural gas on activated carbon[J]. Appl Therm Eng, 2015,77:134-141. doi: 10.1016/j.applthermaleng.2014.12.022
ZHOU Y P, WANG Y X, CHEN H H, ZHOU L. Methane storage in wet activated carbon:Studies on the charging/discharging process[J]. Carbon, 2005,43(9):2007-2012. doi: 10.1016/j.carbon.2005.03.017
PROSNIEWSKI M J, RASH T A, KNIGHT E W, GILLESPIE A K, STALLA D, SCHULZ C J, PFEIFER P. Controlled charge and discharge of a 40-L monolithic adsorbed natural gas tank[J]. Adsorpt, 2018,24(6):541-550. doi: 10.1007/s10450-018-9961-2
ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019.
CAO Da-peng, GAO Guang-tu, WANG Wen-chuan. Grand canonical ensemble monte carlo simulation of adsorption storage of methane inslit micropores[J]. CIESC J, 2000,51(1):23-30. doi: 10.3321/j.issn:0438-1157.2000.01.005
CLARK A. The Theory of Adsorption and Catalysis[M]. New York:Academic Press, 1970.
ZHENG Q R, ZHU Z W, FENG Y L, WANG X H. Development of composite adsorbents and storage vessels for domestically used adsorbed natural gas[J]. Appl Therm Eng, 2016,98:778-785. doi: 10.1016/j.applthermaleng.2015.12.127
LUO Wan-zhen. Numerical simulation of combustion process of an engine powered by mixing fuel[D]. Xiamen: Jimei University, 2015.
MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci, 1997,196(1):103-109. doi: 10.1006/jcis.1997.5198
MENON P G. Adsorption at high pressures[J]. Chem Rev, 1968,68(3):277-294. doi: 10.1021/cr60253a002
BIMBO N, XU W, SHARPE J E, TING V P, MAYS T J. High-pressure adsorptive storage of hydrogen in MIL-101(Cr) and AX-21 for mobile applications:Cryocharging and cryokinetics[J]. Mater Des, 2016,89:1086-1094. doi: 10.1016/j.matdes.2015.10.069
SOAVE G. Equilibrium constants from a modified redlich-kwong equation of state[J]. Chem Eng Sci, 1972,27(6):1197-1203. doi: 10.1016/0009-2509(72)80096-4
ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption e quilibrium of me thane on laye re dgraphe ne she e ts and activate d carbon[J]. J Fuel Chem Technol, 2019,47(8):1008-1015. doi: 10.3969/j.issn.0253-2409.2019.08.015
GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption mode ls forme thane adsorption e quilibrium on activate d carbon[J]. J Fuel Chem Technol, 2013,41(3):380-384. doi: 10.3969/j.issn.0253-2409.2013.03.019
KLOUTSE A F, ZACHARIA R, COSSEMENT D, CHAHINE R, BALDERAS-XICOHTENCATL R, O H, H , STREPPEL B, SCHLICHTENMAYER M, HIRSCHER M. Isosteric heat of hydrogen adsorption on MOFs:Comparison between adsorption calorimetry, sorption isosteric method, and analytical models[J]. Appl Phys A, 2015,121(4):1417-1424. doi: 10.1007/s00339-015-9484-6
WANG Ze-hao. Studies of adsorption equilibrium of methane on typical materials[D]. Xiamen: Jimei University, 2018.
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
Lianghong Ye , Junqing Ni , Zhongyi Yan , Zhanming Zhang , Can Zhu , Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026
Hongyan Chen , Yajun Hou , Shui Hu , Zhuoxun Wei , Fang Zhu , Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109
Chunrui Zhao , Tianren Li , Jiage Li , Yansong Liu , Zian Fang , Xinyu Wang , Mingxin Huo , Shuangshi Dong , Mingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524