Citation: ZHAO Guo-bin, ZHENG Qing-rong, ZHANG Wei-dong, ZHANG Xuan. Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1529-1536. shu

Adsorption equilibrium and charge/discharge characteristics of methane on MIL-101

  • Corresponding author: ZHENG Qing-rong, zhengqr@jmu.edu.cn
  • Received Date: 30 September 2019
    Revised Date: 9 November 2019

    Fund Project: The project was supported by National Natural Science Foundation of China (51979121), the Science and Technology Bureau of Xiamen(3502Z20173026)National Natural Science Foundation of China 51979121the Science and Technology Bureau of Xiamen 3502Z20173026

Figures(10)

  • For developing metal organic frameworks (MOFs) suitable for the storage of nature gas by adsorption, the MIL-101 (Cr) sample was synthesized by solvothermal method, with which the characterization by adsorption of nitrogen at 77.15 K and the adsorption equilibrium and charge/discharge of methane were conducted. The adsorption equilibrium data of methane on the sample were measured volumetrically at temperature range of 293-313 K within a pressure range of 0-100 kPa and 0-7 MPa, respectively. The limit isosteric heat of adsorption was determined by employing the Henry's law using the adsorption data at very low pressure region, and the absolute adsorption amounts of methane on the sample were determined via nonlinear fit of the adsorption data at high pressure range by using Toth's equation. Isosteric heats of methane adsorption were then calculated through Clausius-Clapeyron equation and Toth's potential function. The charge and discharge tests of methane were performed at a flow rate range of 10-30 L/min on a 3.2 L conformable vessel packed with samples about 940 g. The results show that the mean limit isosteric heat is 23.89 kJ/mol, and the average relative error of the result predicted by the Toth equation is about 1.06%. The mean isosteric heat of adsorption determined by Clausius-Clapeyron equation and Toth's potential function is about 15.51 kJ/mol and 13.56 kJ/mol, respectively. The results also reveal that the total amount of charge/discharge at the flow rate of 10 L/min and 30 L/min is about 347 L/338 L and 341 L/318 L, respectively, which are in correspondence with the ratios of discharge about 98.3% and 94.1%. It suggests that the isosteric heat of methane adsorption determined by Clausius-Clapeyron equation is more reasonable for practical applications, and slower charging/discharging with a smaller flow rate is beneficial to increasing the total amount of charge/discharge and the discharging of the adsorbent bed.
  • 加载中
    1. [1]

      ZHANG H D, DERIA P, FARHA O K, HUPP J T, SNURR R Q. A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks[J]. Energy Environ Sci, 2015,8(5):1501-1510. doi: 10.1039/C5EE00808E

    2. [2]

      KAYAL S, SUN B, CHAKRABORTY A. Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks)[J]. Energy, 2015,91:772-781. doi: 10.1016/j.energy.2015.08.096

    3. [3]

      WU Y, TANG D, VERPLOEGH R J, XI H X, SHOLL D S. Impacts of gas impurities from pipeline natural gas on methane storage in metal-organic frameworks during long term cycling[J]. J Phys Chem C, 2017,121(29):15735-15745. doi: 10.1021/acs.jpcc.7b03459

    4. [4]

      KUMAR K V, PRESUU K, TITIRICI M M, RODRIGUEZ-RRINOSO F. Nanoporous materials for the onboard storage of natural gas[J]. Chem Rev, 2017,117(3):1796-1825. doi: 10.1021/acs.chemrev.6b00505

    5. [5]

      KONDO M, YOSHITOMI T, MATSUZAKA H, MATSUZAKA H, KITAGAWA S. Three-dimensional framework with channeling cavities for small molecules:{M2(4, 4'-bpy)3(NO3)4xH2O}n(M=Co, Ni, Zn)[J]. Angew Chem (Int Ed Engl), 1997,36(16):1725-1727. doi: 10.1002/anie.199717251

    6. [6]

      MA S, ZHOU H C. A metal-organic framework with entatic metal centers exhibiting high gas-adsorption affinity[J]. J Am Chem Soc, 2006,128(36):11734-11735. doi: 10.1021/ja063538z

    7. [7]

      DÜREN T, SARKISOV L, YAGHI O M, SNURR R Q. Design of new materials for methane storage[J]. Langmuir, 2004,20(7):2683-2689. doi: 10.1021/la0355500

    8. [8]

      LIANG C, SHI Z, HE C T, TAN J, ZHOU H D, ZHOU H L, LEE Y J, ZHANG Y B. Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal-organic frameworks[J]. J Am Chem Soc, 2017,139(38):13300-13303. doi: 10.1021/jacs.7b08347

    9. [9]

      FEREY C, MELLOT-DRAZNIEKS C, SERRE C, MILLANGE F, DUTOUR J, SURBLE S, MARGIOLAKI I. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275

    10. [10]

      BIMBO N, PHYSICK J A, NOGUERA-DIAZ A, PUGSLEY A, HOLYFIELD L T, TING V P, MAYS T J. High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressures[J]. Chem Eng J, 2015,272:38-47. doi: 10.1016/j.cej.2015.02.088

    11. [11]

      THORNTON A W, SIMON C M, KIM J, KWON O, DEEG K S, KONSTAS K, PAS S J, HILL M R, WINKLER D A, HARANCZYK M, SMIT B. Materials genome in action:Identifying the performance limits of physical hydrogen storage[J]. Chem Mater, 2017,29(7):2844-2854. doi: 10.1021/acs.chemmater.6b04933

    12. [12]

      WILMER C E, LEAF M, LEE C Y, FARHA O K, HAUSER B G, HUPP J T, SNURR R Q. Large-scale screening of hypothetical metal-organic frameworks[J]. Nat Chem, 2011,4(2):83-89.

    13. [13]

      CHUNG Y G, CAMP J, HARANCZYK M, SIKORA B J, BURY W, KRUNGLEVICIUTE V, YILDIRIM T, FARHA , O K, SHOLL D S, SNURR R Q. Experimental metal-organic frameworks:A tool to enable high-throughput screening of nanoporous crystals[J]. Chem Mater, 2014,26(21):6185-6192. doi: 10.1021/cm502594j

    14. [14]

      RAHMAN K A, LOH W S, CHAKRABORTYA , BIDYUT B S, WON G C, KIM C N. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011,31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002

    15. [15]

      LIU S, SUN L, XU F, ZHANG J, JIAO C L, LI F, LI Z B, WANG S, WANG Z Q, JIANG X, ZHOU H Y, YANG L N, SCHICK C. Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity[J]. Energy Environ Sci, 2013,6(3):818-823. doi: 10.1039/c3ee23421e

    16. [16]

      SZCZESNIAK B, CHOMA J, JARONIEC M. Development of activated graphene-MOF composites for H2 and CH4 adsorption[J]. Adsorpt, 2019,25(3):521-528. doi: 10.1007/s10450-019-00024-6

    17. [17]

      RAHMAN K A, LOH W S, CHAKRABORTY A, SAHA B B, CHUN W G, NG K C. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage[J]. Appl Therm Eng, 2011,31(10):1630-1639. doi: 10.1016/j.applthermaleng.2011.02.002

    18. [18]

      ZHENG Q R, ZHU Z W, WANG X H. Experimental studies of storage by adsorption of domestically used natural gas on activated carbon[J]. Appl Therm Eng, 2015,77:134-141. doi: 10.1016/j.applthermaleng.2014.12.022

    19. [19]

      ZHOU Y P, WANG Y X, CHEN H H, ZHOU L. Methane storage in wet activated carbon:Studies on the charging/discharging process[J]. Carbon, 2005,43(9):2007-2012. doi: 10.1016/j.carbon.2005.03.017

    20. [20]

      PROSNIEWSKI M J, RASH T A, KNIGHT E W, GILLESPIE A K, STALLA D, SCHULZ C J, PFEIFER P. Controlled charge and discharge of a 40-L monolithic adsorbed natural gas tank[J]. Adsorpt, 2018,24(6):541-550. doi: 10.1007/s10450-018-9961-2

    21. [21]

      ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019.

    22. [22]

      CAO Da-peng, GAO Guang-tu, WANG Wen-chuan. Grand canonical ensemble monte carlo simulation of adsorption storage of methane inslit micropores[J]. CIESC J, 2000,51(1):23-30. doi: 10.3321/j.issn:0438-1157.2000.01.005

    23. [23]

      CLARK A. The Theory of Adsorption and Catalysis[M]. New York:Academic Press, 1970.

    24. [24]

      ZHENG Q R, ZHU Z W, FENG Y L, WANG X H. Development of composite adsorbents and storage vessels for domestically used adsorbed natural gas[J]. Appl Therm Eng, 2016,98:778-785. doi: 10.1016/j.applthermaleng.2015.12.127

    25. [25]

      LUO Wan-zhen. Numerical simulation of combustion process of an engine powered by mixing fuel[D]. Xiamen: Jimei University, 2015. 

    26. [26]

      MEEKS O R, RYBOLT T R. Correlations of adsorption energies with physical and structural properties of adsorbate molecules[J]. J Colloid Interface Sci, 1997,196(1):103-109. doi: 10.1006/jcis.1997.5198

    27. [27]

      MENON P G. Adsorption at high pressures[J]. Chem Rev, 1968,68(3):277-294. doi: 10.1021/cr60253a002

    28. [28]

      BIMBO N, XU W, SHARPE J E, TING V P, MAYS T J. High-pressure adsorptive storage of hydrogen in MIL-101(Cr) and AX-21 for mobile applications:Cryocharging and cryokinetics[J]. Mater Des, 2016,89:1086-1094. doi: 10.1016/j.matdes.2015.10.069

    29. [29]

      SOAVE G. Equilibrium constants from a modified redlich-kwong equation of state[J]. Chem Eng Sci, 1972,27(6):1197-1203. doi: 10.1016/0009-2509(72)80096-4

    30. [30]

      ZHANG Wei-dong, ZHENG Qing-rong, WANG Ze-hao, ZHANG Xuan. Adsorption e quilibrium of me thane on laye re dgraphe ne she e ts and activate d carbon[J]. J Fuel Chem Technol, 2019,47(8):1008-1015. doi: 10.3969/j.issn.0253-2409.2019.08.015 

    31. [31]

      GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption mode ls forme thane adsorption e quilibrium on activate d carbon[J]. J Fuel Chem Technol, 2013,41(3):380-384. doi: 10.3969/j.issn.0253-2409.2013.03.019

    32. [32]

      KLOUTSE A F, ZACHARIA R, COSSEMENT D, CHAHINE R, BALDERAS-XICOHTENCATL R, O H, H , STREPPEL B, SCHLICHTENMAYER M, HIRSCHER M. Isosteric heat of hydrogen adsorption on MOFs:Comparison between adsorption calorimetry, sorption isosteric method, and analytical models[J]. Appl Phys A, 2015,121(4):1417-1424. doi: 10.1007/s00339-015-9484-6

    33. [33]

      WANG Ze-hao. Studies of adsorption equilibrium of methane on typical materials[D]. Xiamen: Jimei University, 2018. 

  • 加载中
    1. [1]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    2. [2]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    8. [8]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Juan Yang . Construction of General Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 8-13. doi: 10.12461/PKU.DXHX202408026

    11. [11]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    12. [12]

      Chunrui ZhaoTianren LiJiage LiYansong LiuZian FangXinyu WangMingxin HuoShuangshi DongMingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201

    13. [13]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(7)
  • Abstract views(1068)
  • HTML views(130)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return