Citation: CHENG Fu-long, GUO He-qin, CUI Jing-lei, HOU Bo, LI De-bao. Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1472-1481. shu

Guerbet reaction of methanol and ethanol catalyzed by CuMgAlOx mixed oxides: Effect of M2+/Al3+ ratio

  • Corresponding author: GUO He-qin, heqinguo@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 4 May 2018
    Revised Date: 14 August 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21736007, 21303241)the National Natural Science Foundation of China 21736007the National Natural Science Foundation of China 21303241

Figures(11)

  • A series of hydrotalcite-like derived MgAlOx (MA) and CuMgAlOx (CMA) catalysts with various M2+/Al3+ molar ratios were prepared and evaluated by the aldol condensation reaction of formaldehyde and acetaldehyde and Guerbet reaction of methanol and ethanol, respectively. The acidity and the alkalinity as well as the surface copper species of catalysts were characterized by NH3/CO2-TPD, XPS, H2-TPR and H2-TPD techniques. The results show that the catalytic performance of Guerbet reaction of methanol and ethanol is related to the surface Cu0 species and the number of moderate basic sites. Increasing the specific surface area of Cu0 is beneficial to the dehydrogenation of methanol and ethanol to formaldehyde and acetaldehyde. The increase of the amount of moderate basic sites can promote the condensation reaction of formaldehyde and acetaldehyde.
  • 加载中
    1. [1]

      BIERMAN M, GRUSS H, HUMMEL W, GROEGER H. Guerbet alcohols:From processes under harsh conditions to synthesis at room temperature under ambient pressure[J]. ChemCatChem, 2016,8(5):895-899. doi: 10.1002/cctc.201501241

    2. [2]

      LIU Q, XU G Q, WANG X C, MU X D. Selective upgrading of ethanol with methanol in water for the production of improved biofuel-isobutanol[J]. Green Chem, 2016,18(9):2811-2818. doi: 10.1039/C5GC02963E

    3. [3]

      AJJOU A N, ALPER H. A new, efficient, and in some cases highly regioselective water-soluble polymer rhodium catalyst for olefin hydroformylation[J]. J Am Chem Soc, 1998,120(7):1466-1468. doi: 10.1021/ja973048u

    4. [4]

      GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-cased catalysts[J]. ACS Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048

    5. [5]

      ANDRIANARY P, JENNER G, LIBS S, TELLER G. Homogeneous catalysis of CO2-H2 reactions-homologation of C-3 alcohols[J]. J Mol Catal, 1987,39(1):93-103.

    6. [6]

      GUERBET M. Condensation of isopropylic alcohol with its sodium derivative; formation of methylisobutylcarbinol and dimethyl-2, 4-heptanol-6[J]. Cr Hebd Acad Sci, 1909,149:129-132.

    7. [7]

      WINGAD R L, BERSTROEM E J E, EVERETT M, PELLOW K J, WASS D F. Catalytic conversion of methanol/ethanol to isobutanol-a highly selective route to an advanced biofuel[J]. Chem Commun, 2016,52(29):5202-5204. doi: 10.1039/C6CC01599A

    8. [8]

      DI COSIMO J I, APESTEGUI A C R, GINES M J L, IGLESIA E. Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts[J]. J Catal, 2000,190(2):261-275. doi: 10.1006/jcat.1999.2734

    9. [9]

      QIU Kun-zan, GUO Wen-wen, WANG Hai-xia, ZHU Ling-jun, WANG Shu-rong. Influence of catalyst structure on performance of Cu/SiO2 in hydrogenation of methyl acetate[J]. Acta Phys-Chim Sin, 2015,31(6):1129-1136.  

    10. [10]

      FU Peng, LI Yong-gang, NING Chun-li. Hydrogenation of sec-butyl acetate to sec-butyl alcohol and ethanol over Cu/ZnO/Al2O3 catalyst[J]. Ind Catal, 2017,25(4):68-73. doi: 10.3969/j.issn.1008-1143.2017.04.012

    11. [11]

      LUO Jing, LI Hong-guang, ZHAO Ning, WANG Feng, XIAO Fu-kui. Selective oxidation of glycerol to dihydroxyacetone over layer double hydroxide intercalated with sulfonato-salen metal complexes[J]. J Fuel Chem Technol, 2015,43(6):677-683. doi: 10.3969/j.issn.0253-2409.2015.06.006 

    12. [12]

      GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A:Gen, 2013,468:442-452. doi: 10.1016/j.apcata.2013.09.026

    13. [13]

      GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014,30(6):1155-1162.  

    14. [14]

      STOSIC D, HOSOGLU F, BENNICI S, TRAVET A, CAPRON M, DUMEIGNIL F, COUTURIER J L, DUBOIS J L, AUROUX A. Methanol and ethanol reactivity in the presence of hydrotalcites with Mg/Al ratios varying from 2 to 7[J]. Catal Commun, 2017,8:14-18.  

    15. [15]

      SHEN J Y, TU M, HU C. Structural and surface acid/base properties of hydrotalcite-derived MgAlO oxides calcined at varying temperatures[J]. J Solid State Chem, 1998,137(2):295-301. doi: 10.1006/jssc.1997.7739

    16. [16]

      XI Jing-yu, WANG Zhi-fei, WANG Wei-ping, LÜ Gong-xuan. In-situ XPS for reaction mechanism of methanol decomposition over Cu-Ni/Zn catalyst[J]. Acta Phys-Chim Sin, 2002,18(1):82-86. doi: 10.3866/PKU.WHXB20020119

    17. [17]

      HUANG Z W, CUI F, XUE J J, ZUO J L, CHEN J, XIA C G. Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition-precipitation methods:Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol[J]. Catal Today, 2012,183(1):42-51.  

    18. [18]

      KANNAN S, DUBEV A, KNOZINGER H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J Catal, 2005,231(2):381-392.  

    19. [19]

      GAO P, LI F, ZHAN H J, ZHAO N, XIAO F K, WEI W, ZHONG L S, WANG H, SUN Y H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013,298:51-60. doi: 10.1016/j.jcat.2012.10.030

  • 加载中
    1. [1]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    2. [2]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    11. [11]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    14. [14]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    18. [18]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    19. [19]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    20. [20]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

Metrics
  • PDF Downloads(9)
  • Abstract views(1258)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return