Citation: LI An-ming, WEI Guang-cheng, HAO Qiao-hui, ZHAO Bin, ZHANG Qiu-lin. Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 231-239. shu

Effect of Mn content on the catalytic performance of CeO2-ZrO2-MnOx in the oxidation of toluene

  • Corresponding author: ZHAO Bin, 2859981152@qq.com ZHANG Qiu-lin, qiulinzhang_kmust@163.com
  • Received Date: 6 November 2019
    Revised Date: 23 January 2020

    Fund Project: the National Key R & D Program of China 2018YFC0213400The project was supported by the National Key R & D Program of China (2018YFC0213400)

Figures(8)

  • A series of CeO2-ZrO2-MnOx catalysts with different Mn contents (denoted as CZMX, where X is the molar fraction of MnOx) were prepared by the redox precipitation method; the effect of Mn content on the catalytic performance of CZMX in the oxidative degradation of toluene was then investigated. The results indicate that that the CZM0.6 catalyst exhibits the best performance in toluene oxidation; a complete conversion of toluene can be achieved at 230℃. The XRD results suggest that the crystallinity of CZMX decreases first, steps over the valley and then increases again with the increase of Mn content. From the H2-TPR characterization, in contrast, a volcanic tendency is observed for the interaction among Ce-Zr-Mn. In particular, the CZM0.6 catalyst displays poorest crystallinity and strongest Ce-Zr-Mn interaction, which can enhance the surface oxygen species. Meanwhile, the Raman and O2-TPD results prove that the abundant oxygen vacancies on the catalyst surface can promote the migration of surface active oxygen species and then enhance the catalytic performance of CZMX in toluene oxidation. In addition, the in-situ DRIFTS results illustrate that the reaction of toluene oxidation over the CeO2-ZrO2-MnOx catalysts proceeds via benzoic acid as the essential intermediate, which is rapidly converted to CO2 and H2O in the presence of O2.
  • 加载中
    1. [1]

      ZHAO Heng, ZHANG Xue-jun, SONG Zhong-xian, MA Zi-ang, ZHAO Min, ZHAO Jin-gang. Advances in elimination of volatile organic compounds[J]. Petrochem Technol, 2019,48(3):318-325.  

    2. [2]

      LEI Juan, WANG Shuang, LI Jin-ping. Research progress of catalytic oxidation catalysts for toluene[J]. J Taiyuan Univ Technol, 2019,50(4):430-436.  

    3. [3]

      LI Yong-qiang, ZHANG Xiao-wu, ZU Pu-quan. Research progress in noble metal catalyst for catalytic combustion of volatile organic compounds[J]. Guangdong Chem Ind, 2015,42(24):85-86. doi: 10.3969/j.issn.1007-1865.2015.24.042

    4. [4]

      YANG Xiao-jiang, GONG Ying-tao, LI Hong-li, YANG Fu-mo. Research progress of ceria-based catalysts in the selective catalytic reduction of NOx by NH3[J]. Acta Phys-Chim Sin, 2015,31(5):817-828.  

    5. [5]

      SEDJAME H J, FONTAINE C, LAFAYE G, JR J B. On the promoting effect of the addition of ceria to platinum based alumina catalysts for VOCs oxidation[J]. Appl Catal B:Environ, 2014,144:233-242. doi: 10.1016/j.apcatb.2013.07.022

    6. [6]

      RAVEENDRA G, LI C M, LIU B, CHENG Y, MENG F H, LI Z. Syngas to lower olefins synthesis over Zn/Al2O3-SAPO-34 hybrid catalysts:Role of doped Zr and influence of the Zn/Al2O3 ratio[J]. Catal Sci Technol, 2018,6(8):3527-3528.

    7. [7]

      WU Hao-lan, ZHAO Chao-cheng, LEI Jie-xia. The recent research development on ceria-zirconia solid solution catalyst[J]. Guangdong Chem Ind, 2014,41(289):69-70, 79.  

    8. [8]

      DENG Q F, REN T Z, BAO AGULA, LIU Y P, YUAN Z Y. Mesoporous CexZr1-xO2 solid solutions supported CuO nano-catalysts for toluene total oxidation[J]. Chem Eng J, 2014,20(5):3303-3312.  

    9. [9]

      SHAH P M, DAY A N, DAVIES T E, DAVIES J M, TAYLOR S H. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene volatile organic compounds[J]. Appl Catal B:Environ, 2019,253:331-340. doi: 10.1016/j.apcatb.2019.04.061

    10. [10]

      ZHAO W T, ZHANG Y Y, WU X W, ZHAN Y Y, WANG X Y, AU C T, JIANG L L. Synthesis of Co-Mn oxides with double-shelled nanocages for low-temperature toluene combustion[J]. Catal Sci Technol, 2018,8:4494-4502. doi: 10.1039/C8CY01206G

    11. [11]

      SUÁREZ-VÁQUEZ S I, GIL S, GARCÍA-VARGAS J M, CRUZ-LÓPEZ A, GIROIR-FENDLER A. Catalytic oxidation of toluene by SrTi1-xBxO3, (B=Cu and Mn) with dendritic morphology synthesized by one pot hydrothermal route[J]. Appl Catal B:Environ, 2018,223(8):201-208.

    12. [12]

      ZHOU Z J, LIU X W, LIAO Z Q, SHAO H Z, LÜ C, HU Y C, XU M H. Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature[J]. Fuel Process Technol, 2016,152:285-293. doi: 10.1016/j.fuproc.2016.06.016

    13. [13]

      ZHANG Xiao-peng, SHEN Bo-xiong. Selective catalytic reduction of NO with NH3 over Mn-based catalysts at low temperature[J]. J Fuel Chem Technol, 2013,41(1):123-128. doi: 10.3969/j.issn.0253-2409.2013.01.020

    14. [14]

      SANTOS V P, PEREIRA M F R, ÓRFAO J J M, FIGUEIREDO J L. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B:Environ, 2010,99(1/2):353-363.  

    15. [15]

      ZHANG Ding-sheng, PAN Hua, MAO Yi-ping, YANG Zhong-yu, WANG Sheng-kang, SHI Yao. Catalytic behavior of toluene oxidation on CeO2 supported transition metal catalysts[J]. Environ Pollut Control, 2019,41(9):1050-1055.  

    16. [16]

      WEI Liang, QIN Rui-xiang, WANG Dan, WANG Dan, WANG Jin-bo, CHEN Hua. Highly selective catalytic oxidation of toluene over copper-manganese complex oxide[J]. Chem Res Appl, 2018,30(6):912-918. doi: 10.3969/j.issn.1004-1656.2018.06.008

    17. [17]

      LI Jin-wei, ZHU Jia. Catalytic combustion of toluene over supported CuMnOx/TiO2 catalysts[J]. Ind Catal, 2015,23(12):1002-1007. doi: 10.3969/j.issn.1008-1143.2015.12.009

    18. [18]

      WANG Yong-qiang, XIAO Li, SUN Qi-meng, ZHANG Chao-cheng, LI Shi. Preparation of the Pd/La0.8Ce0.2MnO3/ZSM-5 catalyst and its performance in catalytic combustion of toluene[J]. J Fuel Chem Technol, 2014,42(9):1146-1152. doi: 10.3969/j.issn.0253-2409.2014.09.017 

    19. [19]

      QIN Y, QU Z P, DONG C, WANG Y, HUANG N. catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports[J]. J Environ Sci, 2019,76(02):208-216.  

    20. [20]

      GU Ou-jun, LIAO Yong-tao, CHEN Rui-jie, JIA Lu, GUI SHAN xiu xiong, LIN Yi, ZHOU Lü, MA Hua, GUO Jun. Catalytic combust ion of toluene over Cu-Mn mixed oxide catalyst[J]. J Chem Ind Eng, 2016,67(7):2832-2840.  

    21. [21]

      WANG Y, YANG D Y, LI S Z, ZHANG L X, ZHENG G Y, GUO L M. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chem Eng J, 2019,357:258-268. doi: 10.1016/j.cej.2018.09.156

    22. [22]

      WANG Ji-feng, WANG Hui-min, ZHANG Ya-qin, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol, 2019,47(7):814-822. doi: 10.3969/j.issn.0253-2409.2019.07.006 

    23. [23]

      LIU C, WANG W H, XU Y, LI Z H, WANG B W, MA X B. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2, catalyst[J]. Appl Sur Sci, 2018,441:82-90.  

    24. [24]

      HOSSAIN S T, AZEEVA E, ZHANG K F, T. ZELL E T, BERNARD D T, BALAZ S, WANG R G. A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO2 nanorods catalysts[J]. Appl Sur Sci, 2018,455:132-143. doi: 10.1016/j.apsusc.2018.05.101

    25. [25]

      REDDY C V, REDDY I N, AKKINEPALLY B, HARISH V V N, REDDY K R, JAESOOL S. Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation[J]. Ceram Int, 2019,45:15298-15306. doi: 10.1016/j.ceramint.2019.05.020

    26. [26]

      CHEN J, CHEN X, XU W J, XU Z, CHEN J Z, JIA H P, CHEN J. Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J, 2019,330:281-293.  

    27. [27]

      QIAN K, QIAN Z X, HUA Q, JIANG Z Q, HUANG W X. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Appl Sur Sci, 2013,273:357-363. doi: 10.1016/j.apsusc.2013.02.043

    28. [28]

      GONG P J, XIE J L, FANG D, HAN D, HE F, LI F X, QI K. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures[J]. Chin J Catal, 2017,38(11):1925-1934. doi: 10.1016/S1872-2067(17)62922-X

    29. [29]

      ZHAO B H, RAN R, WU X D, WENG D. Phase structures, morphologies, and NO catalytic oxidation activities of single-phase MnO2 catalysts[J]. Appl Catal A:Gen, 2016,514:24-34. doi: 10.1016/j.apcata.2016.01.005

    30. [30]

      DU J P, QU Z P, DONG C, SONG L X, QIN Y, HUANG N. Low temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach[J]. Appl Sur Sci, 2018,433:1025-1035. doi: 10.1016/j.apsusc.2017.10.116

    31. [31]

      ZHANG P F, LU H F, ZHOU Y, ZHANG L, WU Z L, YANG S Z, SHI H L, ZHU Q L, CHEN Y F, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015,68446. doi: 10.1038/ncomms9446

    32. [32]

      PAN H, JIAN Y F, CHEN C W, HE C, HAO Z P, SHEN Z X, LIU H X. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion[J]. Environ Sci Technol, 2017,51(11):6288-6297. doi: 10.1021/acs.est.7b00136

    33. [33]

      GU Y F, CAI T, GAO X H, XIA H Q, SUN W, ZHAO J, DAI Q G, WANG X Y. Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature[J]. Appl Catal B:Environ, 2019,248(7):264-276.  

    34. [34]

      ZHUO G L, LAN H, WANG H, XIE H M, ZHANG G Z, ZHENG X X. Catalytic combustion of PVOCs on MnOx catalysts[J]. J Mol Catal A:Chem, 2014,393(11):279-228.  

    35. [35]

      WENG X Y, SHI B Q, LIU A N, SUN J Y, XIONG Y, WAN H Q, ZHENG S R, DONG L, CHEN Y W. Highly dispersed Pd/modified-Al2O3 catalyst on complete oxidation of toluene:Role of basic sites and mechanism insight[J]. Appl Sur Sci, 2019,497:434-456.

    36. [36]

      HAN Z, LIU Y X, DENG J G, XIE S H, ZHAO X T, YANG J, ZHANG K F, DAI H X. Preparation and high catalytic performance of Co3O4-MnO2 for the combustion of o-xylene[J]. Catal Today, 2019,327:246-253. doi: 10.1016/j.cattod.2018.04.042

    37. [37]

      YAO P, HE J S, JIANG X, JIAO J, WANG J L, CHEN Y Q. Factors determining gasoline soot abatement over CeO2-ZrO2-MnOx catalysts under low oxygen concentration condition[J]. J Energy Inst, 2020,93(2):774-783.

    38. [38]

      CHEN J, CHEN X, XU W J, XU Z, CHEN J Z, JIA H P, CHEN J. Ydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene[J]. Chem Eng J, 2019,330:281-293.  

    39. [39]

      WANG Y N, MA W H, WANG D Y, ZHONG Q. Study on the reaction mechanism of the propylene oxide rearrangement via in situ DRIFTS[J]. Chem Eng J, 2017,307:1047-1054. doi: 10.1016/j.cej.2016.09.035

    40. [40]

      SUN H, LIU Z G, CHEN S, QUAN X. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chem Eng J, 2015,270(7):58-65.  

    41. [41]

      BESSELMANN, LOFFLER, MUHLER. On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts:A Raman and in situ DRIFTS study[J]. J Mol Catal A:Chem, 2000,162:401-411. doi: 10.1016/S1381-1169(00)00307-1

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

Metrics
  • PDF Downloads(7)
  • Abstract views(369)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return