Citation: Chen Liang, Hu Liangjian, Du Yu, Su Weiping, Kang Qiang. Asymmetric Photoinduced Giese Radical Addition Enabled by a Single Chiral-at-Metal Rhodium Complex[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3944-3952. doi: 10.6023/cjoc202004041 shu

Asymmetric Photoinduced Giese Radical Addition Enabled by a Single Chiral-at-Metal Rhodium Complex

  • Corresponding author: Su Weiping, wpsu@fjirsm.ac.cn Kang Qiang, kangq@fjirsm.ac.cn
  • Received Date: 25 April 2020
    Revised Date: 14 May 2020
    Available Online: 19 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21871261)the National Natural Science Foundation of China 21871261

Figures(3)

  • A visible-light driven asymmetric Giese radical addition catalyzed by a bifunctional chiral-at-metal rhodium complex has been developed. para-Aminobenzyl radicals generated from para-aminophenylacetic acids could undergo a 1, 4-addition in a highly enantioselective approach to α, β-unsaturated 2-acyl imidazoles, and a variety of corresponding adducts were obtained in moderate to high yields with excellent enantioselectivities. This reaction features high enantioselectivity, mild reaction conditions and an operationally simple procedure. A plausible reaction mechanism is proposed based on our research and literature precedents on dual functional chiral-at-metal catalysis.
  • 加载中
    1. [1]

      For selected reviews on visible-light photoredox catalysis, see:
      (a) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Douglas, J. J.; Sevrin, M. J.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134.
      (d) Gentry, E. C.; Knowles, R. R. Acc. Chem. Res. 2016, 49, 1546.
      (e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (f) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
      (g) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (h) Parasram, M.; Gevorgyan, V. Chem. Soc. Rev. 2017, 46, 6227.
      (i) Larsen, C. B.; Wenger, O. S. Chem.-Eur. J. 2018, 24, 2039.
      (j) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
      (k) Zhao, Y. T.; Xia, W. J. Chem. Soc. Rev. 2018, 47, 2591.
      (l) Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 11586.
      (m) Zhou, Q. Q.; Zou, Y. Q.; Lu, L. Q.; Xiao, W. J. Angew. Chem., Int. Ed. 2019, 58, 1586.
      (n) Xiao, L.; Li, J. H.; Wang, T. Acta Chim. Sinica 2019, 77, 841(in Chinese).
      (肖丽, 李嘉恒, 王挺, 化学学报, 2019, 77, 841.)
      (o) Chen, Y. L.; Chang, L.; Zuo, Z. W. Acta Chim. Sinica 2019, 77, 794(in Chinese).
      (陈奕霖, 常亮, 左智伟, 化学学报, 2019, 77, 794.)
      (p) Chen, D.; Liu, J. C.; Zhang, X. Y.; Jiang, H. Z.; Li, J. H. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese).
      (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
      (q) Zhang, H.; Yu, S. Y. Chin. J. Org. Chem. 2019, 39, 95(in Chinese).
      (张昊, 俞寿云, 有机化学, 2019, 39, 95.)

    2. [2]

      For recent reviews on asymmetric photoredox catalysis, see:
      (a) Meggers, E. Chem. Commun. 2015, 51, 3290.
      (b) Wang, C. F.; Lu, Z. Org. Chem. Front. 2015, 2, 179.
      (c) Yoon, T. P. Acc. Chem. Res. 2016, 49, 2307.
      (d) Wang, D. H.; Zhang, L.; Luo, S. Z. Acta Chim. Sinica 2017, 75, 22(in Chinese).
      (王德红, 张龙, 罗三中, 化学学报, 2017, 75, 22.)
      (e) Brenninger, C.; Jolliffe, J. D.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 14338.
      (f) Garrido-Castro, A. F.; Maestro, M. C.; Aleman, J. Tetrahedron Lett. 2018, 59, 1286.
      (g) Silvi, M.; Melchiorre, P. Nature 2018, 554, 41.
      (h) Zou, Y. Q.; Hormann, F. M.; Bach, T. Chem. Soc. Rev. 2018, 47, 278.
      (i) Jiang, C.; Chen, W.; Zheng, W. H.; Lu, H. Org. Biomol. Chem. 2019, 17, 867

    3. [3]

      For examples of deracemization enabled by visible-light photocatalysis, see:
      (a) Hoelzl-Hobmeier, A.; Bauer, A.; Silva, A. V.; Huber, S. M.; Bannwarth, C.; Bach, T. Nature 2018, 564, 240.
      (b) Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.
      (c) Troster, A.; Bauer, A.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2019, 58, 3538.
      (d) Shi, Q.; Ye, J. Angew. Chem., Int. Ed. 2020, 59, 4998.

    4. [4]

      For selected examples of dual catalysis systems, see:
      (a) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Science 2016, 354, 1391.
      (b) Capacci, A. G.; Malinowski, J. T.; McAlpine, N. J.; Kuhne, J.; MacMillan, D. W. C. Nat. Chem. 2017, 9, 1073.
      (c) Lin, L.; Bai, X.; Ye, X.; Zhao, X.; Tan, C. H.; Jiang, Z. Angew. Chem., Int. Ed. 2017, 56, 13842.
      (d) Yang, Q.; Zhang, L.; Ye, C.; Luo, S. Z.; Wu, L. Z.; Tung, C. H. Angew. Chem., Int. Ed. 2017, 56, 3694.
      (e) Proctor, R. S. J.; Davis, H. J.; Phipps, R. J. Science 2018, 360, 419.
      (f) Ye, C.-X.; Melcamu, Y. Y.; Li, H.-H.; Cheng, J.-T.; Zhang, T.-T.; Ruan, Y.-P.; Zheng, X.; Lu, X.; Huang, P.-Q. Nat. Commun. 2018, 9, 410.
      (g) Zhang, H. H.; Zhao, J. J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
      (h) Cheng, Y. Z.; Zhao, Q. R.; Zhang, X.; You, S. L. Angew. Chem., Int. Ed. 2019, 58, 18069.
      (i) Li, Y.; Lei, M.; Gong, L. Nat. Catal. 2019, 2, 1016.
      (j) Zhang, K.; Lu, L. Q.; Jia, Y.; Wang, Y.; Lu, F. D.; Pan, F.; Xiao, W. J. Angew. Chem., Int. Ed. 2019, 58, 13375.
      (k) Cheng, Z. M.; Chen, P. H.; Liu, G. S. Acta Chim. Sinica 2019, 77, 856(in Chinese).
      (成忠明, 陈品红, 刘国生, 化学学报, 2019, 77, 856.)

    5. [5]

      For selected examples of bifunctional photocatalysts, see:
      (a) Arceo, E.; Jurberg, I. D.; Alvarez-Fernandez, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
      (b) Ding, W.; Lu, L. Q.; Zhou, Q. Q.; Wei, Y.; Chen, J. R.; Xiao, W. J. J. Am. Chem. Soc. 2017, 139, 63.
      (c) Silvi, M.; Verrier, C.; Rey, Y. P.; Buzzetti, L.; Melchiorre, P. Nat. Chem. 2017, 9, 868.
      (d) Skubi, K. L.; Kidd, J. B.; Jung, H.; Guzei, I. A.; Baik, M. H.; Yoon, T. P. J. Am. Chem. Soc. 2017, 139, 17186.
      (e) Li, Y.; Zhou, K.; Wen, Z.; Cao, S.; Shen, X.; Lei, M.; Gong, L. J. Am. Chem. Soc. 2018, 140, 15850.
      (f) Rigotti, T.; Casado-Sanchez, A.; Cabrera, S.; Perez-Ruiz, R.; Liras, M.; O'Shea, V. A. D.; Aleman, J. ACS Catal. 2018, 8, 5928.
      (g) Shen, X.; Li, Y.; Wen, Z.; Cao, S.; Hou, X.; Gong, L. Chem. Sci. 2018, 9, 4562.
      (h) Stegbauer, S.; Jandl, C.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 14593.
      (i) Guo, Q.; Wang, M.; Peng, Q.; Huo, Y.; Liu, Q.; Wang, R.; Xu, Z. ACS Catal. 2019, 9, 4470.

    6. [6]

      (a) Giese, B. Angew. Chem., Int. Ed. 1983, 22, 753.
      (b) Giese, B.; González-Gómez, J. A.; Witzel, T. Angew. Chem., Int. Ed. 1984, 23, 69.

    7. [7]

      (a) Wu, J. H.; Radinov, R.; Porter, N. A. J. Am. Chem. Soc. 1995, 117, 11029.
      (b) Sibi, M. P.; Ji, J.; Wu, J. H.; Gürtler, S.; Porter, N. A. J. Am. Chem. Soc. 1996, 118, 9200.
      (c) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163.

    8. [8]

      Espelt, L. R.; McPherson, I. S.; Wiensch, E. M.; Yoon, T. P. J. Am. Chem. Soc. 2015, 137, 2452.  doi: 10.1021/ja512746q

    9. [9]

      (a) Zuo, Z. W.; Ahneman, D. T.; Chu, L. L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
      (b) Zuo, Z. W.; Gong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.

    10. [10]

      For accounts on synthetic utilization of α-aminoalkyl radicals in visible-light photoredox catalysis, see:
      (a) Cho, D. W.; Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2011, 44, 204.
      (b) Nakajima, K.; Miyake, Y.; Nishibayashi, Y. Acc. Chem. Res. 2016, 49, 1946.

    11. [11]

      (a) Cermenati, L.; Mella, M.; Albini, A. Tetrahedron 1998, 54, 2575.
      (b) Smitha, M. A.; Prasad, E.; Gopidas, K. R. J. Am. Chem. Soc. 2001, 123, 1159.
      (c) Yoshimi, Y.; Kobayashi, K.; Kamakura, H.; Nishikawa, K.; Haga, Y.; Maeda, K.; Morita, T.; Itou, T.; Okada, Y.; Hatanaka, M. Tetrahedron Lett. 2010, 51, 2332.
      (d) Miyake, Y.; Nakajima, K.; Nishibayashi, Y. Chem. Commun. 2013, 49, 7854.
      (e) Lang, S. B.; O'Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.

    12. [12]

      (a) Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153.
      (b) Cao, Z.-Y.; Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Catal. Sci. Technol. 2015, 5, 3441.
      (c) Zhang, L.; Meggers, E. Chem.-Asian. J. 2017, 12, 2335.
      (d) Cruchter, T.; Larionov, V. A. Coord. Chem. Rev. 2018, 376, 95.

    13. [13]

      Lin, S. X.; Sun, G. J.; Kang, Q. Chem. Commun. 2017, 53, 7665.  doi: 10.1039/C7CC03650G

    14. [14]

      CCDC 1998446 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

    15. [15]

      (a) Ohta, S.; Hayakawa, S.; Nishimura, K.; Okamoto, M. Chem. Pharm. Bull. 1987, 35, 1058.
      (b) Miyashita, A.; Suzuki, Y.; Nagasaki, I.; Ishiguro, C.; Iwamoto, K.-I.; Higashino, T. Chem. Pharm. Bull. 1997, 45, 1254.

    16. [16]

      (a) de Assis, F. F.; Huang, X.; Akiyama, M.; Pilli, R. A.; Meggers, E. J. Org. Chem. 2018, 83, 10922.
      (b) Ma, J.; Lin, J.; Zhao, L.; Harms, K.; Marsch, M.; Xie, X.; Meggers, E. Angew. Chem., Int. Ed. 2018, 57, 11193.

    17. [17]

      Wang, C.; Chen, L. A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. Chem. Sci. 2015, 6, 1094.  doi: 10.1039/C4SC03101F

    18. [18]

      Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L. A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100.  doi: 10.1038/nature13892

  • 加载中
    1. [1]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    2. [2]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    3. [3]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    4. [4]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    5. [5]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    6. [6]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    7. [7]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    8. [8]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    9. [9]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    10. [10]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    11. [11]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    14. [14]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    15. [15]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    16. [16]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    17. [17]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    18. [18]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    19. [19]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    20. [20]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

Metrics
  • PDF Downloads(10)
  • Abstract views(3060)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return