Citation: Juan WANG, Zhongqiu WANG, Qin SHANG, Guohong WANG, Jinmao LI. NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102 shu

NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers

Figures(9)

  • A BaTiO3/Pt/NiS double heterojunction photocatalyst with Pt and NiS as co-catalysts was prepared using electrostatic spinning, hydrothermal, and photo-deposition methods. The optimized BaTiO3/Pt/NiS sample showed the highest hydrogen production rate of 489 μmol·h-1·g-1, which is 2.5 times higher than that of pure BaTiO3. Exper-imental results and density functional theory (DFT) calculations have demonstrated the construction of a p-n junction between BaTiO3 and NiS, which efficiently facilitates the transfer of photogenerated holes from BaTiO3 to NiS. Additionally, the Schottky junction formed between BaTiO3 and Pt promotes the migration of photogenerated electrons from BaTiO3 to Pt. The opposite transfer routes of photogenerated electrons and holes naturally inhibit their recombination, resulting in a higher rate of hydrogen evolution. These results were further validated by photoelectro-chemical testing. The highest photocurrent density and smallest electrochemical impedance of the optimized BaTiO3/Pt/NiS sample convincingly proved its fastest separation of photogenerated electrons and holes, thus displaying the highest activity for hydrogen production.
  • 加载中
    1. [1]

      Yang Y, Zhou C Y, Wang W J, Xiong W P, Zeng G M, Huang D L, Zhang C, Song B, Xue W J, Li X P, Wang Z W, He D H, Luo H Z, Ouyang Z L. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production[J]. Chem. Eng. J., 2021,405126547. doi: 10.1016/j.cej.2020.126547

    2. [2]

      Guo S H, Li X H, Li J, Wei B Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems[J]. Nat. Commun., 2021,121343.

    3. [3]

      Shi X W, Dai C, Wang X, Hu J Y, Zhang J Y, Zheng L X, Mao L, Zheng H J. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution[J]. Nat. Commun., 2022,131287. doi: 10.1038/s41467-022-28995-1

    4. [4]

      ZU W L, LI L, HUANG J W, SUN Y R, MA F Y, CAO Y Z. Multi-pathway photoelectron migration and photocatalytic properties of AgIn5S8/carbon quantum dots/ZnIn2S4[J]. Chinese J. Inorg. Chem., 2022,38(6):1059-1072.  

    5. [5]

      Ruan X W, Cui X Q, Cui Y, Fan X F, Li Z Y, Xie T F, Ba K K, Jia G R, Zhang H Y, Zhang L, Zhang W, Zhao X, Leng J, Jin S Y, Singh D J, Zheng W T. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%[J]. Adv. Energy Mater., 2022,12(16)2200298.

    6. [6]

      Li J M, Wu C C, Li J, Dong B H, Zhao L, Wang S M. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chin. J. Catal., 2022,43:339-349. doi: 10.1016/S1872-2067(21)63875-5

    7. [7]

      Shang Q, Wang J, Yang J, Wang Z Q, Wang G H, Wang K, Wu X H, Li J M. Photocatalytic hydrogen evolution coupled with tetracycline photodegradation over S-scheme BaTiO3/Ag2S dual-function nanofibers: Performance and mechanism[J]. Appl. Surf. Sci., 2023,635157760. doi: 10.1016/j.apsusc.2023.157760

    8. [8]

      Cao J F, Ji Y X, Tian C B, Yi Z G. Synthesis and enhancement of visible light activities of nitrogen-doped BaTiO3[J]. J. Alloy. Compd., 2014,615:243-248. doi: 10.1016/j.jallcom.2014.07.008

    9. [9]

      Amaechi I C, Hadj Youssef A, Kolhatkar G, Rawach D, Gomez-Yañez C, Claverie J P, Sun S, Ruediger A. Ultrafast microwave-assisted hydrothermal synthesis and photocatalytic behaviour of ferroelectric Fe3+-doped BaTiO3 nanoparticles under simulated sunlight[J]. Catal. Today, 2021,360:90-98. doi: 10.1016/j.cattod.2019.07.021

    10. [10]

      Demircivi P, Simsek E B. Visible-light-enhanced photoactivity of perovskite-type W-doped BaTiO3 photocatalyst for photodegradation of tetracycline[J]. J. Alloy. Compd., 2019,774:795-802. doi: 10.1016/j.jallcom.2018.09.354

    11. [11]

      MENG G X, TIAN X X, ZHANG J R, ZHANG X, HAN F Q, QU S B. Effects of donor-doped on photocatalytic properties of BaTiO3-based nanoparticle[J]. Chinese J. Inorg. Chem., 2019,35(8):1387-1395. doi: 10.11862/CJIC.2019.183

    12. [12]

      Yu C Y, He J J, Tan M X, Hou Y X, Zeng H, Liu C B, Meng H M, Su Y J, Qiao L J, Lookman T, Bai Y. Selective enhancement of photo- piezocatalytic performance in BaTiO3 via heterovalent ion doping[J]. Adv. Funct. Mater., 2022,32(52)2209365. doi: 10.1002/adfm.202209365

    13. [13]

      Cui Y F, Sun H H, Shen G D, Jing P P, Pu Y P. Effect of dual-cocatalyst surface modification on photodegradation activity, pathway, and mechanisms with highly efficient Ag/BaTiO3/MnOx[J]. Langmuir, 2020,36(2):498-509. doi: 10.1021/acs.langmuir.9b02714

    14. [14]

      Liu Z W, Zhao K, Xing G X, Zheng W X, Tang Y F. One-step synthesis of unique thorn-like BaTiO3-TiO2 composite nanofibers to enhance piezo-photocatalysis performance[J]. Ceram. Int., 2021,47(5):7278-7284. doi: 10.1016/j.ceramint.2020.11.017

    15. [15]

      Zhao W, Zhang Q, Wang H G, Rong J C, Lei E, Dai Y J. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy, 2020,73104783.

    16. [16]

      Wang P G, Fan S Y, Li X Y, Wang J, Liu Z Y, Bai C P, Tadé M O, Liu S M. Piezotronic effect and hierarchical Z-scheme heterostructure stimulated photocatalytic H2 evolution integrated with C—N coupling of benzylamine[J]. Nano Energy, 2021,89106349. doi: 10.1016/j.nanoen.2021.106349

    17. [17]

      Zhou L P, Dai S Q, Xu S, She Y Q, Li Y L, Leveneur S, Qin Y L. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-Cluster/BaTiO3/CuS p-n heterojunction photocatalytic degradation of pollutants[J]. Appl. Catal. B-Environ Energy, 2021,291120019. doi: 10.1016/j.apcatb.2021.120019

    18. [18]

      Liu X T, Shen X F, Sa B S, Zhang Y G, Li X, Xue H. Piezotronic- enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers[J]. Nano Energy, 2021,89106391. doi: 10.1016/j.nanoen.2021.106391

    19. [19]

      Zhu M J, Zhang G H, Zhai L N, Cao J W, Li S S, Zeng T. Polarization-enhanced photoelectrochemical properties of BaTiO3/BaTiO3-x/CdS heterostructure nanocubes[J]. Dalton Trans., 2021,50:3137-3144. doi: 10.1039/D1DT00103E

    20. [20]

      He C P, Jing P P, Wang P F, Ji J M, Ouyang T, Cui Y F, Pu Y P. A novel hierarchical BaTiO3/AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant[J]. Ceram. Int., 2021,47:33426-33434. doi: 10.1016/j.ceramint.2021.08.249

    21. [21]

      Huang X Y, Wang K Q, Wang Y Z, Wang B, Zhang L L, Gao F, Zhao Y, Feng W H, Zhang S Y, Liu P. Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field[J]. Appl. Catal. B: Environ., 2018,227:322-329. doi: 10.1016/j.apcatb.2018.01.036

    22. [22]

      Liu Q, Zhai D, Xiao Z D, Tang C, Sun Q W, Bowen C R, Luo H, Zhang D. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation[J]. Nano Energy, 2022,92106702. doi: 10.1016/j.nanoen.2021.106702

    23. [23]

      Chen Y X, Lan S Y, Zhu M S. Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate[J]. Chinese Chem. Lett., 2021,32:2052-2056.

    24. [24]

      Zhou X F, Shen B, Zhai J W, Conesa J C. High performance generation of H2O2 under piezophototronic effect with multi-layer In2S3 nanosheets modified by spherical ZnS and BaTiO3 nanopiezoelectrics[J]. Small Methods, 2021,5(6)2100269.

    25. [25]

      Zhao H, Mao Q, Jian L, Dong Y M, Zhu Y F. Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms[J]. Chin. J. Catal., 2022,43(7):1774-1804.

    26. [26]

      Liu Y X, Sun Z X, Hu Y H. Bimetallic cocatalysts for photocatalytic hydrogen production from water[J]. Chem. Eng. J., 2021,409128250.

    27. [27]

      Xu F Y, Zhang L Y, Cheng B, Yu J G. Direct Z-scheme TiO2/NiS core-shell hybrid nanofibers with enhanced photocatalytic H2-production activity[J]. ACS Sustainable Chem. Eng., 2018,6(9):12291-12298.

    28. [28]

      Sun B S, Zheng J H, Yin D W, Jin H L, Wang X, Xu Q L, Liu A L, Wang S. Dual cocatalyst modified CdS achieving enhanced photocatalytic H2 generation and benzylamine oxidation performance[J]. Appl. Surf. Sci., 2022,592153277.

    29. [29]

      Zhao Y, Lu Y F, Chen L, Wei X F, Zhu J F, Zheng Y H. Redox dual-cocatalyst-modified CdS double-heterojunction photocatalysts for efficient hydrogen production[J]. ACS Appl. Mater. Interfaces, 2020,12:46073-46083.

    30. [30]

      Di T M, Deng Q R, Wang G M, Wang S G, Wang L X, Ma Y H. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production[J]. J. Mater. Sci. Technol., 2022,124:209-216.

    31. [31]

      Xiang D Z, Hao X Q, Jin Z L. Cu/CdS/MnOx Nanostructure-based photocatalyst for photocatalytic hydrogen evolution[J]. ACS Appl. Nano Mater., 2021,4:13848-13860.

    32. [32]

      WANG Z L, WANG J, ZHANG J F, DAI K. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions[J]. Acta Phys.-Chim. Sin., 2023,39(6):10-31.

    33. [33]

      Xing M Y, Qiu B C, Du M M, Zhu Q H, Wang L Z, Zhang J L. Spatially separated CdS shells exposed with reduction surfaces for enhancing photocatalytic hydrogen evolution[J]. Adv. Funct. Mater., 2017,27(35)1702624.

    34. [34]

      He B W, Bie C B, Fei X G, Cheng B, Yu J G, Ho W K, Al-Ghamdi A A, Wageh S. Enhancement in the photocatalytic H2 production activity of CdS NRs by Ag2S and NiS dual cocatalysts[J]. Appl. Catal. B- Environ. Energy, 2021,288119994.

    35. [35]

      Yuan B, Wu J, Qin N, Lin E Z, Bao D H. Enhanced piezocatalytic performance of (Ba, Sr) TiO3 nanowires to degrade organic pollutants[J]. ACS Appl. Nano Mater., 2018,1(9):5119-5127.

    36. [36]

      Fu B, Li J J, Jiang H D, He X L, Ma Y M, Wang J K, Hu C Z. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants[J]. Nano Energy, 2022,93106841.

    37. [37]

      Li Y Y, Li R, Zhai Y, Huang Y, Lee S C, Cao J J. Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer[J]. Appl. Surf. Sci., 2021,570151146.

    38. [38]

      Wang C L, Hu L M, Chai B, Yan J T, Li J F. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light[J]. Appl. Surf. Sci., 2018,430:243-252.

    39. [39]

      Meng L J, Wang Z H, Yang L, Ren W J, Liu W, Zhang Z D, Yang T, Santos M P D. A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route[J]. Appl. Surf. Sci., 2019,474:211-217.

    40. [40]

      Yao S S, Tang H, Liu M Q, Chen L L, Jing M X, Shen X Q, Li T B, Tan J L. TiO2 nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries[J]. J. Alloy Compd., 2019,788:639-648.

    41. [41]

      Sun H Q, Ullah R, Chong S, Ang H M, Tadé M O, Wang S B. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst[J]. Appl. Catal. B-Environ. Energy, 2011,108-109:127-133.

    42. [42]

      Wang Y H, Zhang L, Hu C L, Yu S N, Yang P P, Cheng D F, Zhao Z J, Gong J L. Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction[J]. Nano Res., 2019,12:2268-2274.

    43. [43]

      SHI D, HUANG Z L, YAN S D, WANG J, WANG G H. Preparation of Bi3TaO7/MXene nanosheets heterojunction for photocatalytic degradation of sodium sulfadiazine[J]. Chinese J. Inorg. Chem., 2022,38(8):1487-1498.  

    44. [44]

      Sharma D, Upadhyay S, Satsangi V R, Shrivastav R, Waghmare U V, Dass S. Nanostructured BaTiO3/Cu2O heterojunction with improved photoelectrochemical activity for H2 evolution: Experimental and first-principles analysis[J]. Appl. Catal. B: Environ., 2016,189:75-85.

    45. [45]

      Majhi D, Samal P K, Das K, Gouda S K, Bhoi Y P, Mishra B G. α-NiS/Bi2O3 nanocomposites for enhanced photocatalytic degradation of tramadol[J]. ACS Appl. Nano Mater., 2019,2(1):395-407.

    46. [46]

      Xin Y J, Lu Y, Han C C, Ge L, Qiu P, Li Y J, Fang S M. Novel NiS cocatalyst decorating ultrathin 2D TiO2 nanosheets with enhanced photocatalytic hydrogen evolution activity[J]. Mater. Res. Bull., 2017,87:123-129.

    47. [47]

      Chen Z, Yang S B, Tian Z F, Zhu B C. NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4[J]. Appl. Surf. Sci., 2019,469:657-665.

    48. [48]

      Xie P C, Yang F, Li R J, Ai C Z, Lin C F, Lin S W. Improving hydrogen evolution activity of perovskite BaTiO3 with Mo doping: Experiments and first-principles analysis[J]. Int. J. Hydrogen Energy, 2019,44(23):11695-11704.

    49. [49]

      Wen J Q, Xie J, Yang Z H, Shen R C, Li H Y, Luo X Y, Chen X B, Li X. Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons[J]. ACS Sustainable Chem. Eng., 2017,5(3):2224-2236.

    50. [50]

      Zhang C, Shao Z C, Zhang X L, Liu G Q, Zhang Y Z, Wu L, Liu C Y, Pan Y, Su F H, Gao M R, Li Y, Yu S H. Design principles for maximizing hole utilization of semiconductor quantum wires toward efficient photocatalysis[J]. Angew. Chem. Int. Ed., 2023,62e202305571.

    51. [51]

      Wang K, Qin H T, Li J, Cheng Q, Zhu Y F, Hu H Y, Peng J, Chen S Q, Wang G H. Metallic AgInS2 nanocrystals with sulfur vacancies boost atmospheric CO2 photoreduction under near-infrared light illumination[J]. Appl. Catal. B-Environ. Energy., 2023,332122763.

    52. [52]

      Wang K, Shao X L, Zhang K J, Wang J, Wu X H, Wang H K. 0D/3D Bi3TaO7/ZnIn2S4 heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H2 evolution: In situ irradiated XPS investigation and S-scheme mechanism insight[J]. Appl. Surf. Sci., 2022,596153444.

    53. [53]

      Yang J, Wang J, Zhao W J, Wang G H, Wang K, Wu X H, Li J M. 0D/1D Cu2-xS/TiO2 S-scheme heterojunction with enhanced photocatalytic CO2 reduction performance via surface plasmon resonance induced photothermal effects[J]. Appl. Surf. Sci., 2023,613156083.

    54. [54]

      Liao Y W, Wang G H, Wang J, Wang K, Yan S D, Su Y R. Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution[J]. J. Colloid Interface Sci., 2021,587:110-120.

    55. [55]

      Che L, Pan J L, Cai K X, Cong Y Q, Lv S W. The construction of p-n heterojunction for enhancing photocatalytic performance in environmental application: A review[J]. Sep. Purif. Technol., 2023,315123708.

  • 加载中
    1. [1]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(3)
  • Abstract views(725)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return