Citation: Yu-Ke ZHU, Xiao-Jia JIANG, Jia-Yi CHEN, Xiao-Hang FU, Li-Guang WU, Ting WANG. Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation[J]. Chinese Journal of Inorganic Chemistry, ;2023, 39(10): 1857-1868. doi: 10.11862/CJIC.2023.164 shu

Mechanism and pathways for degrading tetracycline via photocatalytic synergistic peroxysulfate-activated catalytic oxidation

Figures(10)

  • Aiming at enhancing the degradation efficiency of antibiotics in slightly polluted water bodies, the photocatalytic synergistic sodium peroxysulfate (PDS)-activated catalytic oxidation using chiral mesoporous TiO2 under irradiation of visible light (PDS/vis-TiO2) was employed to degrade tetracycline (TC). The differences in active species and degradation pathways of PDS activation (PDS/TiO2), visible light photocatalysis (vis-TiO2), and PDS/vis-TiO2 systems using mesoporous TiO2 as catalysts for TC degradation were comparatively studied. The results showed that the asymmetric helical stacking structure introduced abundant Ti3+ into chiral mesoporous TiO2, not only improving its visible light response but also activating PDS by Ti3+/Ti4+ couples to form free radicals. Both the photogenerated holes h+ and the free radicals (like ·OH) in the PDS/vis-TiO2 system could simultaneously participate in TC degradation. Within 5 h, the removal rate of TC (the concentration of TC in the solution was 5 mg·L-1) using the PDS/vis-TiO2 system could reach over 95%, far exceeding that of the PDS/TiO2 system (with a TC removal rate of 48.9%) and the vis-TiO2 system (with a TC removal rate of 71.1%). PDS/vis-TiO2 system had a high removal rate of TC in solutions with different concentrations, and the degradation all followed a first-order kinetic reaction process. Even when the initial concentration of TC reached 15 mg·L-1, the 5 h removal rate of TC by PDS/vis-TiO2 system could still reach 67.2%, which further indicated that the PDS synergistic photocatalysis had an effective ability to degrade TC. However, the removal rate of TC at low concentrations by PDS/vis-TiO2 was faster than using the same amount of TiO2 catalyst and PDS. Added PDS in the photocatalytic system would be activated by the photo-generated electrons to generate free radicals, which then consume photo-generated electrons to improve the separation rate of photo-generated holes and electrons, thus achieving synergistic enhancement on the pollutant degradation. Additionally, the free radicals after PDS activation would also enhance TC degradation. The density functional theory calculation and intermediate product analysis results indicate that the degradation pathway of TC in the PDS/vis-TiO2 system includes the degradation pathway of attacking TC by h+, as well as the degradation pathway of TC after the free radicals attack.
  • 加载中
    1. [1]

      Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters[J]. Int. J. Hyg. Environ. Health, 2021,238113859. doi: 10.1016/j.ijheh.2021.113859

    2. [2]

      GAO H, LI B, YAO Z W. Advances in research on the presence and environmental behavior of antibiotics in the marine environment[J]. Huanjing Huaxue-Environmental Chemistry, 2023,42(3):779-791.  

    3. [3]

      Lyu J, Yang L S, Zhang L, Ye B X, Wang L. Antibiotics in soil and water in China - A systematic review and source analysis[J]. Environ. Pollut., 2020,266(1)115147.

    4. [4]

      Li S S, Gao H, Zhang H B, Wei G K, Shu Q, Li R J, Jin S C, Na G S, Shi Y L. The fate of antibiotic resistance genes in the coastal lagoon with multiple functional zones[J]. J. Environ. Sci., 2023,128:93-106. doi: 10.1016/j.jes.2022.07.021

    5. [5]

      Hiller C X, Hubner U, Fajnorova S, Schwartz T, Drewes J E. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review[J]. Sci. Total Environ., 2019,685:596-608. doi: 10.1016/j.scitotenv.2019.05.315

    6. [6]

      Wei Z D, Liu J Y, Shangguan W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chin. J. Catal., 2020,41(10):1440-1450. doi: 10.1016/S1872-2067(19)63448-0

    7. [7]

      Zhu T T, Su Z X, Lai W X, Zhang Y B, Liu Y W. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Sci. Total Environ., 2021,776145906. doi: 10.1016/j.scitotenv.2021.145906

    8. [8]

      WANG J L, DONG M R, ZHANG Q C, LIN W S, XING Y. Preparation of Bi2MoO6 microspheres with hollow structure and degradation performance of ofloxacin antibiotic[J]. Chinese J. Inorg. Chem., 2020,36(5):827-834.  

    9. [9]

      Lee J, von Gunten U, Kim J H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks[J]. Environ. Sci. Technol., 2020,54(6):3064-3081. doi: 10.1021/acs.est.9b07082

    10. [10]

      Mohamed R M, Kadi M W, Ismail A A. A facile synthesis of mesoporous α-Fe2O 3/TiO2 nanocomposites for hydrogen evolution under visible light[J]. Ceram. Int., 2020,46(10):15604-15612. doi: 10.1016/j.ceramint.2020.03.107

    11. [11]

      Ding Y B, Fu L B, Peng X Q, Lei M, Wang C J, Jiang J Z. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties[J]. Chem. Eng. J., 2022,427131776. doi: 10.1016/j.cej.2021.131776

    12. [12]

      ZHA F J, LIU Q, WANG J Y, LIN Y H, WANG C Y, LI Y X. One-dimensional TiO2 anatase/rutile heterophase junctions: Preparation and photocatalytic properties for degrading formaldehyde[J]. Chinese J. Inorg. Chem., 2022,38(3):510-518.  

    13. [13]

      Liu J Z, Tang J, Wan J J, Wu C X, Graham B, Kerr P G, Wu Y H. Functional sustainability of periphytic biofilms in organic matter and Cu2+ removal during prolonged exposure to TiO2 nanoparticles[J]. J. Hazard. Mater., 2019,370:4-12. doi: 10.1016/j.jhazmat.2017.08.068

    14. [14]

      Sharma S, Shree B, Aditika , Sharma A, Irfan M, Kumar P. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation[J]. Environ. Res., 2022,212113168. doi: 10.1016/j.envres.2022.113168

    15. [15]

      Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical applications of TiO2 nanostructures: Recent advances[J]. Int. J. Nanomed., 2020,15:3447-3470. doi: 10.2147/IJN.S249441

    16. [16]

      Wang T, Li Y, Wu W T, Zhang Y L, Wu L G, Chen H L. Effect of chiral-arrangement on the solar adsorption of black TiO2-SiO2 mesoporous materials for photodegradation and photolysis[J]. Appl. Surf. Sci., 2021,537148025. doi: 10.1016/j.apsusc.2020.148025

    17. [17]

      Dong Z Y, Zhang Q, Chen B Y, Hong J M. Oxidation of bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chem. Eng. J., 2019,357:337-347. doi: 10.1016/j.cej.2018.09.179

    18. [18]

      Zhou J, Cheng H, Ma J F, Peng M G, Kong Y, Komarneni S. Persulfate activation by MnCuS nanocomposites for degradation of organic pollutants[J]. Sep. Purif. Technol., 2021,261118290. doi: 10.1016/j.seppur.2020.118290

    19. [19]

      FU X H, WANG L X, LI Y, WU L G, WANG T. Chiral TiO2-based photocatalysts with visible light response and their photo-degradation of organic pollutants[J]. Acta Scientiae Circumstantiae, 2021,41(12):4862-4870.  

    20. [20]

      Wang T, Li B R, Wu L G, Yin Y B, Jiang B Q, Lou J Q. Enhanced performance of TiO2/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light[J]. Adv. Powder Technol., 2019,30(9):1920-1931. doi: 10.1016/j.apt.2019.06.011

    21. [21]

      LIU X T, ZHU H C, LI Y, WANG F, ZHANG Y T, JIN G P, WEI F Y. A high-efficiency visible-light-driven mesoporous AgI@Fe-MIL-88B-NH2 photocatalyst via Z-scheme mechanism[J]. Chinese J. Inorg. Chem., 2019,35(7):1255-1266.  

    22. [22]

      Du Y E, Li W X, Bai Y, Huangfu Z W, Wang W J, Chai R D, Chen C D, Yang X J, Feng Q. Facile synthesis of TiO2/Ag3PO4 composites with co-exposed high-energy facets for efficient photodegradation of rhodamine B solution under visible light irradiation[J]. RSC Adv., 2020,10(41):24555-24569. doi: 10.1039/D0RA04183A

    23. [23]

      Duan L L, Hung C T, Wang J X, Wang C Y, Ma B, Zhang W, Ma Y Z, Zhao Z W, Yang C C, Zhao T C, Peng L, Liu D, Zhao D Y, Li W. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets[J]. Angew. Chem. Int. Ed., 2022,61(43)e202211307. doi: 10.1002/anie.202211307

    24. [24]

      Sabri M, Habibi-Yangjeh A, Chand H, Krishnan V. Activation of persulfate by novel TiO2/FeOCl photocatalyst under visible light: Facile synthesis and high photocatalytic performance[J]. Sep. Purif. Technol., 2020,250117268. doi: 10.1016/j.seppur.2020.117268

    25. [25]

      Chen Y, Bai X, Ji Y, Chen D. Enhanced activation of peroxymonosulfate using ternary MOFs-derived MnCoFeO for sulfamethoxazole degradation: Role of oxygen vacancies[J]. J. Hazard. Mater., 2023,441129912. doi: 10.1016/j.jhazmat.2022.129912

    26. [26]

      LIANG M J, DENG N, XIANG X Y, MEI Y, YANG Z Y, YANG Y, YANG S J. Bi/BiVO4 & Bi4V2O11 composite catalysts: Preparation and photocatalytic performance[J]. Chinese J. Inorg. Chem., 2019,35(2):263-270.  

    27. [27]

      MAO J Y, HUANG Y W, HUANG Z Q, LIU X P, XUE H, XIAO L R. Different photocatalytic performances for tetracycline hydrochloride degradation of p-block metal oxides Ga2O3 and Sb2O3[J]. Chinese J. Inorg. Chem., 2021,37(3):509-515.  

    28. [28]

      Cao Y X, Yuan X Z, Chen H Y, Wang H, Chen Y, Chen J Y, Huang H M, Mou Y, Shangguan Z C, Li X. Rapid concurrent photocatalysis-persulfate activation for ciprofloxacin degradation by Bi2S3 quantum dots-decorated MIL-53(Fe) composites[J]. Chem. Eng. J., 2023,456140971. doi: 10.1016/j.cej.2022.140971

    29. [29]

      Wu Y Q, Zhao X Y, Tian J T, Liu S X, Liu W Y, Wang T Y. Heterogeneous catalytic system of photocatalytic persulfate activation by novel Bi2WO 6 coupled magnetic biochar for degradation of ciprofloxacin[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2022,651129667. doi: 10.1016/j.colsurfa.2022.129667

    30. [30]

      XU H T, FU X H, FENG W H, WANG T. Photo-degradation mechanism and pathway for tetracycline in simulated seawater under irradiation of visible light[J]. Environmental Science, 2023,44(6):3260-3269. doi: 10.13227/j.hjkx.202206237

    31. [31]

      Shi W L, Hao C C, Fu Y M, Guo F, Tang Y B, Yan X. Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots[J]. Chem. Eng. J., 2022,433(3)133741.

    32. [32]

      XIE K, YE J M, SUN P, WANG H, MA D Z. Non-radical degradation of paracetamol by persulfate activation with modified ordered mesoporous carbon[J]. Acta Scientiae Circumstantiae, 2022,42(4):149-156.  

    33. [33]

      Liu X N, Li F, Liu Y, Li P S, Chen L, Li B, Qian T W, Liu W. Degradation of diclofenac in a photosensitization-like photocatalysis process using palladium quantum dots deposited graphite carbon nitride under solar light[J]. J. Environ. Chem. Eng., 2022,10(3)107545. doi: 10.1016/j.jece.2022.107545

    34. [34]

      Qi J, Yang X, Pan P Y, Huang T, Yang X, Wang C C, Liu W. Interface engineering of Co(OH)2 nanosheets growing on the KNbO3 perovskite based on electronic structure modulation for enhanced peroxymonosulfate activation[J]. Environ. Sci. Technol., 2022,56:5200-5212. doi: 10.1021/acs.est.1c08806

    35. [35]

      Kong W J, Gao Y, Yue Q Y, Li Q, Gao B Y, Kong Y, Wang X D, Zhang P, Wang Y. Performance optimization of CdS precipitated graphene oxide/polyacrylic acid composite for efficient photodegradation of chlortetracycline[J]. J. Hazard. Mater., 2020,388121780.

    36. [36]

      Ji H D, Liu W, Sun F B, Huang T B, Chen L, Liu Y, Qi J J, Xie C H, Zhao D Y. Experimental evidences and theoretical calculations on phenanthrene degradation in a solar-light-driven photocatalysis system using silica aerogel supported TiO2 nanoparticles: Insights into reactive sites and energy evolution[J]. Chem. Eng. J., 2021,419129605.

    37. [37]

      Ma L L, Xu J Y, Liu Y C, An Y T, Pan Z C, Yang B, Li L L, Hu T, Lai B. Improved degradation of tetracycline by Cu-doped MIL-101 (Fe) in a coupled photocatalytic and persulfate oxidation system: Efficiency, mechanism, and degradation pathway[J]. Sep. Purif. Technol., 2023,305112450.

    38. [38]

      Zhang Y, Zhou J B, Chen J H, Feng X Q, Cai W Q. Rapid degradation of tetracycline hydrochloride by heterogeneous photocatalysis coupling persulfate oxidation with MIL-53(Fe) under visible light irradiation[J]. J. Hazard. Mater., 2020,392122315.

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    14. [14]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    17. [17]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(36)
  • Abstract views(2153)
  • HTML views(685)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return