Theoretical investigation on the mechanism of CO2 hydrogenation to methanol over single atom Ge promoter doped Cu(111) surface
- Corresponding author: Wen-Wu ZHOU, Zhww1015@163.com
Citation:
Wen-Wu ZHOU, Xiao-Yi WEI, Meng-Yu XU, Fei FAN, Zhi-Ping CHEN, Jie KANG, Le ZHANG, An-Ning ZHOU. Theoretical investigation on the mechanism of CO2 hydrogenation to methanol over single atom Ge promoter doped Cu(111) surface[J]. Chinese Journal of Inorganic Chemistry,
;2023, 39(7): 1261-1274.
doi:
10.11862/CJIC.2023.100
Koytsoumpa E I, Bergins C, Kakaras E. The CO2 economy: Review of CO2 capture and reuse technologies[J]. J. Supercrit. Fluids, 2018,132:3-16. doi: 10.1016/j.supflu.2017.07.029
Zhang Z T, Shen C Y, Sun K H, Jia X Y, Ye J Y, Liu C J. Advances in studies of structural effect of the supported Ni catalyst for CO2 hydrogenation: From nanoparticle to single atom catalyst[J]. J. Mater. Chem. A, 2022,10(11):5792-5812. doi: 10.1039/D1TA09914K
Guo J X, Wang Z Y, Li J L, Wang Z. In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction[J]. ACS Catal., 2022,12(7):4026-4036. doi: 10.1021/acscatal.2c00671
YANG L L, MENG F H, ZHANG P, LIANG X T, LI Z. Catalytic performance for CO2 hydrogenation to light olefins over ZrCdOx/SAPO‑18 bifunctional catalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):448-456.
ZHANG Q, WEN Y L, WANG B, FAN H M, YANG C, SONG R P, ZHANG W Z, HUANG W. Effect of component control of catalysts with dual Ligand CuFe@MOFs as precursor on performance of CO2 hydrogenation to C2+ alcohol[J]. Chinese J. Inorg. Chem., 2021,37(8):1390-1398.
Wang X Y, Zhang H B. Kinetically relevant variation triggered by hydrogen pressure: A mechanistic case study of CO2 hydrogenation to methanol over Cu/ZnO[J]. J. Catal., 2022,406:145-156. doi: 10.1016/j.jcat.2021.12.034
Xie G M, Jin R R, Ren P J, Fang Y M, Zhang R D, Wang Z J. Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts[J]. Appl. Catal. B-Environ., 2023,324122233. doi: 10.1016/j.apcatb.2022.122233
Zhang S N, Wu Z X, Liu X F, Hua K M, Shao Z L, Wei B Y, Huang C J, Wang H, Sun Y H. A short review of recent advances in direct CO2 hydrogenation to alcohols[J]. Top. Catal., 2021,64(5):371-394.
Din I U, Shaharun M S, Alotaibi M A, Alharthi A I, Naeem A. Recent developments on heterogeneous catalytic CO2 reduction to methanol[J]. J. CO2 Util., 2019,34:20-33. doi: 10.1016/j.jcou.2019.05.036
Yang K W, Jiang J W. Computational design of a metal-based frustrated Lewis pair on defective UiO-66 for CO2 hydrogenation to methanol[J]. J. Mater. Chem. A, 2020,8(43):22802-22815. doi: 10.1039/D0TA07051C
Marcos F C, Alvim R S, Lin L L, Betancourt L E, Petrolini D D, Senanayake S D, Alves R M, Assaf J M, Rodriguez J A, Giudici R. The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study[J]. Chem. Eng. J., 2023,452139519. doi: 10.1016/j.cej.2022.139519
Rui N, Shi R, Gutiérrez R A, Rosales R, Kang J D, Mahapatra M, Ramírez P J, Senanayake S D, Rodriguez J A. CO2 hydrogenation on ZrO2/Cu(111) surfaces: production of methane and methanol[J]. Ind. Eng. Chem. Res., 2021,60(51):18900-18906. doi: 10.1021/acs.iecr.1c03229
Halder A, Lenardi C, Timoshenko J, Mravak A, Yang B, Kolipaka L K, Piazzoni C, Seifert S, Bonacic-koutecky V, Frenkel A I. CO2 methanation on Cu-cluster decorated zirconia supports with different morphology: A combined experimental in situ GIXANES/GISAXS, ex situ XPS and theoretical DFT study[J]. ACS Catal., 2021,11(10):6210-6224. doi: 10.1021/acscatal.0c05029
Jiang X, Nie X W, Guo X W, Song C S, Chen J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem. Rev., 2020,120(15):7984-8034. doi: 10.1021/acs.chemrev.9b00723
Zhong J W, Yang X F, Wu Z L, Liang B L, Huang Y Q, Zhang T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chem. Soc. Rev., 2020,49(5):1385-1413. doi: 10.1039/C9CS00614A
Guil-López R, Mota N, Llorente J, Millán E, Pawelec B, Fierro J L G, Navarro R. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis[J]. Materials, 2019,12(23)3902. doi: 10.3390/ma12233902
Jiang X, Nie X W, Wang X X, Wang H Z, Koizumi N, Chen Y G, Guo X W, Song C S. Origin of Pd-Cu bimetallic effect for synergetic promotion of methanol formation from CO2 hydrogenation[J]. J. Catal., 2019,369:21-32. doi: 10.1016/j.jcat.2018.10.001
LIU C H, GUO X M, ZHONG C L, LI L, HUA Y X, MAO D S, LU G Z. Methanol synthesis from CO2 hydrogenation over supported CuO/TiO2 Catalysts[J]. Chinese J. Inorg. Chem., 2016,32(8):1405-1412.
DONG H N, GE Y Y, WEI X Y, LIU D P, YAN D Y, YAN S C. Electrodepositing dense Sn/SnBi alloy on carbon cloth for electrocatalytic CO2 reduction[J]. Chinese J. Inorg. Chem., 2022,38(12):2433-2442. doi: 10.11862/CJIC.2022.250
Ye R, Zhao J, Wickemeyer B B, Toste F D, SomorjaI G A. Foundations and strategies of the construction of hybrid catalysts for optimized performances[J]. Nat. Catal., 2018,1(5):318-325. doi: 10.1038/s41929-018-0052-2
YU Y, HAO A X, CHEN H B, HE J, WEI S X, YIN Y S. Effect of TiO2 as promoter on catalytic performance of Cu-ZnO/ZrO2 in hydrogenation of CO2 to methanol[J]. Petrochemical Technology, 2014,43(5):511-516. doi: 10.3969/j.issn.1000-8144.2014.05.005
DAI W H, XIN Z. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol[J]. CIESC Journal, 2022,73(8):3586-3596.
LI G X, TIAN T, ZHANG Q, LI H X, DONG P, LI H W. Recent Advances of Nanomaterials in Hydrogenation of CO2 to Methanol[J]. Journal of Molecular Catalysis(China), 2022,36(2):190-198.
LIANG Z M, NIE X W, GUO X W, SONG C S. DFT insight into the effect of Ni doping on hydrocarbons synthesis from CO2 hydrogenation over Fe catalyst[J]. Journal of Molecular Catalysis(China), 2022,36(2):190-198.
Toyir J, de la Piscina P R, Fierro J L G, Homs N S. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors[J]. Appl. Catal. B-Environ., 2001,34(4):255-266. doi: 10.1016/S0926-3373(01)00203-X
SONG M, AN X Q, LIU Z. The promotional effect during hydrogenation of CO2 to methanol over Cu based catalysts[J]. Chemical Engineering Design Communications, 2022,48(5):7-11.
Melián-cabrera I, Granados M L, Fierro J L G. Pd-modified Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures: Catalytic structures and performance[J]. J. Catal., 2002,210(2):285-294. doi: 10.1006/jcat.2002.3677
Rasteiro L F, De Sousa R A, Vieira L H, Ocampo-Restrepo V K, Verga L G, Assaf J M, Da Silva J L, Assaf E M. Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide‑supported Ni5Ga3 catalysts: An experimental and DFT study[J]. Appl. Catal. B-Environ., 2022,302120842. doi: 10.1016/j.apcatb.2021.120842
WU T W, JIA G X, BAO J X, LIU Y Y, AN S L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3 co-doped CeO2 system: A DFT+U study[J]. Chinese J. Inorg. Chem., 2016,32(8):1363-1369.
WANG X F, SHENG C Y, WU J L, YE X Q. First-principles calculation of H/CO2 interaction in plasma: A density functional theory-based study[J]. Chinese J. Inorg. Chem., 2022,38(8):1470-1476.
Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B L. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012,336(6083):893-897. doi: 10.1126/science.1219831
Yang Y X, White M G, Liu P. Theoretical study of methanol synthesis from CO2 hydrogenation on metal-doped Cu (111) surfaces[J]. J. Phys. Chem. C, 2012,116(1):248-256. doi: 10.1021/jp208448c
Kanuri S, Roy S, Chakraborty C, Datta S P, Singh S A, Dinda S. An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism[J]. Int. J. Energy Res., 2022,46(5):5503-5522. doi: 10.1002/er.7562
ZHANG K W, CHEN Y F, HU T P, LÜ X M. Theoretical study of methanol synthesis from CO2 hydrogenation on the surface of NiO supported In2O3(110) catalyst[J]. Journal of Fuel Chemistry and Technology, 2021,49(11):1684-1692.
Taylor P A, Rasmussen P B, Chorkendorff I. Is the observed hydrogenation of formate the rate-limiting step in methanol synthesis?[J]. J. Chem. Soc. Faraday Trans., 1995,91(8):1267-1269. doi: 10.1039/ft9959101267
Yang Y, Mei D H, Peden C H F, Campbell C T, MIMS C A. Surface-bound intermediates in low-temperature methanol synthesis on copper: Participants and spectators[J]. ACS Catal., 2015,5(12):7328-7337. doi: 10.1021/acscatal.5b02060
Kattel S, Yan B H, Yang Y X, Chen J G, Liu P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J. Am. Chem. Soc., 2016,138(38):12440-12450. doi: 10.1021/jacs.6b05791
Karelovic A, Galdames G, Medina J C, Yévenes C, Barra Y, Jiménez R. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles[J]. J. Catal., 2019,369:415-426. doi: 10.1016/j.jcat.2018.11.012
Hong Q J, Liu Z P. Mechanism of CO2 hydrogenation over Cu/ZrO2 (212) interface from first-principles kinetics Monte Carlo simulations[J]. Surf. Sci., 2010,604(21/22):1869-1876.
Grabow L, Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catal., 2011,1(4):365-384. doi: 10.1021/cs200055d
Liu C, Yang B, Tyo E, Seifert S, Debartolo J, von Issendorff B, Zapol P, Vajda S, Curtiss L A. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures[J]. J. Am. Chem. Soc., 2015,137(27):8676-8679. doi: 10.1021/jacs.5b03668
Jiang X, Koizumi N, Guo X W, Song C S. Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol[J]. Appl. Catal. B-Environ., 2015,170-171:173-185. doi: 10.1016/j.apcatb.2015.01.010
Gaikwad R, Bansode A, Urakawa A. High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol[J]. J. Catal., 2016,343:127-132. doi: 10.1016/j.jcat.2016.02.005
Rodriguez J A, Evans J, Feria L, Vidal A B, Liu P, Nakamura K, Illas F. CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane[J]. J. Catal., 2013,307:162-169. doi: 10.1016/j.jcat.2013.07.023
Peng G W, Sibener S, Schatz G C, Ceyer S T, Mavrikakis M. CO2 hydrogenation to formic acid on Ni (111)[J]. J. Phys. Chem. C, 2012,116(4):3001-3006. doi: 10.1021/jp210408x
Larmier K, Liao W C, Tada S, Lam E, Verel R, Bansode A, Urakawa A, Comas-Vives A, Copéret C. CO2-to-methanol hydrogenation on zirconia-supported copper nanoparticles: reaction intermediates and the role of the metal-support interface[J]. Angew. Chem. Int. Ed., 2017,56(9):2318-2323. doi: 10.1002/anie.201610166
Kattel S, Ramírez P J, Chen J G, Rodriguez J A, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017,355(6331):1296-1299. doi: 10.1126/science.aal3573
Bustamante F, Enick R M, Cugini A V, Killmeyer R P, Howard B H, Rothenberger K S, Ciocco M, Morreale B, Chattopadhyay S, Shi S. High-temperature kinetics of the homogeneous reverse water-gas shift reaction[J]. AIChE J., 2004,50(5):1028-1041. doi: 10.1002/aic.10099
HOU R J, QIU R, SUN K N. Progress in the Cu-based catalyst supports for methanol synthesis from CO2[J]. Chemical Industry and Engineering Progress, 2020,39(7):2639-2647.
Fan F, Chen Z P, Zhou A N, Yang Z Y, Zhang Y T, He X X, Kang J, Zhou W W. Theoretical investigation on the inert pair effect of Ga on both the Ga-Ni-Mo-S nanocluster and the direct desulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel, 2023,333126351. doi: 10.1016/j.fuel.2022.126351
Zhou W W, Zhang Q, Zhou Y S, Wei Q, Du L, Ding S J, Jiang S J, Zhang Y N. Effects of Ga-and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catal. Today, 2018,305:171-181. doi: 10.1016/j.cattod.2017.07.006
Zhao H B, Yu R F, Ma S C, Xu K Z, Chen Y, Jiang K, Fang Y, Zhu C X, Liu X C, Tang Y. The role of Cu1-O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation[J]. Nat. Catal., 2022,5(9):818-831. doi: 10.1038/s41929-022-00840-0
Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990,92(1):508-517. doi: 10.1063/1.458452
Delley B. From molecules to solids with the DMol3 approach[J]. J. Chem. Phys., 2000,113(18):7756-7764. doi: 10.1063/1.1316015
Perdew J P, Burke K, Ernzerhof M. Comment on "Generalized gradient approximation made simple"-Reply[J]. Phys. Rev. Lett., 1998,80(4)891. doi: 10.1103/PhysRevLett.80.891
Bergner A, Dolg M, Küchle W, Stoll H, Preuß H. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17[J]. Mol. Phys., 1993,80(6):1431-1441. doi: 10.1080/00268979300103121
Grimme S. Semiempirical GGA‐type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem., 2006,27(15):1787-1799. doi: 10.1002/jcc.20495
Halgren T A, Lipscomb W N. The synchronous-transit method for determining reaction pathways and locating molecular transition states[J]. Chem. Phys. Lett., 1977,49(2):225-232. doi: 10.1016/0009-2614(77)80574-5
Sharma S K, Paul B, Pal R S, Bhanja P, Banerjee A, Samanta C, Bal R. Influence of indium as a promoter on the stability and selectivity of the nanocrystalline Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ACS Appl. Mater. Interfaces, 2021,13(24):28201-28213. doi: 10.1021/acsami.1c05586
Lide D R. CRC Handbook of Chemistry and Physics. 87th ed. Florida: CRC Press, 2007: 1438
Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S-P, Lu X Q, Wu C M L, Guo W Y. Initial reduction of CO2 on Pd-, Ru-, and Cu-doped CeO2(111) surfaces: Effects of surface modification on catalytic activity and selectivity[J]. ACS Appl. Mater. Interfaces, 2017,9(31):26107-26117. doi: 10.1021/acsami.7b07945
Liu L N, Fan F, Jiang Z, Gao X F, Wei J J, Fang T. Mechanistic study of Pd-Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation[J]. J. Phys. Chem. C, 2017,121(47):26287-26299. doi: 10.1021/acs.jpcc.7b06166
Tang Q L, Hong Q J, Liu Z P. CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo[J]. J. Catal., 2009,263(1):114-122. doi: 10.1016/j.jcat.2009.01.017
ZHANG R G. Studies on the modulation of structure and the regulation of catalytic performance for Cu-based catalysts in one-carbon reaction. Taiyuan: Taiyuan University of Technology, 2013: 61-72
Yin K J, Shen Y L. Theoretical insights into CO2 hydrogenation to HCOOH over FexZr1-xO2 solid solution catalyst[J]. Appl. Surf. Sci., 2020,528146926. doi: 10.1016/j.apsusc.2020.146926
Liu L N, Fan F, Bai M M, Xue F, Ma X R, Jiang Z, Fang T. Mechanistic study of methanol synthesis from CO2 hydrogenation on Rh-doped Cu(111) surfaces[J]. Mol. Catal., 2019,466:26-36. doi: 10.1016/j.mcat.2019.01.009
Yan Y, Wong R J, Ma Z R, Donat F, Xi S B, Saqline S, Fan Q W H, Du Y H, Borgna A, He Q. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts[J]. Appl. Catal. B-Environ., 2022,306121098. doi: 10.1016/j.apcatb.2022.121098
Zhao Y F, Yang Y, Mims C, Peden C H, LI J, Mei D. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. J. Catal., 2011,281(2):199-211. doi: 10.1016/j.jcat.2011.04.012
Gokhale A A, Dumesic J A, Mavrikakis M. On the mechanism of low-temperature water gas shift reaction on copper[J]. J. Am. Chem. Soc., 2008,130(4):1402-1414. doi: 10.1021/ja0768237
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Fen G Z C, An H Y, Li C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal., 2017,7(12):8544-8548. doi: 10.1021/acscatal.7b03251
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
Yong-Fang Shi , Sheng-Hua Zhou , Zuju Ma , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Yaqin Zheng , Lian Zhuo , Meng Li , Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119
Negative charge accumulation and depletion are marked by blue and yellow, respectively.
IS: initial structure, FS: final structure.
Electron accumulation and depletion regions are marked by red and blue, respectively.
The double colors energy step is a common step for two different reaction routes.