Citation: Min SHU, Hai-Tao LIU, Sheng PENG, Zhi-Rong WU, Rui ZHANG, Feng LI, Jian LIU. Research Progress of Electrochromic Materials Based on Fe(Ⅱ) Coordination Polymers[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1690-1706. doi: 10.11862/CJIC.2022.182 shu

Research Progress of Electrochromic Materials Based on Fe(Ⅱ) Coordination Polymers

Figures(26)

  • Electrochromism is a phenomenon exhibiting color changes under an external electrical stimulus. Electrochromic materials can switch reversibly between different redox and/or oxidation states, resulting in new absorption bands in the visible or near?infrared region. So far, electrochromic materials mainly included transition metal oxides, transition metal coordination polymers, viologens, organic conjugated polymers, and so on. Transition metal coordination polymers-based electrochromic materials possessed the combined advantages of both inorganic materials and organic materials and showed a wide application prospect. Ferric coordination polymers were excellent electrochromic materials with good redox properties and abundant electronic transitions. In this paper, the research progress of electrochromic materials of ferric coordination polymers is reviewed, mainly from the aspects of arm shape, type, and spacer group of organic ligands.
  • 加载中
    1. [1]

      Fu W A, Chen H J, Han Y Y, Wang W Y, Zhang R, Liu J. Electropolymerization of D-A-D Type Monomers Consisting of Triphenylamine and Substituted Quinoxaline Moieties for Electrochromic Devices[J]. New J. Chem., 2021,45(40):19082-19087. doi: 10.1039/D1NJ04074J

    2. [2]

      Chen H J, Wang W Y, Zhu J J, Han Y Y, Liu J. Electropolymerization of D-A Type EDOT-Based Monomers Consisting of Camphor Substituted Quinoxaline Unit for Electrochromism with Enhanced Performance[J]. Polymer, 2022,240124485. doi: 10.1016/j.polymer.2021.124485

    3. [3]

      Zhu J J, Wang W Y, Chen H J, Han Y Y, Liu J. Electropolymerization of D - A - D Type Monomers Consisting of Thiophene and Quionaxline Moieties for Electrochromic Devices and Supercapacitors[J]. J. Solid State Chem., 2022,307122739. doi: 10.1016/j.jssc.2021.122739

    4. [4]

      Yen H J, Lin K Y, Liou G S. High Tg, Ambipolar, and Near-Infrared Electrochromic Anthraquinone - Based Aramids with Intervalence Charge-Transfer Behavior[J]. J. Polym. Sci. Pol. Chem., 2012,50(1):61-69. doi: 10.1002/pola.24980

    5. [5]

      Cong S, Geng F X, Zhao Z G. Tungsten Oxide Materials for Optoelectronic Applications[J]. Adv. Mater., 2016,28(47):10518-10528. doi: 10.1002/adma.201601109

    6. [6]

      Guo W B, Cong Z F, Guo Z H, Zhang P P, Chen Y H, Hu W G, Wang Z L, Pu X. Multifunctional Self-Charging Electrochromic Supercapacitors Driven by Direct - Current Triboelectric Nanogenerators[J]. Adv. Funct. Mater., 2021,31(36)2104348. doi: 10.1002/adfm.202104348

    7. [7]

      Zhong Y, Chai Z S, Liang Z M, Sun P, Xie W G, Zhao C X, Mai W J. Electrochromic Asymmetric Supercapacitor Windows Enable Direct Determination of Energy Status by the Naked Eye[J]. ACS Appl. Mater. Interfaces, 2017,9(39):34085-34092. doi: 10.1021/acsami.7b10334

    8. [8]

      Qu S Q, Guan J, Cai D Q, Wang Q S, Wang X Y, Song W, Ji W. An Electrochromic Ag - Decorated WO3-x Film with Adjustable Defect States for Electrochemical Surface - Enhanced Raman Spectroscopy[J]. Nanomaterials, 2022,12(10)1637. doi: 10.3390/nano12101637

    9. [9]

      Jo M H, Kim K H, Ahn H J. P - Doped Carbon Quantum Dot Graft - Functionalized Amorphous WO3 for Stable and Flexible Electrochromic Energy-Storage Devices[J]. Chem. Eng. J., 2022,445136826. doi: 10.1016/j.cej.2022.136826

    10. [10]

      Wang B S, Huang Y, Han Y, Zhang W S, Zhou C H, Jiang Q Y, Chen F X, Wu X K, Li R, Lyu P, Zhao S M, Wang F, Zhang R F. A Facile Strategy to Construct Au@VxO2 x+1 Nanoflowers as a Multicolor Electrochromic Material for Adaptive Camouflage[J]. Nano Lett., 2022,22(9):3713-3720. doi: 10.1021/acs.nanolett.2c00600

    11. [11]

      Cai J Y, Yu D B, Zhang Y, Yao S Z, Zhang X R, Cui J W, Wang Y, Liu J Q, Yu C P, Sun X C, Wu Y C. A Facile Synthesis of Porous Amorphous/Crystalline TiO2 Hybrids for Enhanced Electrochromic Performances[J]. J. Electroanal. Chem., 2022,914116304. doi: 10.1016/j.jelechem.2022.116304

    12. [12]

      Cui B B, Yao C J, Yao J N, Zhong Y W. Electropolymerized Films as a Molecular Platform for Volatile Memory Devices with Two Near - Infrared Outputs and Long Retention Time[J]. Chem. Sci., 2014,5(3):932-941. doi: 10.1039/C3SC52815D

    13. [13]

      Oka S, Ozawa H, Yoshikawa K, Ikeda T, Haga M. Hydrogen-Bonded Metallo-Supramolecular Polymers Based on Ruthenium or Iron Complexes for the Selective Extraction of Single - Walled Carbon Nanotubes[J]. Dalton Trans., 2018,47(40):14195-14203. doi: 10.1039/C8DT01573B

    14. [14]

      Banasz R, Wałęsa - Chorab M. Polymeric Complexes of Transition Metal Ions as Electrochromic Materials: Synthesis and Properties[J]. Coord. Chem. Rev., 2019,389:1-18. doi: 10.1016/j.ccr.2019.03.009

    15. [15]

      Li X F, Perera K, He J Z, Gumyusenge A, Mei J G. Solution-Processable Electrochromic Materials and Devices: Roadblocks and Strategies towards Large - Scale Applications[J]. J. Mater. Chem. C, 2019,7:12761-12789. doi: 10.1039/C9TC02861G

    16. [16]

      Chen F, Ren Y Y, Guo J N, Yan F. Thermo - and Electro - Dual Responsive Poly(ionic liquid) Electrolyte Based Smart Windows[J]. Chem. Commun., 2017,53(10):1595-1598. doi: 10.1039/C6CC08924K

    17. [17]

      Lu H C, Kao S Y, Yu H F, Chang T H, Kung C W, Ho K C. Achieving Low - Energy Driven Viologens - Based Electrochromic Devices Utilizing Polymeric Ionic Liquids[J]. ACS Appl. Mater. Interfaces, 2016,8(44):30351-30361. doi: 10.1021/acsami.6b10152

    18. [18]

      Hu C W, Lu H C, Kao S Y, Lee K M, Vittal R, Yu H F, Chen P W, Jan D J, Ho K C. A Transparent-Green-Blue Electrochromic Device Based on 2, 2, 6, 6-Tetramethyl-1-piperidinyloxy (TEMPO), Polyaniline, and HV(BF4)2[J]. Sol. Energy Mater. Sol. Cells, 2019,200109993. doi: 10.1016/j.solmat.2019.109993

    19. [19]

      Wu W N, Yu H F, Yeh M H, Ho K C. Incorporating Electrospun Nanofibers of TEMPO-Grafted PVDF-HFP Polymer Matrix in Viologen - Based Electrochromic Devices[J]. Sol. Energy Mater. Sol. Cells, 2020,208110375. doi: 10.1016/j.solmat.2019.110375

    20. [20]

      Neo W T, Cho C M, Shi Z G, Chua S J, Xu J W. Modulating High-Energy Visible Light Absorption to Attain Neutral-State Black Electrochromic Polymers[J]. J. Mater. Chem. C, 2016,4(1):28-32. doi: 10.1039/C5TC02883C

    21. [21]

      Lo C K, Shen D E, Reynolds J R. Fine-Tuning the Color Hue of π-Conjugated Black - to - Clear Electrochromic Random Copolymers[J]. Macromolecules, 2019,52(17):6773-6779. doi: 10.1021/acs.macromol.9b01443

    22. [22]

      He J Z, You L Y, Mei J G. Self - Bleaching Behaviors in Black - to - Transmissive Electrochromic Polymer Thin Films[J]. ACS Appl. Mater. Interfaces, 2017,9(39):34122-34130. doi: 10.1021/acsami.7b09140

    23. [23]

      Savagian L R, Österholm A M, Shen D E, Christiansen D T, Kuepfert M, Reynolds J R. Conjugated Polymer Blends for High Contrast Black - to - Transmissive Electrochromism[J]. Adv. Opt. Mater., 2018,6(19)1800594. doi: 10.1002/adom.201800594

    24. [24]

      Banasz R, Kubicki M, Walesa - Chorab M. Yellow - to - Brown and Yellow - to - Green Electrochromic Devices Based on Complexes of Transition Metal Ions with a Triphenylamine - Based Ligand[J]. Dalton Trans., 2020,49(42):15041-15053. doi: 10.1039/D0DT03232H

    25. [25]

      Napierała S, Wałęsa - Chorab M. On - Substrate Postsynthetic Metal Ion Exchange as a Tool for Tuning Electrochromic Properties of Materials[J]. Eur. Polym. J., 2020,140110052. doi: 10.1016/j.eurpolymj.2020.110052

    26. [26]

      Napierala S, Kubicki M, Walesa-Chorab M. Toward Electrochromic Metallopolymers: Synthesis and Properties of Polyazomethines Based on Complexes of Transition-Metal Ions[J]. Inorg. Chem., 2021,60(18):14011-14021. doi: 10.1021/acs.inorgchem.1c01249

    27. [27]

      Guven N, Sultanova H, Ozer B, Yucel B, Camurlu P. Tuning of Electrochromic Properties of Electrogenerated Polythiophenes through Ru Complex Tethering and Backbone Derivatization[J]. Electrochim. Acta, 2020,329135134. doi: 10.1016/j.electacta.2019.135134

    28. [28]

      Mondal S, Yoshida T, Maji S, Ariga K, Higuchi M. Transparent Supercapacitor Display with Redox - Active Metallo - Supramolecular Polymer Films[J]. ACS Appl. Mater. Interfaces, 2020,12(14):16342-16349. doi: 10.1021/acsami.9b23123

    29. [29]

      Mondal S, Yoshida T, Rana U, Bera M K, Higuchi M. Thermally Stable Electrochromic Devices Using Fe-Based Metallo-Supramolecular Polymer[J]. Sol. Energy Mater. Sol. Cells, 2019,200110000. doi: 10.1016/j.solmat.2019.110000

    30. [30]

      Higuchi M. Stimuli - Responsive Metallo - Supramolecular Polymer Films: Design, Synthesis and Device Fabrication[J]. J. Mater. Chem. C, 2014,2(44):9331-9341. doi: 10.1039/C4TC00689E

    31. [31]

      Schott M, Lorrmann H, Szczerba W, Beck M, Kurth D G. State - of - the-Art Electrochromic Materials Based on Metallo-Supramolecular Polymers[J]. Sol. Energy Mater. Sol. Cells, 2014,126:68-73. doi: 10.1016/j.solmat.2014.03.032

    32. [32]

      Keisar H, de Ruiter G, Velders A H, Milko P, Gulino A, Evmenenko G, Shimon L J W, Diskin - Posner Y, Lahav M, van der Boom M E. Sorting of Molecular Building Blocks from Solution to Surface[J]. J. Am. Chem. Soc., 2018,140(26):8162-8171. doi: 10.1021/jacs.8b02968

    33. [33]

      Yao C J, Zhong Y W, Nie H J, Abruna H D, Yao J N. Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1, 2, 4, 5-Tetra(2-pyridyl)benzene[J]. J. Am. Chem. Soc., 2011,133(51):20720-20723. doi: 10.1021/ja209620p

    34. [34]

      Laschuk N O, Ahmad R, Ebralidze I I, Poisson J, Easton E B, Zenkina O V. Multichromic Monolayer Terpyridine - Based Electrochromic Materials[J]. ACS Appl. Mater. Interfaces, 2020,12(37):41749-41757. doi: 10.1021/acsami.0c11478

    35. [35]

      Cai G F, Chen J W, Xiong J Q, Eh A L, Wang J X, Higuchi M, Lee P S. Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices[J]. ACS Energy Lett, 2020,5(4):1159-1166. doi: 10.1021/acsenergylett.0c00245

    36. [36]

      Roy S, Chakraborty C. Sub - second Electrochromic Switching and Ultra-High Coloration Efficiency in Halloysite Nanoclay Incorporated Metallo - Supramolecular Polymer Nano - Hybrid Based Electrochromic Device[J]. Sol. Energy Mater. Sol. Cells, 2020,208110392. doi: 10.1016/j.solmat.2019.110392

    37. [37]

      Malik N, Dov N E, de Ruiter G, Lahav M, van der Boom M E. On - Surface Self - Assembly of Stimuli - Responsive Metallo - Organic Films: Automated Ultrasonic Spray - Coating and Electrochromic Devices[J]. ACS Appl. Mater. Interfaces, 2019,11(25):22858-22868. doi: 10.1021/acsami.9b05512

    38. [38]

      Schott M, Szczerba W, Posset U, Vuk A S, Beck M, Riesemeier H, Thunemann A F, Kurth D G. In Operando XAFS Experiments on Flexible Electrochromic Devices Based on Fe(Ⅱ)- Metallo - Supramolecular Polyelectrolytes and Vanadium Oxide[J]. Sol. Energy Mater. Sol. Cells, 2016,147:61-67. doi: 10.1016/j.solmat.2015.10.015

    39. [39]

      Shao J Y, Yao C J, Cui B B, Gong Z L, Zhong Y W. Electropolymerized Films of Redox - Active Ruthenium Complexes for Multistate Near - Infrared Electrochromism, Ion Sensing, and Information Storage[J]. Chin. Chem. Lett., 2016,27(8):1105-1114. doi: 10.1016/j.cclet.2016.05.018

    40. [40]

      Nie H J, Zhong Y W. Near-Infrared Electrochromism in Electropolymerized Films of a Phen - 1, 4 - diyl - Bridged Diruthenium Complex[J]. Inorg. Chem., 2014,53(20):11316-11322. doi: 10.1021/ic5019967

    41. [41]

      Li Z J, Yao C J, Zhong Y W. Near-Infrared Electrochromism of Multilayer Films of a Cyclometalated Diruthenium Complex Prepared by Layer - by - Layer Deposition on Metal Oxide Substrates[J]. Sci. China Chem., 2019,62(12):1675-1685. doi: 10.1007/s11426-019-9640-1

    42. [42]

      Bera M K, Chakraborty C, Rana U, Higuchi M. Electrochromic Os(Ⅱ) - Based Metallo-Supramolecular Polymers[J]. Macromol. Rapid Commun., 2018,39(22)1800415. doi: 10.1002/marc.201800415

    43. [43]

      Li H F, Zhang L S, Fan X L, Zhao Y. Theoretical Studies on the Redox - Stimulated Isomerization in Electrochromic Osmium Sulfoxide Complexes[J]. J. Phys. Chem. A, 2015,119(18):4244-4251. doi: 10.1021/acs.jpca.5b02134

    44. [44]

      Yoshida T, Bera M K, Narayana Y S L V, Mondal S, Abe H, Higuhi M. Electrochromic Os - Based Metallo - Supramolecular Polymers: Electronic State Tracking by In Situ XAFS, IR, and Impedance Spectroscopies[J]. RSC Adv., 2020,10(41):24691-24696. doi: 10.1039/D0RA03236K

    45. [45]

      Liu Y R, Sakamoto R, Ho C L, Nishihara H, Wong W Y. Electrochromic Triphenylamine-Based Cobalt Complex Nanosheets[J]. J. Mater. Chem. C, 2019,7(30):9159-9166. doi: 10.1039/C9TC02257K

    46. [46]

      Atar A B, Jeong J Y, Kim N, Park J S. Metallo-Supramolecular Polymers Made of Cobalt and 3, 4 - Propylenedioxythiophene - Bisterpyridine Complexes for Electrochromic Applications[J]. Macromol. Res., 2018,26(9):814-818. doi: 10.1007/s13233-018-6107-z

    47. [47]

      Laschuk N O, Ebralidze I I, Easton E B, Zenkina O V. Osmium-and Cobalt-Terpyridine-Based Electrochromic Devices for "Smart" Signage Application: The Effect of Lighting on Color Perception[J]. Adv. Electron. Mater., 2021,7(10)2100460. doi: 10.1002/aelm.202100460

    48. [48]

      Hossain M D, Sato T, Higuchi M. A Green Copper - Based Metallo - Supramolecular Polymer: Synthesis, Structure, and Electrochromic Properties[J]. Chem. Asian J., 2013,8(1):76-79. doi: 10.1002/asia.201200668

    49. [49]

      Kimura M, Yasuta K, Adachi N, Tatewaki Y, Fukawa T, Shirai H. Electrochromic Polymeric Films Derived from (Diphenylamino) phenyl-substituted Metallophthalocyanines[J]. Chem. Lett., 2009,38(1):82-83. doi: 10.1246/cl.2009.82

    50. [50]

      Deshmukh M A, Gicevicius M, Ramanaviciene A, Shirsat M D, Viter R, Ramanavicius A. Hybrid Electrochemical/Electrochromic Cu(Ⅱ) Ion Sensor Prototype Based on PANI/ITO-Electrode[J]. Sens. Actuator B-Chem., 2017,248:527-535. doi: 10.1016/j.snb.2017.03.167

    51. [51]

      Balgley R, Algavi Y M, Dov N E, Lahav M, van der Boom M E. Light-Triggered Release of Trapped Charges in Molecular Assemblies[J]. Angew. Chem. Int. Ed., 2018,57(41):13459-13464. doi: 10.1002/anie.201807453

    52. [52]

      Laschuk N O, Ebralidze I I, Poisson J, Egan J G, Quaranta S, Allan J T S, Cusden H, Gaspari F, Naumkin F Y, Easton E B, Zenkina O V. Ligand Impact on Monolayer Electrochromic Material Properties[J]. ACS Appl. Mater. Interfaces, 2018,10(41):35334-35343. doi: 10.1021/acsami.8b10666

    53. [53]

      Qu D W, Liu L W, Li X, Chen K, Zheng Y P, Xue Y M, Chen G M. Fabrication of Metal-Supramolecular Polymers of FeL/Carbon Nanomaterials with Enhanced Electrochromic Properties[J]. Compos. Sci. Technol., 2020,198108252. doi: 10.1016/j.compscitech.2020.108252

    54. [54]

      Ionescu A, Lento R, Mastropietro T F, Aiello I, Termine R, Golemme A, Ghedini M, Bellec N, Pini E, Rimoldi I, Godbert N. Electropolymerized Highly Photoconductive Thin Films of Cyclopalladated and Cycloplatinated Complexes[J]. ACS Appl. Mater. Interfaces, 2015,7(7):4019-4028. doi: 10.1021/am506984m

    55. [55]

      Higuchi M. Electrochromic Organic-Metallic Hybrid Polymers: Fundamentals and Device Applications[J]. Polym. J., 2009,41(7):511-520. doi: 10.1295/polymj.PJ2009053

    56. [56]

      Dov N E, Shankar S, Cohen D, Bendikov T, Rechav K, Shimon L J W, Lahav M, van der Boom M E. Electrochromic Metallo - Organic Nanoscale Films: Fabrication, Color Range, and Devices[J]. J. Am. Chem. Soc., 2017,139(33):11471-11481. doi: 10.1021/jacs.7b04217

    57. [57]

      Malik N, Lahav M, van der Boom M E. Electrochromic Metallo - Organic Nanoscale Films: A Molecular Mix and Match Approach to Thermally Robust and Multistate Solid-State Devices[J]. Adv. Electron. Mater, 2020,6(10)2000407. doi: 10.1002/aelm.202000407

    58. [58]

      Hamo Y N, Lahav M, van der Boom M E. Bifunctional Nanoscale Assemblies: Multistate Electrochromics Coupled with Charge Trapping and Release[J]. Angew. Chem. Int. Ed., 2020,59(7):2612-2617. doi: 10.1002/anie.201912333

    59. [59]

      WANG W Y, CHEN H J, ZHANG G, ZHANG R, LIU J. Synthesis and Properties of Donor - Acceptor Type Electrochromic Materials Based on Triphenylamine and Quinoxaline[J]. Chin. J. Org. Chem., 2020,40(8):2513-2519.  

    60. [60]

      Ding Z H, Chen H J, Han Y Y, Liu J. Molecular Engineering of π-Extended Viologens Consisting of Quinoxaline - Based Bridges for Tunable Electrochromic Devices[J]. J. Mol. Struct., 2022,1262133073. doi: 10.1016/j.molstruc.2022.133073

    61. [61]

      Shankar S, Lahav M, Boom M E. Coordination - Based Molecular Assemblies as Electrochromic Materials: Ultra - High Switching Stability and Coloration Efficiencies[J]. J. Am. Chem. Soc., 2015,137(12):4050-4053. doi: 10.1021/jacs.5b00429

    62. [62]

      Bao X Y, Zhao Q, Wang H W, Liu K C, Qiu D F. Metallopolymer Electrochromic Film Prepared by Oxidative Electropolymerization of a Fe Complex with Arylamine Functionalized Terpyridine Ligand[J]. Inorg. Chem. Commun., 2013,38:88-91. doi: 10.1016/j.inoche.2013.10.008

    63. [63]

      XING J N, SHU M, WANG W Y, ZHANG R, LIU J. Synthesis and Properties of Electrochromic Material Based on Phenanthroline Fe(Ⅱ) Complex with Triphenylamine Moiety[J]. Chinese J. Inorg. Chem., 2021,37(10):1847-1852. doi: 10.11862/CJIC.2021.212 

    64. [64]

      Fan C B, Ye C Q, Wang X M, Chen Z G, Zhou Y Y, Liang Z Q, Tao X T. Synthesis and Electrochromic Properties of New Terpyridine - Triphenylamine Hybrid Polymers[J]. Macromolecules, 2015,48(18):6465-6473. doi: 10.1021/acs.macromol.5b00493

    65. [65]

      Liang Y W, Strohecker D, Lynch V, Holliday B J, Jones R A. A Thiophene - Containing Conductive Metallopolymer Using an Fe(Ⅱ) Bis(terpyridine) Core for Electrochromic Materials[J]. ACS Appl. Mater. Interfaces, 2016,8(50):34568-34580. doi: 10.1021/acsami.6b11657

    66. [66]

      Bera M K, Mori T, Yoshida T, Ariga K, Higuchi M. Construction of Coordination Nanosheets Based on Tris(2, 2'-bipyridine)-Iron (Fe2+) Complexes as Potential Electrochromic Materials[J]. ACS Appl. Mater. Interfaces, 2019,11(12):11893-11903. doi: 10.1021/acsami.8b22568

    67. [67]

      Mondal S, Santra D C, Ninomiya Y, Yoshida T, Higuchi M. Dual - Redox System of Metallo - Supramolecular Polymers for Visible - to - Near - IR Modulable Electrochromism and Durable Device Fabrication[J]. ACS Appl. Mater. Interfaces, 2020,12(52):58277-58286. doi: 10.1021/acsami.0c18109

    68. [68]

      Pai S, Moos M, Schreck M H, Lambert C, Kurth D G. Green-to -Red Electrochromic Fe(Ⅱ) Metallo - Supramolecular Polyelectrolytes Self - Aassembled from Fluorescent 2, 6 - Bis(2 - pyridyl)pyrimidine Bithiophene[J]. Inorg. Chem., 2017,56(3):1418-1432. doi: 10.1021/acs.inorgchem.6b02496

    69. [69]

      Bera M K, Ninomiya Y, Higuchi M. Constructing Alternated Heterobimetallic [Fe(Ⅱ)/Os(Ⅱ)] Supramolecular Polymers with Diverse Solubility for Facile Fabrication of Voltage - Tunable Multicolor Electrochromic Devices[J]. ACS Appl. Mater. Interfaces, 2020,12(12):14376-14385. doi: 10.1021/acsami.9b21966

    70. [70]

      Hu C W, Sato T, Zhang J, Moriyama S, Higuchi M. Multi - Colour Electrochromic Properties of Fe/Ru-Based Bimetallo-Supramolecular Polymers[J]. J. Mater. Chem. C, 2013,1(21):3408-3413. doi: 10.1039/c3tc30440j

    71. [71]

      Hossain M D, Zhang J, Pandey R K, Sato T, Higuchi M. A Heterometallo - Supramolecular Polymer with Cu and Fe Ions Introduced Alternately[J]. Eur. J. Inorg. Chem., 2014(23):3763-3770.

    72. [72]

      Chakraborty C, Pandey R K, Rana U, Kanao M, Moriyama S, Higuchi M. Geometrically Isomeric Pt(Ⅱ)/Fe(Ⅱ) - Based Heterometallo-Supramolecular Polymers with Organometallic Ligands for Electrochromism and the Electrochemical Switching of Raman Scattering[J]. J. Mater. Chem. C, 2016,4(40):9428-9437. doi: 10.1039/C6TC02929A

    73. [73]

      Pai S, Schott M, Niklaus L, Posset U, Kurth D G. A Study of the Effect of Pyridine Linkers on the Viscosity and Electrochromic Properties of Metallo - Supramolecular Coordination Polymers[J]. J. Mater. Chem. C, 2018,6(13):3310-3321. doi: 10.1039/C7TC04177B

    74. [74]

      Han F S, Higuchi M, Kurth D G. Metallo-Supramolecular Polymers Based on Functionalized Bis - Terpyridines as Novel Electrochromic Materials[J]. Adv. Mater., 2007,19(22):3928-3931. doi: 10.1002/adma.200700931

    75. [75]

      Schott M, Niklaus L, Clade J, Posset U. Electrochromic Metallo - Supramolecular Polymers Showing Visible and Near - Infrared Light Transmittance Modulation[J]. Sol. Energy Mater. Sol. Cells, 2019,200110001. doi: 10.1016/j.solmat.2019.110001

    76. [76]

      Xing J N, Yue Y F, Zhang R, Liu J. Molecular Engineering of Head-Tail Terpyridine - Fe(Ⅱ) Coordination Polymers Employing Alkyl Chain Linkers toward Enhanced Electrochromic Performance[J]. Dyes Pigment., 2021,189109233. doi: 10.1016/j.dyepig.2021.109233

    77. [77]

      Arockiam J B, Son H, Han S H, Balamurugan G, Kim Y H, Park J S. Iron Phthalocyanine Incorporated Metallo - Supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability[J]. ACS Appl. Energy Mater., 2019,2(12):8416-8424. doi: 10.1021/acsaem.9b01022

    78. [78]

      Narayana Y S L V, Mondal S, Rana U, Ninomiya Y, Santra D C, Yoshida T, Higuchi M. One-Step Synthesis of a Three -Dimensionally Hyperbranched Fe(Ⅱ) -Based Metallo-Supramolecular Polymer Using an Asymmetrical Ditopic Ligand for Durable Electrochromic Films with Wide Absorption, Large Optical Contrast, and High Coloration Efficiency[J]. ACS Appl. Electron. Mater., 2021,3(5):2044-2055. doi: 10.1021/acsaelm.1c00061

    79. [79]

      Mondal S, Ninomiya Y, Yoshida T, Mori T, Bera M K, Ariga K, Higuchi M. Dual-Branched Dense Hexagonal Fe(Ⅱ) -Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication[J]. ACS Appl. Mater. Interfaces, 2020,12(28):31896-31903. doi: 10.1021/acsami.0c05921

    80. [80]

      Takada K, Sakamoto R, Yi S T, Katagiri S, Kambe T, Nishihara H. Electrochromic Bis(terpyridine)metal Complex Nanosheets[J]. J. Am. Chem. Soc., 2015,137(14):4681-4689. doi: 10.1021/ja510788b

    81. [81]

      Hu C W, Sato T, Zhang J, Moriyama S, Higuchi M. Three-Dimensional Fe(Ⅱ) - Based Metallo - Supramolecular Polymers with Electrochromic Properties of Quick Switching, Large Contrast, and High Coloration Efficiency[J]. ACS Appl. Mater. Interfaces, 2014,6(12):9118-9125. doi: 10.1021/am5010859

    82. [82]

      Kuai Y, Li W J, Dong Y J, Wong W Y, Yan S M, Dai Y Y, Zhang C. Multi - Color Electrochromism from Coordination Nanosheets Based on a Terpyridine-Fe(Ⅱ) Complex[J]. Dalton Trans., 2019,48(40):15121-15126. doi: 10.1039/C9DT02980J

    83. [83]

      Roy S, Chakraborty C. Interfacial Coordination Nanosheet Based on Nonconjugated Three - Arm Terpyridine: A Highly Color - Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory[J]. ACS Appl. Mater. Interfaces, 2020,12(31):35181-35192. doi: 10.1021/acsami.0c06045

    84. [84]

      Kuai Y, Yang T, Yuan F Y, Dong Y J, Song Q B, Zhang C, Wong W Y. Self-Assembled Flexible Metallo-Supramolecular Film Based on Fe(Ⅱ) Ion and Triphenylamine-Substituted (The original text is'subsituted') Alkyl Terpyridine towards Electrochromic Application[J]. Dyes Pigment., 2021,194109623. doi: 10.1016/j.dyepig.2021.109623

    85. [85]

      Beneto A J, Jeong J Y, Park J S. Sub - phthalocyanine- Incorporated Fe(Ⅱ) Metallo - Supramolecular Polymer Exhibiting Blue - to - Transmissive Electrochromic Transition with High Transmittance and Coloration Efficiency[J]. Dalton Trans, 2018,47(45):16036-16039. doi: 10.1039/C8DT03587C

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    4. [4]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    14. [14]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    15. [15]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    16. [16]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(48)
  • Abstract views(2534)
  • HTML views(812)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return