Citation: Xiong WANG, Rui WANG, Qiao-Ling KANG, Dong-Yun LI, Yang XU, Hong-Liang GE, Feng GAO, Qing-Yi LU. Research Progress on Structural Design and Intrinsic Activity Modulation of Co-Based Oxides for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(9): 1673-1689. doi: 10.11862/CJIC.2022.179 shu

Research Progress on Structural Design and Intrinsic Activity Modulation of Co-Based Oxides for Lithium-Ion Batteries

  • Corresponding author: Rui WANG, wangrui@cjlu.edu.cn Qiao-Ling KANG,  Dong-Yun LI,  Qing-Yi LU, 
  • Received Date: 27 March 2022
    Revised Date: 18 June 2022

Figures(12)

  • At present, the capacity of commercial graphite anode materials for lithium-ion batteries is close to the theoretical value, which limits the development of power batteries. Therefore, it is particularly important to develop anode materials with high capacity, good stability, long cycle life, and excellent rate performance. Co-based oxide materials are one of the ideal anode materials for lithium-ion batteries due to their high specific capacity. In this review, the influence of the increase of active sites of Co-based oxides to promote lithium storage performance is reviewed from the structural design including the construction of one-dimensional structures, two-dimensional structures, three-dimensional structures, hollow structures, carbon material support structures, and heterostructures. The control of intrinsic activity includes the introduction of amorphous structure, non-metallic heteroatom doping, metal heteroatom doping, and the construction of high-entropy oxides. Finally, the future development of Co-based oxides in the field of lithium-ion batteries is prospected.
  • 加载中
    1. [1]

      Dong C L, Dong W J, Lin X Y, Zhao Y T, Li R Z, Huang F Q. Recent Progress and Perspectives of Defective Oxide Anode Materials for Advanced Lithium Ion Battery[J]. EnergyChem, 2020,2(6)100045. doi: 10.1016/j.enchem.2020.100045

    2. [2]

      Geng P B, Wang L, Du M, Bai Y, Li W T, Liu Y F, Chen S Q, Braunstein P, Xu Q, Pang H. Mil-96-Al for Li-S Batteries: Shape or Size?[J]. Adv. Mater., 2022,34(4)2107836. doi: 10.1002/adma.202107836

    3. [3]

      Liu K Y, Meng X H, Yan L J, Fan M Q, Wu Y C, Li C, Ma T L. Sn/SnOx Core - Shell Structure Encapsulated in Nitrogen - Doped Porous Carbon Frameworks for Enhanced Lithium Storage[J]. J. Alloy. Compd., 2021,896163009.

    4. [4]

      Wang Q L, Zhang H R, Cui Z L, Zhou Q, Shangguan X H, Tian S W, Zhou X H, Cui G L. Siloxane - Based Polymer Electrolytes for Solid - State Lithium Batteries[J]. Energy Storage Mater., 2019,23:466-490. doi: 10.1016/j.ensm.2019.04.016

    5. [5]

      Liu G Z, Shi J M, Zhu M T, Weng W, Shen L, Yang J, Yao X Y. Ultra-Thin Free-Standing Sulfide Solid Electrolyte Film for Cell-Level High Energy Density All - Solid - State Lithium Batteries[J]. Energy Storage Mater., 2021,38:249-254. doi: 10.1016/j.ensm.2021.03.017

    6. [6]

      GONG J J, WANG J M. Photodeposition for Preparing Porous Si@ CoOx Composites as High - Performance Anode Material for Lithium - Ion Batteries[J]. Chinese J. Inorg. Chem., 2021,37(10):1773-1781. doi: 10.11862/CJIC.2021.199 

    7. [7]

      Miura A, Rosero-navarro N C, Sakuda A, Tadanaga K, Phuc N H H, Matsuda A, Machida N, Hayashi A, Tatsumisago M. Liquid - Phase Syntheses of Sulfide Electrolytes for All-Solid-State Lithium Battery[J]. Nat. Rev. Chem., 2019,3(3):189-198. doi: 10.1038/s41570-019-0078-2

    8. [8]

      Huang Y, Fang Y, Lu X F, Luan D, Lou X W D. Co 3O4 Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage[J]. Angew. Chem. Int. Ed., 2020,59(45):19914-19918. doi: 10.1002/anie.202008987

    9. [9]

      Lu W, Shen J, Zhang P, Zhong Y, Hu Y, Lou X W D. Construction of CoO/Co-Cu-S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors[J]. Angew. Chem. Int. Ed., 2019,58(43):15441-15447. doi: 10.1002/anie.201907516

    10. [10]

      Li H S, Hu Z Q, Xia Q T, Zhang H, Li Z H, Wang H Z, Li X K, Zuo F K, Zhang F L, Wang X X, Ye W N, Li Q H, Long Y Z, Li Q, Yan S S, Liu X S, Zhang X G, Yu G H, Miao G X. Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithium - Ion Batteries[J]. Adv. Mater., 2021,33(12)2006629. doi: 10.1002/adma.202006629

    11. [11]

      Zhao X, Xu H, Hui Z Y, Sun Y, Yu C Y, Xue J L, Zhou R C, Wang L M, Dai H H, Zhao Y, Yang J, Zhou J Y, Chen Q, Sun G Z, Huang W. Electrostatically Assembling 2D Nanosheets of MXene and MOF - Derivatives into 3D Hollow Frameworks for Enhanced Lithium Storage[J]. Small, 2019,15(47)1904255. doi: 10.1002/smll.201904255

    12. [12]

      He Z S, Huang L A, Guo J F, Pei S E, Shao H B, Wang J M. Novel Hierarchically Branched CoC2O4@CoO/Co Composite Arrays with Superior Lithium Storage Performance[J]. Energy Storage Mater., 2020,24:362-372. doi: 10.1016/j.ensm.2019.07.037

    13. [13]

      Liu K Y, Li C, Yan L J, Fan M Q, Wu Y C, Meng X H, Ma T L. MOFs and Their Derivatives as Sn-Based Anode Materials for Lithium/Sodium Ion Batteries[J]. J. Mater. Chem. A, 2021,9(48):27234-27251. doi: 10.1039/D1TA06996A

    14. [14]

      Geng H Y, Peng Y, Qu L T, Zhang H J, Wu M H. Structure Design and Composition Engineering of Carbon - Based Nanomaterials for Lithium Energy Storage[J]. Adv. Energy Mater., 2020,10(10)1903030. doi: 10.1002/aenm.201903030

    15. [15]

      LI X Q, CHEN X, LI H B, ZHAO T T, ZHANG Y M, XIANG J, ZHANG K Y. Carbon - Coated CaSnO3 Nanofibers as High Performance Anode Materials for Lithium Ion Batteries[J]. Chinese J. Inorg. Chem., 2021,37(4):700-708.  

    16. [16]

      Li Z T, Lian X, Wu M Z, Zheng F C, Gao Y H, Niu H L. A Novel Self - Assembled - Derived 1D MnO2@Co3O 4 Composite as a High - Performance Li-Ion Storage Anode Material[J]. Dalton Trans., 2020,49(20):6644-6650. doi: 10.1039/D0DT00980F

    17. [17]

      Wang H B, Zheng Y J, Peng Z L, Liu X L, Qu C, Huang Z Y, Cai Z L, Fan H S, Zhang Y F. Nanocavity -Enriched Co3O4@ZnCo2O4@NC Porous Nanowires Derived from 1D Metal Coordination Polymers for Fast Li+ Diffusion Kinetics and Super Li+ Storage[J]. Dalton Trans., 2021,50(21):7277-7283. doi: 10.1039/D1DT00475A

    18. [18]

      Wang D X, Yan B, Guo Y J, Chen L, Yu F, Wang G. N-Doped Carbon Coated CoO Nanowire Arrays Derived from Zeolitic Imidazolate Framework-67 as Binder-Free Anodes for High-Performance Lithium Storage[J]. Sci. Rep., 2019,9(1)5934. doi: 10.1038/s41598-019-42371-y

    19. [19]

      Jin Y, Dang L Y, Zhang H, Song C, Lu Q Y, Gao F. Synthesis of Unit-Cell-Thick α-Fe2 O3 Nanosheets and Their Transformation to γ-Fe2O3 Nanosheets with Enhanced LIB Performances[J]. Chem. Eng. J., 2017,326:292-297. doi: 10.1016/j.cej.2017.05.155

    20. [20]

      Li Y, Yang W, Tu Z Q, Tian X J, Hou L Q, Xiao Z H, Jiang B, Wu N, Li Q, Wang X, Li Y F. Water - Soluble Salt - Templated Strategy to Regulate Mesoporous Nanosheets-on -Network Structure with Active Mixed-Phase CoO/Co3O4 Nanosheets on Graphene for Superior Lithium Storage[J]. J. Alloy. Compd., 2021,857157626. doi: 10.1016/j.jallcom.2020.157626

    21. [21]

      Sun B Y, Lou S F, Zheng W, Qian Z Y, Cui C, Zuo P J, Du C Y, Xie J Y, Wang J J, Yin G P. Synergistic Engineering of Defects and Architecture in Co3O 4@C Nanosheets toward Li/Na Ion Batteries with Enhanced Pseudocapacitances[J]. Nano Energy, 2020,78105366. doi: 10.1016/j.nanoen.2020.105366

    22. [22]

      Duan H H, Du L, Zhang S K, Chen Z W, Wu S P. Superior Lithium-Storage Properties Derived from a High Pseudocapacitance Behavior for a Peony-like Holey Co3O4 Anode[J]. J. Mater. Chem. A, 2019,7(14):8327-8334. doi: 10.1039/C9TA00294D

    23. [23]

      Zhu K X, Zhu Z, Jin B, Li H, Jin E M, Jeong S M, Jiang Q. 3D Flower-like Co1-xS/MoS2 Composite for Long - Life and High - Rate Lithium Storage[J]. J. Energy Storage, 2020,27101135. doi: 10.1016/j.est.2019.101135

    24. [24]

      Min X, Sun B, Chen S, Fang M H, Wu X W, Liu Y G, Abdelkader A, Huang Z H, Liu T, Xi K, Kumar R V. A Textile-Based SnO 2 Ultra-Flexible Electrode for Lithium-Ion Batteries[J]. Energy Storage Mater., 2019,16:597-606. doi: 10.1016/j.ensm.2018.08.002

    25. [25]

      Xiong T, Su H, Yang F, Tan Q, Appadurai P B S, Afuwape A A, Guo K, Huang Y, Wang Z, Balogun M S. Harmonizing Self - Supportive VN/MoS2 Pseudocapacitance Core-Shell Electrodes for Boosting the Areal Capacity of Lithium Storage[J]. Mater. Today Energy, 2020,17100461. doi: 10.1016/j.mtener.2020.100461

    26. [26]

      Guo H L, Zhou J, Li Q Q, Li Y M, Zong W, Zhu J X, Xu J S, Zhang C, Liu T X. Emerging Dual - Channel Transition - Metal - Oxide Quasiaerogels by Self-Embedded Templating[J]. Adv. Funct. Mater., 2020,30(15)2000024. doi: 10.1002/adfm.202000024

    27. [27]

      Yao W, Zhang F, Qiu W J, Xu Z X, Xu J G, Wen Y C. General Synthesis of Uniform Three - Dimensional Metal Oxides/Reduced Graphene Oxide Aerogels by a Nucleation-Inducing Growth Strategy for High - Performance Lithium Storage[J]. ACS Sustainable Chem. Eng., 2019,7(1):847-857. doi: 10.1021/acssuschemeng.8b04467

    28. [28]

      Chi S S, Liu Y C, Zhao N, Guo X X, Nan C W, Fan L Z. Solid Polymer Electrolyte Soft Interface Layer with 3D Lithium Anode for All-Solid-State Lithium Batteries[J]. Energy Storage Mater., 2019,17:309-316. doi: 10.1016/j.ensm.2018.07.004

    29. [29]

      Lu Q Y, Gao F. Synthesis and Property Studies of Hollow Nanostructures[J]. CrystEngComm, 2016,18(39):7399-7409. doi: 10.1039/C6CE01036A

    30. [30]

      Yang F H, Goo H, Hao J N, Zhang S L, Li P, Liu Y Q, Chen J, Guo Z P. Yolk - Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithium -/Potassium - Ion Batteries[J]. Adv. Funct. Mater., 2019,29(16)1808291. doi: 10.1002/adfm.201808291

    31. [31]

      Wang B, Cheng Y F, Su H, Cheng M, Li Y, Geng H B, Dai Z F. Boosting Transport Kinetics of Cobalt Sulfides Yolk - Shell Spheres by Anion Doping for Advanced Lithium and Sodium Storage[J]. ChemSusChem, 2020,13(16):4078-4085. doi: 10.1002/cssc.202001261

    32. [32]

      Xu J Y, Zhang H, Wang R F, Xu P B, Tong Y L, Lu Q Y, Gao F. Delicate Control of Multishelled Zn - Mn - O Hollow Microspheres as a High-Performance Anode for Lithium-Ion Batteries[J]. Langmuir, 2018,34(4):1242-1248. doi: 10.1021/acs.langmuir.7b02632

    33. [33]

      Jian S J, Ma X F, Wang Q M, Wu J L, Wang Y F, Jiang S H, Xu W H, Yang W S. Hierarchical Porous Co3O4 Nanocages with Elaborate Microstructures Derived from ZIF-67 toward Lithium Storage[J]. Vacuum, 2021,184109879. doi: 10.1016/j.vacuum.2020.109879

    34. [34]

      Wu D B, Wang C, Wu H J, Wang S, Wang F Q, Chen Z, Zhao T B, Zhang Z Y, Zhang L Y, Li C M. Synthesis of Hollow Co3O4 Nanocrystals In Situ Anchored on Holey Graphene for High Rate Lithium-Ion Batteries[J]. Carbon, 2020,163:137-144. doi: 10.1016/j.carbon.2020.03.007

    35. [35]

      Jiang J H, Liu S N, Wang Y Y, Liu Y, Fan J, Lou X D, Wang X B, Zhang H, Yang L. Auto - Adjustment of Structure and SnO2 Content of SnO2/TiO2 Microspheres for Lithium-Ion Batteries[J]. Chem. Eng. J., 2019,359:746-754. doi: 10.1016/j.cej.2018.11.190

    36. [36]

      Yin J Z, Zhang Y, Lu Q Y, Wu X L, Jiang Z J, Dang L Y, Ma H F, Guo Y Y, Gao F, Yan Q Y. Tunable Co 3O4 Hollow Structures (From Yolk-Shell to Multi-Shell) and Their Li Storage Properties[J]. J. Mater. Chem. A, 2017,5(25):12757-12761. doi: 10.1039/C7TA03929H

    37. [37]

      Ren H, Yu R B, Qi J, Zhang L J, Jin Q, Wang D. Hollow Multishelled Heterostructured Anatase/TiO2 (B) with Superior Rate Capability and Cycling Performance[J]. Adv. Mater., 2019,31(10)1805754. doi: 10.1002/adma.201805754

    38. [38]

      Zhao J L, Wang J Y, Bi R Y, Yang M, Wan J W, Jiang H Y, Gu L, Wang D. General Synthesis of Multiple-Cores@Multiple-Shells Hollow Composites and Their Application to Lithium - Ion Batteries[J]. Angew. Chem. Int. Ed., 2021,60(49):25719-25722. doi: 10.1002/anie.202110982

    39. [39]

      Li J F, Han L, Zhang X L, Sun H C, Liu X J, Lu T, Yao Y F, Pan L K. Multi-Role TiO2 Layer Coated Carbon@Few-Layered MoS2 Nanotubes for Durable Lithium Storage[J]. Chem. Eng. J., 2021,406126873. doi: 10.1016/j.cej.2020.126873

    40. [40]

      Guo D Y, Pan L, Hao J M, Han L M, Yi D, Wang Y J, Yang Y J, Yoshio B, Wang X. Nanosheets - in - Nanotube Co3O 4 - Carbon Array Design Enables Stable Li-Ion Storage[J]. Carbon, 2019,147:501-509. doi: 10.1016/j.carbon.2019.03.012

    41. [41]

      Zheng S S, Li Q, Xue H G, Pang H, Xu Q. A Highly Alkaline-Stable Metal Oxide@Metal-Organic Framework Composite for High-Performance Electrochemical Energy Storage[J]. Natl. Sci. Rev., 2020,7(2):305-314. doi: 10.1093/nsr/nwz137

    42. [42]

      Zhu T Y, Wang Y, Li Y, Cai R, Zhang J F, Yu C P, Wu J J, Cui J W, Zhang Y, Ajayan P M, Wu Y C. CoO Quantum Dots Anchored on Reduced Graphene Oxide Aerogels for Lithium - Ion Storage[J]. ACS Appl. Nano Mater., 2020,3(10):10369-10379. doi: 10.1021/acsanm.0c02290

    43. [43]

      Park Y J, Lee K S, Shim J, Lee J H, Kim Y, Son D I. Suppression of Volume Expansion by Graphene Encapsulated Co3O4 Quantum Dots for Boosting Lithium Storage[J]. J. Ind. Eng. Chem., 2021,95:333-339. doi: 10.1016/j.jiec.2021.01.004

    44. [44]

      Gu F L, Liu W B, Huang R, Song Y H, Jia J B, Wang L. A g-C3N4 Self - Templated Preparation of N - Doped Carbon Nanosheets@Co - Co3O 4/Carbon Nanotubes as High - Rate Lithium - Ion Batteries' Anode Materials[J]. J. Colloid Interface Sci., 2021,597:1-8. doi: 10.1016/j.jcis.2021.03.163

    45. [45]

      Mei J, Zhang Y W, Liao T, Peng X M, Ayoko G A, Sun Z Q. Black Phosphorus Nanosheets Promoted 2D - TiO2-2D Heterostructured Anode for High-Performance Lithium Storage[J]. Energy Storage Mater., 2019,19:424-431. doi: 10.1016/j.ensm.2019.03.010

    46. [46]

      Yang S, Zhang Y Q, Wang S L, Shi J, Liu X, Li L. Rational Construction of MoS2 /Mo 2N/C Hierarchical Porous Tubular Nanostructures for Enhanced Lithium Storage[J]. J. Mater. Chem. A, 2019,7(41):23886-23894. doi: 10.1039/C9TA04516C

    47. [47]

      LIang Y, Xiong X, Xu Z, Xia Q, Wan L, Liu R, Chen G, Chou S L. Ultrathin 2D Mesoporous TiO2/rGO Heterostructure for High-Performance Lithium Storage[J]. Small, 2020,16(26)2000030. doi: 10.1002/smll.202000030

    48. [48]

      Zhong H Y, Lu X, Zhong Y, Zhao Y, Liu X M, Cheng D H, Huang X Y, Du K Z, Wu X H. Lithium Storage Performance Boosted via Delocalizing Charge in ZnxCo1-xPS3/CoS2 of 2D/3D Heterostructure[J]. Small, 2022,18(2)2104295. doi: 10.1002/smll.202104295

    49. [49]

      Zhang Y Y, Chen P, Wang Q Y, Wang Q, Zhu K, Ye K, Wang G L, Cao D X, Yan J, Zhang Q. High-Capacity and Kinetically Accelerated Lithium Storage in MoO3 Enabled by Oxygen Vacancies and Heterostructure[J]. Adv. Energy Mater., 2021,11(31)2101712. doi: 10.1002/aenm.202101712

    50. [50]

      Zhang Y, Wang Z Y, Hu K, Ren J H, Yu N F, Liu X, Wu G L, Liu N. Anchoring Silicon on the Basal Plane of Graphite via a Three-Phase Heterostructure for Highly Reversible Lithium Storage[J]. Energy Storage Mater., 2021,34:311-319. doi: 10.1016/j.ensm.2020.10.002

    51. [51]

      Li Y, Zhang J W, Chen Q G, Xia X H, Chen M H. Emerging of Heterostructure Materials in Energy Storage: A Review[J]. Adv. Mater., 2021,33(27)2100855. doi: 10.1002/adma.202100855

    52. [52]

      Chen H H, He J, Li Y L, Luo S, Sun L N, Ren X Z, Deng L B, Zhang P X, Gao Y, Liu J H. Hierarchical CuOx - Co3O4 Heterostructure Nanowires Decorated on 3D Porous Nitrogen-Doped Carbon Nanofibers as Flexible and Free - Standing Anodes for High - Performance Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2019,7(13):7691-7700. doi: 10.1039/C9TA00275H

    53. [53]

      Hu W H, Zheng M B, Xu B Y, Wei Y, Zhu W, Li Q, Pang H. Design of Hollow Carbon - Based Materials Derived from Metal - Organic Frameworks for Electrocatalysis and Electrochemical Energy Storage[J]. J. Mater. Chem. A, 2021,9(7):3880-3917. doi: 10.1039/D0TA10666F

    54. [54]

      Tu C B, Peng A P, Zhang Z, Qi X T, Zhang D K, Wang M J, Huang Y N, Yang Z Y. Surface-Seeding Secondary Growth for CoO@Co9S8 P - N Heterojunction Hollow Nanocube Encapsulated into Graphene as Superior Anode toward Lithium Ion Storage[J]. Chem. Eng. J., 2021,425130648. doi: 10.1016/j.cej.2021.130648

    55. [55]

      Xie X F, Hu Y, Fang G Z, Cao X X, Yin B, Wang Y P, Liang S Q, Cao G Z, Pan A Q. Towards a Durable High Performance Anode Material for Lithium Storage: Stabilizing N-Doped Carbon Encapsulated FeS Nanosheets with Amorphous TiO2[J]. J. Mater. Chem. A, 2019,7(27):16541-16552. doi: 10.1039/C9TA03196K

    56. [56]

      Chen H H, Ke G X, Wu X C, Li W Q, Li Y L, Mi H W, Sun L N, Zhang Q L, He C X, Ren X Z. Amorphous MoS3 Decoration on 2D Functionalized MXene as a Bifunctional Electrode for Stable and Robust Lithium Storage[J]. Chem. Eng. J., 2021,406126775. doi: 10.1016/j.cej.2020.126775

    57. [57]

      Lu H Y, Qian R F, Zhu L, Yao T H, Li C, Li L, Wang H K. Phase Structure Engineering of MnCo2Ox within Electrospun Carbon Nanofibers towards High - Performance Lithium - Ion Batteries[J]. J. Colloid Interface Sci., 2022,607(Pt 1):171-180.

    58. [58]

      Wang D, Zhou J S, Li J K, Jiang X Y, Wang Y Z, Gao F M. Cobalt-Boron Nanoparticles Anchored on Graphene as Anode of Lithium Ion Batteries[J]. Chem. Eng. J., 2019,360:271-279. doi: 10.1016/j.cej.2018.11.238

    59. [59]

      Wang J K, Wang H K, Yao T H, Liu T, Tian Y P, Li C, Li F, Meng L J, Cheng Y H. Porous N - Doped Carbon Nanoflakes Supported Hybridized SnO2/Co3O4 Nanocomposites as High - Performance Anode for Lithium-Ion Batteries[J]. J. Colloid Interface Sci., 2020,560:546-554. doi: 10.1016/j.jcis.2019.10.096

    60. [60]

      Wang D D, Liu H X, Shan Z Q, Xia D W, Na R, liu H D, Wang B H, Tian J H. Nitrogen, Sulfur Co - Doped Porous Graphene Boosting Li4Ti 5O 12 Anode Performance for High-Rate and Long-Life Lithium Ion Batteries[J]. Energy Storage Mater., 2020,27:387-395. doi: 10.1016/j.ensm.2020.02.019

    61. [61]

      Shan Y Y, Li Y, Pang H. Applications of Tin Sulfide-Based Materials in Lithium - Ion Batteries and Sodium - Ion Batteries[J]. Adv. Funct. Mater., 2020,30(23)2001298. doi: 10.1002/adfm.202001298

    62. [62]

      Peng C, Mercer M P, Skylaris C K, Kramer D. Lithium Intercalation Edge Effects and Doping Implications for Graphite Anodes[J]. J. Mater. Chem. A, 2020,8(16):7947-7955. doi: 10.1039/C9TA13862E

    63. [63]

      Jin J, Wang Z, Wang R, Wang J, Huang Z, Ma Y, Li H, Wei S H, Huang X, Yan J, Li S, Huang W. Achieving High Volumetric Lithium Storage Capacity in Compact Carbon Materials with Controllable Nitrogen Doping[J]. Adv. Funct. Mater., 2019,29(12)1807441. doi: 10.1002/adfm.201807441

    64. [64]

      Hu Y F, Li Z C, Hu Z C, Wang L, Ma R G, Wang J C. Engineering Hierarchical CoO Nanospheres Wrapped by Graphene via Controllable Sulfur Doping for Superior Li Ion Storage[J]. Small, 2020,16(42)2003643. doi: 10.1002/smll.202003643

    65. [65]

      Hu Q R, Meng Y S, Zhang H S, Zhao G X, Hu J, Zhu F L, Zhang Y. Encapsulated Ni3S2 Nanoparticles with N, S Dual - Doped Carbon Nanotubes: A Robust Structure for Lithium Storage[J]. J. Electroanal. Chem., 2020,873114383. doi: 10.1016/j.jelechem.2020.114383

    66. [66]

      Lai D W, Wang Z R, Wang Z H, Gao F, Lu Q Y. Phosphorus -Doped Cobaltous Oxide Core@Shell Microspheres with Enhanced Performances in Energy Conversion and Storage[J]. J. Power Sources, 2021,483229137. doi: 10.1016/j.jpowsour.2020.229137

    67. [67]

      Li Q, Feng Y Z, Wang P, Che R C. Superior-Capacity Binder-Free Anode Electrode for Lithium -Ion Batteries: CoxMnyNizO Nanosheets with Metal/Oxygen Vacancies Directly Formed on Cu Foil[J]. Nanoscale, 2019,11(11):5080-5093. doi: 10.1039/C8NR09706B

    68. [68]

      Li W T, Guo X T, Geng P B, Du M, Jing Q L, Chen X D, Zhang G X, Li H P, Xu Q, Braunstein P, Pang H. Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li - S Battery[J]. Adv. Mater., 2021,33(45)2105163. doi: 10.1002/adma.202105163

    69. [69]

      Fan Y C, Chen X H, Zhang K, Rong J, Yu X H. A Coordinated Regulation Strategy to Improve Electronic Conductivity and Li-Ion Transport for TiO2 Lithium Battery Anode Materials[J]. J. Alloy. Compd., 2021,860158282. doi: 10.1016/j.jallcom.2020.158282

    70. [70]

      Yuan Y Q, Liang S J, Liu W P, Zhao Q, Peng P G, Ding R, Gao P, Sun X J, Liu E H. Al-Doped Fe2O3 Nanoparticles: Advanced Anode Materials for High Capacity Lithium Ion Batteries[J]. Dalton Trans., 2021,50(15):5115-5119. doi: 10.1039/D0DT04423G

    71. [71]

      Liang J, Kong J, Zhang J. Hollow Concave Zinc - Doped Co3O4 Nanosheets/Carbon Composites as Ultrahigh Capacity Anode Materials for Lithium - Ion Batteries[J]. ChemElectroChem, 2021,8(1):172-178. doi: 10.1002/celc.202001416

    72. [72]

      Li Q, Zhao Y H, Liu H D, Xu P D, Yang L T, Pei K, Zeng Q W, Feng Y Z, Wang P, Che R C. Dandelion - like Mn/Ni Co - Doped CoO/C Hollow Microspheres with Oxygen Vacancies for Advanced Lithium Storage[J]. ACS Nano, 2019,13(10):11921-11934. doi: 10.1021/acsnano.9b06005

    73. [73]

      Patra J, Nguyen T X, Tsai C C, Clemens O, Li J, Pal P, Chan W K, Lee C H, Chen H Y T, Ting J M, Chang J K. Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co - Free High - Entropy Spinel Oxide Anodes for Lithium - Ion Batteries[J]. Adv. Funct. Mater., 2022,32(17)2110992. doi: 10.1002/adfm.202110992

    74. [74]

      Wang Q S, Sarkar A, Wang D, Velasco L, Azmi R, Bhattacharya S S, Bergfeldt T, Duvel A, Heitjans P, Brezesinski T, Hahn H, Breitung B. Multi - Anionic and - Cationic Compounds: New High Entropy Materials for Advanced Li-Ion Batteries[J]. Energy Environ. Sci., 2019,12(8):2433-2442. doi: 10.1039/C9EE00368A

    75. [75]

      Wei J L, Rong K, Li X L, Wang Y C, Qiao Z A, Fang Y X, Dong S J. Deep Eutectic Solvent Assisted Facile Synthesis of Low-Dimensional Hierarchical Porous High - Entropy Oxides[J]. Nano Res., 2022,15(3):2756-2763. doi: 10.1007/s12274-021-3860-7

    76. [76]

      Wang S Y, Chen T Y, Kuo C H, Lin C C, Huang S C, Lin M H, Wang C C, Chen H Y. Operando Synchrotron Transmission X-ray Microscopy Study on (Mg, Co, Ni, Cu, Zn)O High - Entropy Oxide Anodes for Lithium-Ion Batteries[J]. Mater. Chem. Phys., 2021,274125105. doi: 10.1016/j.matchemphys.2021.125105

    77. [77]

      Huang C Y, Huang C W, Wu M C, Patra J, Nguyen T X, Chang M T, Clemens O, Ting J M, Li J, Chang J K, Wu W W. Atomic - Scale Investigation of Lithiation/Delithiation Mechanism in High - Entropy Spinel Oxide with Superior Electrochemical Performance[J]. Chem. Eng. J., 2021,420129838. doi: 10.1016/j.cej.2021.129838

    78. [78]

      Mccormack S J, Navrotsky A. Thermodynamics of High Entropy Oxides[J]. Acta Mater., 2021,202:1-21. doi: 10.1016/j.actamat.2020.10.043

    79. [79]

      Ma Y J, Ma Y, Wang Q S, Schweidler S, Botros M, Fu T T, Hahn H, Brezesinski T, Breitung B. High - Entropy Energy Materials: Challenges and New Opportunities[J]. Energy Environ. Sci., 2021,14(5):2883-2905. doi: 10.1039/D1EE00505G

    80. [80]

      Dong Q, Hong M, Gao J L, Li T Y, Cui M J, Li S K, Qiao H Y, Brozena A H, Yao Y G, Wang X Z, Chen G, Luo J, Hu L B. Rapid Synthesis of High-Entropy Oxide Microparticles[J]. Small, 2022,18(11)2104761. doi: 10.1002/smll.202104761

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(40)
  • Abstract views(2141)
  • HTML views(494)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return