Citation: Xiao-Lin GUAN, Yuan-Yuan DING, Shou-Jun LAI, Xue-Qin YANG, Jing-Yu WEI, Jia-Ming ZHANG, Li-Yuan ZHANG, Jin-Hui TONG, Zi-Qiang LEI. Ultra-small Size Rare Earth Complex Fluorescent Nanoprobe for Dual Color Imaging of Tumor Cells Constructed with PCL-b-PNIPAM Coordinated Eu(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1023-1036. doi: 10.11862/CJIC.2022.097 shu

Ultra-small Size Rare Earth Complex Fluorescent Nanoprobe for Dual Color Imaging of Tumor Cells Constructed with PCL-b-PNIPAM Coordinated Eu(Ⅲ)

  • Corresponding author: Xiao-Lin GUAN, guanxiaolin@nwnu.edu.cn
  • Received Date: 30 August 2021
    Revised Date: 24 February 2022

Figures(6)

  • Three amphiphilic block copolymers 1s-TPE-PCL-b-PNIPAM, 2s-TPE-PCL-b-PNIPAM, and 4s-TPE-PCL -b-PNIPAM (PCL=polycaprolactone, PNIPAM=poly(N - isopropylacrylamide)) were synthesized by in situ polymerization with tetraphenylethylene (TPE) fluorescent small molecules as the center. Then, the rare earth element Eu(Ⅲ) was coordinated with the hydrophilic fragment PNIPAM to synthesize block copolymer-Eu(Ⅲ) complexes (1s-TPE-PCL-b-PNIPAM-Eu(Ⅲ) for one-arm, 2s-TPE-PCL-b -PNIPAM-Eu(Ⅲ) for two-arm, and 4s-TPE-PCL-b-PNIPAM-Eu(Ⅲ) for four-arm). Finally, non-semiconductor polymer dots (Pdots) were prepared by self-assembly of the complexes in water. The three kinds of Pdots had excellent water solubility and ultra-small particle size below 5 nm (average particle sizes were 4.8, 4.3, and 2.7 nm, respectively). The optical test results showed that the single, double, and fourarm Pdots mainly emitted blue light at 430 nm under the excitation of 360 nm, and exhibited excellent aggregation-induced emission characteristics. At 395 nm, the red emission was mainly at 615 nm, and there had little mutual interference because of blue-red emission wavelength spacing was as high as 195 nm, showing excellent double fluorescence properties. The four-arm Pdots aqueous solution had a wider range of color changes and a better double fluorescence effect. In addition, the lower critical solution temperatures (LCSTs) of the three Pdots were 32, 36, and 37 ℃, respectively. While the LCSTs of the four -arm Pdots were closer to the normal body temperature. At the same time, the conformation of the PNIPAM chain in Pdots changed from expansion state to contraction state along with the increase of temperature. As a result, the aggregation degree of TPE on the chain was enhanced, which caused the temperature response of Pdots aqueous solution fluorescence. Ultimately, cytotoxicity and cell imaging studies showed that the three Pdots had low cytotoxicity and could enter HeLa, A549, and HepG2 tumor cells by endocytosis. Under different excitation wavelengths, strong blue or red fluorescence signals could be received in the cells, exhibiting blue/red dual-color fluorescence imaging ability and reversible dual-color fluorescence switching function. In addition, the comparison of the three Pdots found that the four-arm Pdots had the smallest particle size, the best dual fluorescence performance, and the best cell imaging effect.
  • 加载中
    1. [1]

      Li H Y, Wang C F, Hou T, Li F. Amphiphile - Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing[J]. Anal. Chem., 2017,89(17):9100-9107. doi: 10.1021/acs.analchem.7b01797

    2. [2]

      Wang X, Li P, Ding Q, Wu C C, Zhang W, Tang B. Observation of Acetylcholinesterase in Stress - Induced Depression Phenotypes by Two-Photon Fluorescence Imaging in the Mouse Brain[J]. J. Am. Chem. Soc., 2019,141(5):2061-2068. doi: 10.1021/jacs.8b11414

    3. [3]

      Meng F F, Wang J P, Ping Q N, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited[J]. ACS Nano, 2018,12(7):6458-6468. doi: 10.1021/acsnano.8b02881

    4. [4]

      ZHOU M X, REN N, ZHANG J J. Four Rare Earth Complexes with Chlorinated Carboxylic Acids and Bipyridine Ligands: Crystal Structures, Thermal Analysis and Luminescence Properties[J]. Chinese J. Inorg. Chem., 2020,36(12):2349-2358. doi: 10.11862/CJIC.2020.258 

    5. [5]

      Qiao G X, Lai Z J, Gao J W, Liu W Q, Zheng Y H. Lanthanide Molecular Model Triggers Sequential Sensing Performance[J]. J. Mol. Liq., 2020,311113344. doi: 10.1016/j.molliq.2020.113344

    6. [6]

      Cota L, Marturano V, Tylkowski B. Ln Complexes as Double Faced Agents: Study of Antibacterial and Antifungal Activity[J]. Coord. Chem. Rev., 2019,396:49-71. doi: 10.1016/j.ccr.2019.05.019

    7. [7]

      ZHANG Q R, DENG R P, LIU Y B, ZHOU L, ZHANG H J. Near Infrared Luminescence Properties of the Complexes of ErxYb1-x(TPB)3Bath (x= 0, 0.218, 0.799, 0.896, 0.987, 1)[J]. Chinese J. Inorg. Chem., 2017,33(11):2011-2016. doi: 10.11862/CJIC.2017.254 

    8. [8]

      Li G D, Wu C, Ma D L, Leunga C. Drug Screening Strategies Using Metal - Based Luminescent Probes[J]. Trac - Trends Anal. Chem., 2021,139:116270-116287. doi: 10.1016/j.trac.2021.116270

    9. [9]

      Zhou R H, Li Y J, Xiao D X, Li T, Zhang T, Fu W, Lin Y F. Hyaluronan-Directed Fabrication of Co - doped Hydroxyapatite as a Dual - Modal Probe for Tumor-Specific Bioimaging[J]. J. Mater. Chem. B, 2020,8:2107-2114. doi: 10.1039/C9TB02787D

    10. [10]

      Sava Gallis D F, Rohwer L E S, Rodriguez M A, Barnhart-Dailey M C, Butler K S, Luk T S, Timlin J A, Chapman K W. Multifunctional, Tunable Metal - Organic Framework Materials Platform for Bioimaging Applications[J]. ACS Appl. Mater. Interfaces, 2017,9(27):22268-22277. doi: 10.1021/acsami.7b05859

    11. [11]

      Zhu Y J, Guo Y J, Liu M D, Wei L B, Wang X T. An Oroxylin A - Loaded Aggregation - Induced Emission Active Polymeric System Greatly Increased the Antitumor Efficacy Against Squamous Cell Carcinoma[J]. J. Mater. Chem. B, 2020,8(10):2040-2047. doi: 10.1039/C9TB01818B

    12. [12]

      Wang Z Y, Wang C, Gan Q, Cao Y, Yuan H, Hua D B. Donor-Acceptor-Type Conjugated Polymer - Based Multicolored Drug Carriers with Tunable Aggregation-Induced Emission Behavior for Self-Illuminat-ing Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(45):41853-41861. doi: 10.1021/acsami.9b11237

    13. [13]

      Tsai W K, Chan Y H. Semiconducting Polymer Dots as Near - Infrared Fluorescent Probes for Bioimaging and Sensing[J]. J. Chin. Chem. Soc., 2019,66(1):9-20. doi: 10.1002/jccs.201800322

    14. [14]

      Han L, Liu S G, Zhang X F, Tao B X, Li N B, Luo H Q. A Sensitive Polymer Dots-Manganese Dioxide Fluorescent Nanosensor for "Turn-On" Detection of Glutathione in Human Serum[J]. Sens. Actuators B, 2018,258:25-31. doi: 10.1016/j.snb.2017.11.056

    15. [15]

      Chen H B, Fang X F, Jin Y, Hu X, Yin M, Men X J, Chen N, Fan C H, Chiu D, Wan Y Z, Wu C F. Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host - Guest Interactions, and Enhanced Drug/siRNA Delivery[J]. Small, 2018,14(21)1800239. doi: 10.1002/smll.201800239

    16. [16]

      Fang X F, Ju B, Liu Z H, Wang F, Xi G, Sun Z Z, Chen H B, Sui C X, Wang M X, Wu C F. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging[J]. ChemBioChem, 2019,20(4):521-525. doi: 10.1002/cbic.201800438

    17. [17]

      Yu J B, Rong Y, Kuo C T, Zhou X H, Chiu D. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine[J]. Anal. Chem., 2017,89(1):42-56. doi: 10.1021/acs.analchem.6b04672

    18. [18]

      Zhang Z, Yuan Y, Liu Z H, Chen H B, Chen D D, Fang X F, Zheng J, Qin W P, Wu C F. Brightness Enhancement of Near - Infrared Semiconducting Polymer Dots for In Vivo Whole-Body Cell Tracking in Deep Organs[J]. ACS Appl. Mater. Interfaces, 2018,10(32):26928-26935. doi: 10.1021/acsami.8b08735

    19. [19]

      Tsai W K, Wang C I, Liao C H, Yao C N, Kuo T J, Liu M H, Hsu C P, Lin S Y, Wu C Y, Pyle J, Chen J X, Chan Y H. Molecular Design of Near-Infrared Fluorescent Pdots for Tumor Targeting: Aggregation-Induced Emission versus Anti - aggregation - Caused Quenching[J]. Chem. Sci., 2019,10(1):198-207. doi: 10.1039/C8SC03510E

    20. [20]

      Yuan Y, Hou W Y, Sun Z Z, Liu J, Ma N, Li X S, Yin S Y, Qin W P, Wu C F. Measuring Cellular Uptake of Polymer Dots for Quantitative Imaging and Photodynamic Therapy[J]. Anal. Chem., 2021,93(18):7071-7078. doi: 10.1021/acs.analchem.1c00548

    21. [21]

      Yan L L, Zhang Y, Xu B, Tian W J. Fluorescent Nanoparticles Based on AIE Fluorogens for Bioimaging[J]. Nanoscale,, 2016,8(5):2471-2487. doi: 10.1039/C5NR05051K

    22. [22]

      Zhang Y, Chen Y J, Li X, Zhang J B, Chen J L, Xu B, Fu X Q, Tian W J. Folic Acid - Functionalized AIE Pdots Based on Amphiphilic PCL - b - PEG for Targeted Cell Imaging[J]. Polym. Chem., 2014,5(12):3824-3830. doi: 10.1039/C4PY00075G

    23. [23]

      Liu Y Z, Mao L C, Yang S J, Liu M Y, Huang H Y, Wen Y Q, Deng F J, Li Y X, Zhang X Y, Wei Y. Synthesis and Biological Imaging of Fluorescent Polymeric Nanoparticles with AIE Feature via the Combination of RAFT Polymerization and Post-polymerization Modifica-tion[J]. Dyes Pigm., 2018,158:79-87. doi: 10.1016/j.dyepig.2018.05.032

    24. [24]

      Zhang X Q, Liu M Y, Yang B, Zhang X Y, Chi Z G, Liu S W, Xu J R, Wei Y. Cross-Linkable Aggregation Induced Emission Dye Based Red Fluorescent Organic Nanoparticles and Their Cell Imaging Applications[J]. Polym. Chem., 2013,4(19):5060-5064. doi: 10.1039/c3py00860f

    25. [25]

      Li J C, Rao J H, Pu K Y. Recent Progress on Semiconducting Polymer Nanoparticles for Molecular Imaging and Cancer Phototherapy[J]. Biomaterials, 2018,155:217-235. doi: 10.1016/j.biomaterials.2017.11.025

    26. [26]

      Palner M, Pu K, Shao S, Rao J H. Semiconducting Polymer Nanoparticles with Persistent Near - Infrared Luminescence Show Potential for In Vivo Optical Imaging[J]. Angew. Chem. Int. Ed., 2015,54(39):11477-11480. doi: 10.1002/anie.201502736

    27. [27]

      GUAN X L, LI Z F, WANG L, LIU M N, WANG K L, YANG X Q, LI Y L, HU L L, ZHAO X L, LAI S J, LEI Z Q. Preparation of AIE Polymer Dots (Pdots) Based on Poly(N - vinyl - 2 - pyrrolidone) - Eu(Ⅲ) Complex and Dual-color Live Cell Imaging[J]. Acta Chim. Sinica, 2019,77(12):1268-1278.  

    28. [28]

      Guan X L, Lu B C, Jin Q J, Li Z F, Wang L, Wang K L, Lai S J, Lei Z Q. AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging[J]. Ind. Eng. Chem. Res., 2018,57(44):14889-14898. doi: 10.1021/acs.iecr.8b03776

    29. [29]

      Guan W J, Zhou W J, Lu C, Tang B Z. Synthesis and Design of Aggregation - Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets[J]. Angew. Chem. Int. Ed., 2015,54(50):15160-15164. doi: 10.1002/anie.201507236

    30. [30]

      CAI Y, CHEN M Q, JI H N, HUANG X H, SHEN J. Synthesis and Spectroscopic Studies of Eu(Ⅲ) Complex with Poly(N-vinyl acetamide)[J]. Acta Polym. Sin., 2003,4(4):599-602.  

    31. [31]

      Cui G H, Bai Y, Li W L, Gao Z G, Chen S Y, Qiu N N, Satoh T, Kakuchi T, Duan Q. Synthesis and Characterization of Eu(Ⅲ)-Based Coordination Complexes of Modified D - Glucosamine and Poly(N - isopropylacrylamide)[J]. Opt. Mater., 2017,72:115-121. doi: 10.1016/j.optmat.2017.05.051

    32. [32]

      Sabbatini L, Malitesta C, Giglio E, Losito I, Torsi L, Zambonin P. Electrosynthesised Thin Polymer Films: The Role of XPS in the Design of Application Oriented Innovative Materials[J]. J. Electron. Spectrosc. Relat. Phenom., 1999,100(1):35-53.

    33. [33]

      Wang Y J, Jiang H L. Eu(Ⅲ) Modifies the Properties of Poly(N-isopro-pylacrylamide)[J]. Mater. Lett., 2007,61(13):2779-2782. doi: 10.1016/j.matlet.2006.10.055

    34. [34]

      Zhong W B, Zeng X Y, Chen J, Hong Y X, Xiao L H, Zhang P S. Photoswitchable Fluorescent Polymeric Nanoparticles for Rewritable Fluorescence Patterning and Intracellular Dual - Color Imaging with AIE-based Fluorogens as FRET Donors[J]. Polym. Chem., 2017,8(33):4849-4855. doi: 10.1039/C7PY00834A

    35. [35]

      Zhou P, Li G Y, Shao Z Z, Pan X Y, Yu T Y. Structure of Bombyx Mori Silk Fibroin Based on the DFT Chemical Shift Calculation[J]. J. Phys. Chem. B, 2001,105(50):12469-12376. doi: 10.1021/jp0125395

    36. [36]

      Grüll H, Langereis S. Hyperthermia - Triggered Drug Delivery from Temperature-Sensitive Liposomes Using MRI-Guided High Intensity Focused Ultrasound[J]. J. Control. Release, 2012,161(2):317-327. doi: 10.1016/j.jconrel.2012.04.041

    37. [37]

      Wang W, Gao C Q, Qu Y Q, Song Z F, Zhang W Q. In Situ Synthesis of Thermoresponsive Polystyrene- b-poly(N -isopropylacrylamide)-b-polystyrene Nanospheres and Comparative Study of the Looped and Linear Poly(N - isopropylacrylamide)s[J]. Macromolecules, 2016,49(7):2772-2781. doi: 10.1021/acs.macromol.6b00233

    38. [38]

      Adelsberger J, Kulkarni A, Jain A, Wang W N, Bivigou-Koumba A, Busch P, Pipich V, Holderer O, Hellweg T, Laschewsky A, Müller-Buschbaum P, Papadakis C. Thermoresponsive PS-b-PNIPAM-b-PS Micelles: Aggregation Behavior, Segmental Dynamics, and Thermal Response[J]. Macromolecules, 2010,43(5):2490-2501. doi: 10.1021/ma902714p

    39. [39]

      Sun L N, Yu J B, Peng H S, Zhang J Z, Shi L Y, Wolfbeis O S. Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium Complex Probe[J]. J. Phys. Chem. C, 2010,114(29):12642-12648. doi: 10.1021/jp1028323

    40. [40]

      Ge X Q, Sun L N, Dang S, Liu J L, Xu Y X, Wei Z W, Shi L Y, Zhang H J. Mesoporous Upconversion Nanoparticles Modified with a Tb Complex to Display both Green Upconversion and Downcon-version Luminescence for In Vitro Bioimaging and Sensing of Tem-perature[J]. Microchim. Acta, 2015,182:1653-1660. doi: 10.1007/s00604-015-1481-0

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(10)
  • Abstract views(1585)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return