Citation: Long-Fei MA, Zhao-Hui ZHU, Xiao-Bo HUANG. Synthesis and Crystal Structure of Arylthiotetrathiafulvalenes and Cupric Bromide Charge Transfer Complexes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 821-828. doi: 10.11862/CJIC.2022.086 shu

Synthesis and Crystal Structure of Arylthiotetrathiafulvalenes and Cupric Bromide Charge Transfer Complexes

  • Corresponding author: Long-Fei MA, malongfei@hnp.edu.cn
  • Received Date: 3 November 2021
    Revised Date: 15 February 2022

Figures(6)

  • Four charge-transfer complexes, (1)(Cu2Br6)0.5, (2)(Cu2Br6)0.5, (3)(Cu2Br6)0.5 and (4)(CuBr2), have been prepared via diffusion methods comprising arylthio-substituted tetrathiafulvalene derivatives 1-4 and CuBr2. Crystal-lographic studies indicate that the anions in the complexes, which are derived from CuBr2, show diverse configura-tions including octahedral (CuⅡ2Br 6)2-and linear (CuⅠBr2)-. The plane of the outer four Br atoms and the plane of the central quadrilateral on(CuⅡ2Br6)2-have a different dihedral angle. Compounds 1-4 show radical cation and the cen-tral framework of compounds 1-4 are nearly planar in the complexes. The stacking structure and anionic configura-tion of the charge transfer complexes can be effectively regulated by regulating the substitution positions and sizes of halogen atoms on the aryl groups. CCDC: 2119456, (1)(Cu2Br6)0.5;2119457, (2)(Cu2Br6)0.5;2119458, (3)(Cu2Br6)0.5;2119459, (4)(CuBr2).
  • 加载中
    1. [1]

      Wudl F, Smith G M, Hufnagel E J. Bis-1, 3-dithiolium Chloride: An Unusually Stable Organic Radical Cation[J]. J. Chem. Soc. D ‑ Chem. Commun., 1970,21:1453-1454.

    2. [2]

      Ferraris J, Cowan D O, Walatka V, Perlstein J H. Electron Transfer in a New Highly Conducting Donor -Acceptor Complex[J]. J. Am. Chem. Soc., 1973,95(3):948-949. doi: 10.1021/ja00784a066

    3. [3]

      Jérome D, Mazaud A, Ribault M, Bechgaard K. Superconductivity in a Synthetic Organic Conductor (TMTSF)2PF6[J]. J. Physique Lett, 1980,41(4):95-98. doi: 10.1051/jphyslet:0198000410409500

    4. [4]

      Bryce M R. Current Trends in Tetrathiafulvalene Chemistry: Towards Increased Dimensionality[J]. J. Mater. Chem., 1995,5(10):1481-1496. doi: 10.1039/jm9950501481

    5. [5]

      Garín J. The Reactivity of Tetrathia -and Tetraselenafulvalenes//Katritzky A R. Advances in Heterocyclic Chemistry: Vol. 66. San Diego: Academic Press, 1995: 249-304

    6. [6]

      Bryce M R. Tetrathiafulvalenes as π-Electron Donors for Intramolecular Charge-Transfer Materials[J]. Adv. Mater., 1999,11:11-23. doi: 10.1002/(SICI)1521-4095(199901)11:1<11::AID-ADMA11>3.0.CO;2-3

    7. [7]

      Frère P, Skabara P J. Salts of Extended Tetrathiafulvalene Analogues: Relationships between Molecular Structure, Electrochemical Proper-ties and Solid State Organisation[J]. Chem. Soc. Rev., 2005,34(1):69-98. doi: 10.1039/B316392J

    8. [8]

      Canevet D, Sallé M, Zhang G X, Zhang D Q, Zhu D B. Tetrathiafulva-lene (TTF) Derivatives: Key Building-Blocks for Switchable Processes[J]. Chem. Commun, 2009(17):2245-2269. doi: 10.1039/b818607n

    9. [9]

      Ding H M, Li Y H, Hu H, Sun Y M, Wang J G, Wang C X, Wang C, Zhang G X, Wang B S, Xu W, Zhang D Q. A Tetrathiafulvalene-Based Electroactive Covalent Organic Framework[J]. Chem. Eur. J., 2014,20(45):14614-14618. doi: 10.1002/chem.201405330

    10. [10]

      Yin W Y, Weng Y G, Ren Z H, Zhang Z R, Zhu Q Y, Dai J. Tetrathiafulvalene-Based Double Metal Lead Iodides: Structures and Electrical Properties[J]. Dalton Trans., 2021,50(23):8120-8126. doi: 10.1039/D1DT00631B

    11. [11]

      XIE J Z, WANG D P, MA J P, WANG H Y, ZUO J L. Iron Com-plex Based on π-Conjugated 4-Tetrathiafulvalene-2, 6-di(pyrazin-2-yl)pyridine Ligand[J]. Chinese J. Inorg. Chem., 2017,33(11):2045-2050. doi: 10.11862/CJIC.2017.246 

    12. [12]

      Nishijo J, Uchida M, Enomoto M, Akita M. A Chromium Bis -acetylide Complex Containing a trans -Diethyl -Ethylenedithio -Substituted Tetrathiafulvalene (TTF) Derivative: Synthesis, Crystal Structures, and Magnetic Properties. Transition Met[J]. Chem., 2021,46(5):373-380.

    13. [13]

      Yoshimura A, Misaki Y. Periphery Modification of Tetrathiafulva-lenes: Recent Development and Applications[J]. Chem. Rec., 2021,21:1-13. doi: 10.1002/tcr.202180101

    14. [14]

      Sun J B, Lu X F, Shao J F, Li X X, Zhang S X, Wang B L, Zhao J L, Shao Y L, Fang R, Wang Z H, Yu W, Shao X F. Molecular and Crys-tal Structure Diversity, and Physical Properties of Tetrathiafulvalene Derivatives Substituted with Various Aryl Groups through Sulfur Bridges. Chem[J]. Eur. J., 2013,19(37):12517-12525. doi: 10.1002/chem.201301819

    15. [15]

      Lu X F, Sun J B, Liu Y, Shao J F, Ma L F, Zhang S X, Zhao J, Shao Y L, Zhang H L, Wang Z H, Shao X F. Decorating Tetrathiafulvalene (TTF) with Fluorinated Phenyls through Sulfur Bridges: Facile Syn-thesis, Properties, and Aggregation through Fluorine Interactions[J]. Chem. Eur. J., 2014,20(31):9650-9656.

    16. [16]

      Ma L F, Sun J B, Lu X F, Zhang S X, Qi H, Liu L, Shao Y L, Shao X F. Copper Ion Salts of Arylthiotetrathiafulvalenes: Synthesis, Struc-ture Diversity and Magnetic Properties[J]. Beilstein J. Org. Chem., 2015,11:850-859. doi: 10.3762/bjoc.11.95

    17. [17]

      Ma L F, Peng H L, Lu X F, Liu L, Shao X F. Building up 1 -D, 2-D, and 3-D Polyiodide Frameworks by Finely Tuning the Size of Aryls on Ar-S-TTF in the Charge-Transfer (CT) Complexes of Ar-S-TTFs and Iodine[J]. Chin. J. Chem., 2018,36(9):845-850.

    18. [18]

      Sun J B, Lu X F, Shao J F, Cui Z L, Shao Y, Jiang G Y, Yu W, Shao X F. Straightforward Access to Aryl-Substituted/Fused 1, 3-Dithiole-2-chalcogenones by Cu-Catalyzed C-S Coupling between Aryl Iodides and Zinc -Thiolate Complex (TBA)2[Zn(DMIT)2][J]. RSC Adv., 2013,3(26):10193-10196. doi: 10.1039/c3ra41349g

    19. [19]

      QI H, LU X F, ZHANG S X, SHAO X F. Arylthio-Substituted/Fused Tetrathiafulvalenes[J]. Chemistry, 2016,79(9):787-792.  

    20. [20]

      Zou R Q, Sakurai H, Han S, Zhong R Q, Xu Q. Probing the Lewis Acid Sites and CO Catalytic Oxidation Activity of the Porous Metal-Organic Polymer[J]. J. Am. Chem. Soc., 2007,129(27):8402-8403. doi: 10.1021/ja071662s

    21. [21]

      Wang Y, Cui S X, Li B, Zhang J P, Zhang Y.. Synthesis and Charac-terization of Monosubstituted TTF and Its Solvent Dependent Mono-and Dication Charge -Transfer Salts[J]. Cryst. Growth Des., 2009,9(9):3855-3858. doi: 10.1021/cg900635f

    22. [22]

      Kanehama R, Umemiya M, Iwahori F, Miyasaka H, Sugiura K I, Yamashita M, Yokochi Y, Ito H, Kuroda S I, Kishida H, Okamoto H. Novel ET-Coordinated Copper Complexes: Syntheses, Structures, and Physical Properties (ET=BEDT-TTF=Bis(ethylenedithio)tetrathi-afulvalene)[J]. Inorg. Chem., 2003,42(22):7173-7181.

    23. [23]

      Ichikawa S, Kimura S, Takahashi K, Mori H, Yoshida G, Manabe Y, Matsuda M, Tajima H, Yamaura J I.. Intrinsic Carrier Doping in Anti-ferromagnetically Interacted Supramolecular Copper Complexes with (Pyrazino)tetrathiafulvalene (Pyra-TTF) as the Ligand, [CuⅡCl2(pyra-TTF)] and (Pyra -TTF)2[Cu3Cl4(pyra -TTF)][J]. Inorg. Chem., 2008,47(10):4140-4145.

    24. [24]

      Day P, Kurmoo M, Mallah T, Marsden I R, Friend R H, Pratt F L, Hayes W, Chasseau D, Gaultier J, Bravic G, Ducasse L.. Structure and Properties of Tris[bis(ethylenedithio)tetrathiafulvalenium]tetra-chlorocopper Hydrate, (BEDT -TTF)3CuCl4·H2O: First Evidence for Coexistence of Localized and Conduction Electrons in a Metallic Charge -Transfer Salt[J]. J. Am. Chem. Soc., 1992,114(27):10722-10729.

    25. [25]

      Marsden I R, Allan M L, Friend R H, Kurmoo M, Kanazawa D, Day P, Bravic G, Chasseau D, Ducasse L, Hayes W. Crystal and Electron-ic Structures and Electrical, Magnetic, and Optical Properties of Two Copper Tetrahalide Salts of Bis(ethylenedithio) -Tetrathiafulvalene[J]. Phys. Rev. B, 1994,50(4):2118-2127.

    26. [26]

      Ichikawa S, Takahashi K, Matsuda M, Tajima H, Mori H. Metallic Coordination Supramolecule, [Cu Cl0.2Br1.3(pyra-TTF)0.5+][J]. J. Mater. Chem., 2010,20(45):10130-10134.

    27. [27]

      Armarego W L F, Chai C L L. Purification of Laboratory Chemicals. 5th ed. Amsterdam, Boston: Butterworth-Heinemann, 2003.

    28. [28]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2:A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42(2):339-341.

    29. [29]

      Sheldrick G M. SHELXL-97, A Program for Crystal Structure Refinement. University of Göttingen, Germany, 1997.

    30. [30]

      Zhang S X, Lu X F, Sun J B, Zhao Y L, Shao X F.. Honeycomb Supra-molecular Frameworks of Organic -Inorganic Hybrid Cluster Com-posed of Cation Radical and Keggin-Type Polyoxometalate.[J]. CrystEngComm, 2015,17(22):4110-4116.

    31. [31]

      Ishiguro T, Yamaji K, Saito G. Organic Superconductors. 2nd ed. Berlin: Springer, 1998.

    32. [32]

      Guionneau P, Kepert C J, Bravic G, Chasseau D, Truter M R, Kurmoo M, Day P. Determining the Charge Distribution in BEDT-TTF Salts[J]. Synth. Met., 1997,86(1):1973-1974.

    33. [33]

      Beck J, de Oliveira A B. On the Oxidation of Octamethylenetetrathia-fulvalene by CuBr2 -Synthesis, Crystal Structure and Magnetic Prop-erties of (OMTTF)2[J]. Z. Anorg. Allg. Chem., 2009,635(3):445-449.

    34. [34]

      Kubo K, Yamashita M. New BEDT -TTF Radical Cation Salt with Mixed Anions: α'-[BEDT-TTF]2[CuBr2]0.4[CuCl2]0.6[J]. Crystals, 2012,2(2):284-293.

  • 加载中
    1. [1]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(3)
  • Abstract views(699)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return