Citation: Hong-Nan JIA, Na YAO, Heng-Jiang CONG. Rapid Synthesis of Co-Based Metal-Organic Framework Nanoparticle at Room Temperature for Efficient Oxygen Evolution Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 2011-2019. doi: 10.11862/CJIC.2021.233 shu

Rapid Synthesis of Co-Based Metal-Organic Framework Nanoparticle at Room Temperature for Efficient Oxygen Evolution Reaction

  • Corresponding author: Heng-Jiang CONG, conghj@whu.edu.cn
  • Received Date: 1 May 2021
    Revised Date: 8 September 2021

Figures(8)

  • A fast and mild method was developed to prepare Co-MOF-74 nanoparticles with high crystallinity and uniform morphology at room temperature for efficient oxygen evolution reaction (OER) in alkaline media. Compared with the conventional hydrothermal route, the time required for synthesis was greatly reduced after introducing triethylamine: Co-MOF-74 nanoparticles (about 20 nm) could be readily available by stirring at room temperature for only 2 h. The nano-electrocatalyst exhibited a larger specific surface area (760 m2·g-1), excellent activities and stability for OER with an overpotential of 275 mV to achieve a current density of 10 mA·cm-2.
  • 加载中
    1. [1]

      Turner J A. Sustainable Hydrogen Production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    2. [2]

      Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles[J]. Science, 2011,334(6061):1383-1385. doi: 10.1126/science.1212858

    3. [3]

      Katsounaros L, Cherevko S, Zeradjanin A R, Mayrhofer K J J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion[J]. Angew. Chem. Int. Ed., 2014,53(1):102-121. doi: 10.1002/anie.201306588

    4. [4]

      Zheng Y, Jiao Y, Vasileff A, Qiao S Z. Angew. Chem. Int. Ed., 2018, 57(26): 7568-7579  doi: 10.1002/anie.201710556

    5. [5]

      Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction[J]. Angew. Chem. Int. Ed., 2019,58(14):4679-4684. doi: 10.1002/anie.201901409

    6. [6]

      Sun H M, Yan Z H, Liu F M, Xu W C, Cheng F Y, Chen J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution[J]. Adv. Mater., 2020,32(3)1806326. doi: 10.1002/adma.201806326

    7. [7]

      Yao N, Li P, Zhou Z R, Zhao Y M, Cheng G Z, Luo W. Synergistically Tuning Water and Hydrogen Binding Abilities over Co4N by Cr Doping for Exceptional Alkaline Hydrogen Evolution Electrocatalysis[J]. Adv. Energy Mater., 2019,9(41)1902449. doi: 10.1002/aenm.201902449

    8. [8]

      Chen G, Wan H, Ma W, Zhang N, Cao Y J, Liu X H, Wang J, Ma R Z. Layered Metal Hydroxides and Their Derivatives: Controllable Synthesis, Chemical Exfoliation, and Electrocatalytic Applications[J]. Adv. Energy Mater., 2020,10(11)1902535. doi: 10.1002/aenm.201902535

    9. [9]

      LIU G Q. Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoB x/Co3O4 Catalyst[J]. Chinese J. Inorg. Chem., 2021,37(2):267-275.  

    10. [10]

      Wang H L, Zhu Q L, Z ou, R Q, Xu Q. Metal-Organic Frameworks for Energy Applications[J]. Chem, 2017,2(1):52-80. doi: 10.1016/j.chempr.2016.12.002

    11. [11]

      Xia Q C, Li Z J, Tan C X, Liu Y, Gong W, Cui Y. Multivariate Metal-Organic Frameworks as Multifunctional Heterogeneous Asymmetric Catalysts for Sequential Reactions[J]. J. Am. Chem. Soc., 2017,139(24):8259-8266. doi: 10.1021/jacs.7b03113

    12. [12]

      XU W Y, LI S Y, WANG Y, CHENG Y B, SHEN M S, HU L, GUO Z R, LIAO M Y, PENG J X, CHEN X. Disproportionation Mechanism of Methylchlorosilanes Confinement Catalysis by MIL-53(Al)[J]. Chinese J. Inorg. Chem., 2021,37(4):615-622.  

    13. [13]

      Deng H X, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science, 2010,327(5967):846-850. doi: 10.1126/science.1181761

    14. [14]

      Li B, Wen H M, Wang H L, Wu H, Yildirim T, Zhou W, Chen B L. Porous Metal-Organic Frameworks with Lewis Basic Nitrogen Sites for High-Capacity Methane Storage[J]. Energy Environ. Sci., 2015,8(8):2504-2511. doi: 10.1039/C5EE01531F

    15. [15]

      Zhang Y B, Furukawa H, Ko N, Nie W X, Park H J, Okajima S, Cordova K E, Deng H X, Kim J, Yaghi O M. Introduction of Functionality, Selection of Topology, and Enhancement of Gas Adsorption in Multivariate Metal-Organic Framework-177[J]. Am. Chem. Soc., 2015,137(7):2641-2650. doi: 10.1021/ja512311a

    16. [16]

      Zhao S L, Wang Y, Dong J C, He C T, Yin H J, An P F, Zhao K, Zhang X F, Gao C, Zhang L J, Lv J W, Wang J X, Zhang J Q, Khattak A M, Khan N A, Wei Z X, Zhang J, Liu S Q, Zhao H J, Tang Z Y. Ultrathin Metal-Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution[J]. Nat. Energy, 2016,116184. doi: 10.1038/nenergy.2016.184

    17. [17]

      Lu X F, Liao P Q, Wang J W, Wu J X, Chen X W, He C T, Zhang J P, Li G R, Chen X M. An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution[J]. J. Am. Chem. Soc., 2016,138(27):8336-8339. doi: 10.1021/jacs.6b03125

    18. [18]

      Shen J Q, Liao P Q, Zhou D D, He C T, Wu J X, Zhang W X, Zhang J P, Chen X M. Modular and Stepwise Synthesis of a Hybrid Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution[J]. J. Am. Chem. Soc., 2017,139(5):1778-1781. doi: 10.1021/jacs.6b12353

    19. [19]

      Shen K, Zhang L, Chen X D, Liu L M, Zhang D L, Han Y, Chen J Y, Long J L, Luque R, Li Y W, Chen B L. Ordered Macro-Microporous Metal-Organic Framework Single Crystals[J]. Science, 2018,359(6372):206-210. doi: 10.1126/science.aao3403

    20. [20]

      Xu X B, Zhang Z C, Wang X. Well-Defined Metal-Organic-Framework Hollow Nanostructures for Catalytic Reactions Involving Gases[J]. Adv. Mater., 2015,27(36):5365-5371. doi: 10.1002/adma.201500789

    21. [21]

      Zhang Z C, Chen Y F, Xu X B, Zhang J C, Xiang G L, He W, Wang X. Well-Defined Metal-Organic Framework Hollow Nanocages[J]. Chem. Int. Ed., 2014,53(2):429-433. doi: 10.1002/anie.201308589

    22. [22]

      Kaminker R, Popovitz-Biro R, van der Boom M E. Coordination-Polymer Nanotubes and Spheres: A Ligand-Structure Effect[J]. Angew. Chem., 2011,123(14):3282-3284. doi: 10.1002/ange.201008193

    23. [23]

      Zou L L, Hou C C, Liu Z, Pang H, Xu Q. Superlong Single-Crystal Metal-Organic Framework Nanotubes[J]. J. Am. Chem. Soc., 2018,140(45):15393-15401. doi: 10.1021/jacs.8b09092

    24. [24]

      Rosi N L, Kim J, Eddaoudi M, Chen B L, O'Keeffe M, Yaghi O M. Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units[J]. J. Am. Chem. Soc., 2005,127(5):1504-1518. doi: 10.1021/ja045123o

    25. [25]

      Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-Pore Apertures in a Series of Metal-Organic Frameworks[J]. Science, 2012,336(6084):1018-1023. doi: 10.1126/science.1220131

    26. [26]

      Caskey S R, Wong-Foy A G, Matzger A J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores[J]. J. Am. Chem. Soc., 2008,130(33):10870-10871. doi: 10.1021/ja8036096

    27. [27]

      Wang X L, Xiao H, Li A, Li Z, Liu S J, Zhang Q H, Gong Y, Zheng L R, Zhu Y Q, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions[J]. J. Am. Chem. Soc., 2018,140(45):15336-15341. doi: 10.1021/jacs.8b08744

    28. [28]

      Zhao S L, Tan C H, He C T, An P F, Xie F, Jiang S, Zhu Y F, Wu K H, Zhang B W, Li H J, Zhang J, Chen Y, Liu S Q, Dong J C, Tang Z Y. Structural Transformation of Highly Active Metal-Organic Framework Electrocatalysts during the Oxygen Evolution Reaction[J]. Nat. Energy, 2020,5:881-890. doi: 10.1038/s41560-020-00709-1

    29. [29]

      Yao N, Fan Z Y, Meng R, Jia H N, Luo W. A Cobalt Hydroxide Coated Metal-Organic Framework for Enhanced Water Oxidation Electrocatalysis[J]. Chem. Eng. J., 2021,408127319. doi: 10.1016/j.cej.2020.127319

    30. [30]

      Guo Y, Chen S, Li Y, Wang Y W, Zou H B, Tong X L. Pore Structure Dependent Activity and Durability of Mesoporous Rhodium Nanoparticles towards the Methanol Oxidation Reaction[J]. Chem. Commun., 2020,56(32):4448-4451. doi: 10.1039/D0CC01228A

    31. [31]

      Qin X, Sun Y X, Wang N X, Wei Q, Xie L H, Xie Y B, Lia J R. Nanostructure Array Assisted Aggregation-Based Growth of a Co-MOF-74 Membrane on a Ni-foam Substrate for Gas Separation[J]. RSC Adv., 2016,6(96):94177-94183. doi: 10.1039/C6RA21320K

    32. [32]

      Peng S, Bie B L, Sun Y Z S, Liu M, Cong H J, Zhou W T, Xia Y C, Tang H, Deng H X, Zhou X. Metal-Organic Frameworks for Precise Inclusion of Single-Stranded DNA and Transfection in Immune Cells[J]. Nat. Commun., 2018,91293. doi: 10.1038/s41467-018-03650-w

    33. [33]

      Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Electrochemical Oxygen Reduction Catalysed by Ni3(hexaiminotriphenylene)2[J]. Nat. Commun., 2016,710942. doi: 10.1038/ncomms10942

    34. [34]

      Liu G Q, Sun Z T, Zhang X, Wang H J, Wang G Z, Wu X J, Zhang H M, Zhao H J. Vapor-phase Hydrothermal Transformation of a Nanosheet Array Structure Ni(OH)2 into Ultrathin Ni3S2 Nanosheets on Nickel Foam for High-Efficiency Overall Water Splitting[J]. J. Mater. Chem. A, 2018,6(39):19201-19209. doi: 10.1039/C8TA07162D

    35. [35]

      Zhang C X, Liu H X, He J, Hu G Z, Bao H H, Lü F, Zhuo L C, Ren J Q, Liu X J, Luo J. Boosting Hydrogen Evolution Activity of Vanadyl Pyrophosphate Nanosheets for Electrocatalytic Overall Water Splitting[J]. Chem. Commun., 2019,55(71):10511-10514. doi: 10.1039/C9CC04481G

    36. [36]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard III W A, Chen S, Ren Z F. High-Performance Bifunctional Porous NonNoble Metal Phosphide Catalyst for Overall Water Splitting[J]. Nat. Commun., 2018,92551. doi: 10.1038/s41467-018-04746-z

  • 加载中
    1. [1]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    2. [2]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    5. [5]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(80)
  • Abstract views(3349)
  • HTML views(1431)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return