CoBx/Co3O4电催化剂的制备及其氧析出性能

刘国强

引用本文: 刘国强. CoBx/Co3O4电催化剂的制备及其氧析出性能[J]. 无机化学学报, 2021, 37(2): 267-275. doi: 10.11862/CJIC.2021.022 shu
Citation:  Guo-Qiang LIU. Preparation and Electrocatalytic Activities for Oxygen Evolution Reaction of CoBx/Co3O4 Catalyst[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(2): 267-275. doi: 10.11862/CJIC.2021.022 shu

CoBx/Co3O4电催化剂的制备及其氧析出性能

    通讯作者: 刘国强, E-mail:gqliu@issp.ac.cn
  • 基金项目:

    安徽省自然科学基金青年基金 1908085QC139

    中央高校基本科研业务费专项资金 

摘要: 采用NaBH4溶液处理经水热、热处理步骤制得Co3O4纳米棒,得到表面富含氧空位以及无定型CoBx的Co3O4(CoBx/Co3O4)氧析出(OER)电催化剂。利用X射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线光电子能谱仪(XPS)等技术表征了催化剂的物相、微观形貌、元素组成以及表面化学键结构等。通过电化学工作站测试了电极材料的OER活性、稳定性、电化学阻抗等。结果表明,经NaBH4处理后,Co3O4表面高价态Co被还原至低价态Co,最终其表面有无定型CoBx的生成,并含有大量氧空位,有效提升了OER性能。在1.0 mol·L-1 KOH电解质溶液中,达到10 mA·cm-2的电流密度时,CoBx/Co3O4所需的过电位由Co3O4的346 mV降至298 mV。

English

  • 随着全球性的能源危机和环境污染日益严重,开发绿色、可持续的清洁能源成为近年来新的研究热点[1-3]。在诸多清洁能源中,氢能因为具有燃烧热值高和环境友好的特点,被认为是当前化石燃料的潜在替代品[4-5]。电催化分解水制氢因其操作简单、制氢纯度高等特点受到研究者的普遍关注,其包含2个重要的反应,即氢析出反应(HER)和氧析出反应(OER)。由于OER涉及四电子转移的复杂反应,动力学十分缓慢,需要高的过电位,是电催化分解水的主要能耗反应,限制了工业电解水制氢的进一步发展[1, 4, 6]。目前,公认的最优的商业OER催化剂是RuO2/IrO2,但该类材料所用金属地球储量低,导致价格昂贵,限制了其大规模的商业化应用[1, 3-4, 7]。因此,发展高活性、低成本的电催化剂材料,对降低电催化分解水过电位,提高能量转换效率具有重要的现实意义。

    近年来,基于无机纳米材料的表面工程策略可以实现材料表面电子结构调控及几何结构优化。通过尺寸限制,可以促使低维纳米材料暴露更多的表面原子,这将有利于表面工程对材料的修饰、改性、调控,从而优化其光/电化学性质[8-10]。如经NaBH4溶液改性的TiO2纳米管,光电流得到有效提高,改善了光电化学性能[11]。经H2O2处理的NiMn-LDH(层状双金属氧化物)超细纳米片,部分Mn2+和Mn3+被氧化为Mn4+,导致表面氧缺陷浓度显著增加,优化了电极材料的电导率,提高了电化学能量储存性能[12]。Gao等[13]采用Na2S溶液刻蚀CoO纳米线,制备出一种表面无序的S-CoOx电催化剂,与结晶CoO相比,无序结构使低氧配位和富集的缺陷位点增加,优化了S-CoOx的HER和OER活性。发展这类简单、有效的表面化学处理策略,实现纳米级催化剂表面物理/化学性质的调控、重构以提高其活性,已受到越来越多的关注。

    无定型合金因其独特的短程有序和长程无序的特征,含有大量不饱和配位点,因而表现出独特的物理、化学性质[14]。作为一类有前景的催化剂,无定型金属-硼合金化合物在石油化工、能源转换以及环境催化领域得到广泛的应用[15]。近年来,Wang和Schuhmann等[16-19]采用NaBH4还原金属盐的方法制备了无定型的过渡金属(Fe、Co、Ni)-硼基电催化剂,展示出较为优异的电催化OER活性。由于NaBH4还原过渡金属离子反应剧烈,导致催化剂颗粒团聚严重,限制了过渡金属-硼催化剂性能的充分发挥。因此,我们以Co3O4纳米棒为前驱体,通过NaBH4溶液处理,重构了其表面。NaBH4可将Co3O4中高价Co3+/Co2+还原为低价态的Co2+/Co0,同时伴随氧空位的形成,而零价Co和B结合生成无定型薄片结构的CoBx。通过CoBx、氧空位及Co3O4三者的协同作用,CoBx/Co3O4表现出优于Co3O4的电催化OER活性。达到10 mA·cm-2的电流密度时,CoBx/Co3O4所需过电位由Co3O4的346 mV降至298 mV (1.0 mol·L-1 KOH)。

    硝酸钴、尿素、氟化铵、硼氢化钠、氢氧化钾以及无水乙醇购自国药集团试剂有限公司,商业氧化钌和Nafion试剂(质量分数5%)购自Alfa Aesar化学有限公司,碳纸由上海河森电气有限公司提供。实验中使用的去离子水由实验室自制。实验中使用的化学试剂未经纯化处理。

    将1 mmol硝酸钴、2 mmol氟化铵和5 mmol尿素加入40 mL去离子水中,搅拌均匀;并移入含有聚四氟乙烯内衬的不锈钢反应釜中,置于120 ℃恒温鼓风干燥箱中保持5 h;待降至室温,离心分离Co2(OH)2(CO3)2样品,干燥后备用

    取适量的Co2(OH)2(CO3)2样品置于马弗炉中,在空气氛围中以5 ℃·min-1的升温速率升至400 ℃,并保持2 h。降至室温,得到Co3O4样品。

    取100 mg Co3O4粉体,倒入0.5 mol·L-1的NaBH4 (40 mL)溶液中,待反应结束后,离心分离,用去离子水反复洗涤。置于60 ℃恒温鼓风干燥箱中保持12 h,得到CoBx/Co3O4粉体,备用。

    采用场发射扫描电子显微镜(FESEM,SU8020,日本日立)和场发射透射电子显微镜(FETEM,JEM-2100F, 日本电子)采集样品的形貌、微观结构及元素分布信息,其工作电压分别为10和200 kV。采用X射线光电子能谱(XPS,ESCALAB 250Xi,美国热电)分析了样品表面元素的类型及化学价态,Al靶,辐射(=1 486.6 eV)作为激发源。采用X射线衍射(XRD,X-Pert PRO MPD,荷兰帕纳科)研究了样品的物相结构,Cu靶辐射,管电压为40 kV,管电流为40 mA,扫描角度为10°~90°。采用显微共聚焦Raman光谱仪(LabRAM HR800,HORIBA JOBIN YVON,法国)分析了样品表面的化学成分。采用电子自旋共振波谱仪(ESR,JES-FA200,日本电子)分析了样品的缺陷信息。

    采用标准的三电极体系,通过电化学工作站(CHI660E,上海辰华,中国)在1.0 mol·L-1 KOH溶液中测试了催化剂的OER活性。以Pt网为对电极,Hg/HgO(1.0 mol·L-1 KOH)为参比电极,催化剂涂覆的碳纸电极为工作电极。实验所得电位采用公式(1)校正为相对于可逆氢电极电势(RHE)[20-21]:

    $E\;(\mathrm{vs}\;\mathrm{RHE})=E\;(\mathrm{vs}\;\mathrm{Hg} / \mathrm{Hg} \mathrm{O})+0.098+0.059 \mathrm{pH} $

    (1)

    取样品10 mg,依次加入400 μL去离子水、100 μL无水乙醇以及15 μL Nafion试剂,超声得到均匀分散液。将前述分散液均匀涂覆在商业碳纸(1.5 cm×1.0 cm)表面,置于60 ℃恒温鼓风干燥箱中保持12 h,取出,备用。催化剂材料在碳纸上的负载量约为2.0 mg·cm-2

    ${\rm{B}}{{\rm{H}}_4}^ - + {{\rm{H}}_2}{\rm{O}} \to 2.5{{\rm{H}}_2}({\rm{g}}) + {\rm{B}}({\rm{s}}) + {\rm{O}}{{\rm{H}}^ - } $

    (2)

    $4{\rm{C}}{{\rm{o}}^{3 + }}{\rm{ + B}}{{\rm{H}}_4}^ - + 2{{\rm{H}}_2}{\rm{O}} \to 4{\rm{C}}{{\rm{o}}^{2 + }} + {\rm{B}}{{\rm{O}}_2}^ - + 4{{\rm{H}}^ + } + 2{{\rm{H}}_2}({\rm{g}}) $

    (3)

    $2{\rm{C}}{{\rm{o}}^{2 + }} + {\rm{BH}}_4^ - + 2{{\rm{H}}_2}{\rm{O}} \to \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2{\rm{Co}}({\rm{s}}) + {\rm{BO}}_2^ - + 4{{\rm{H}}^ + } + 2{{\rm{H}}_2}({\rm{g}}) $

    (4)

    $\mathrm{Co}(\mathrm{s})+x \mathrm{B}(\mathrm{s}) \rightarrow \mathrm{CoB}_{x} $

    (5)

    以经水热、热处理得到的Co3O4为前驱体,然后采用NaBH4溶液处理。NaBH4可以将水中的氢置换出来(反应式2)并伴随B单质的生成;同时可以将Co3O4表面的高价Co还原至低价Co(反应式34)并伴随氧空位的生成,经反应式5,最终得到表面富含氧空位的CoBx/Co3O4电催化剂[14, 22-23]

    图 1为实验制得样品的XRD图。采用水热法制得的Co基前驱体为Co2(OH)2(CO3)2(PDF No. 48-0083)。进一步地,通过高温热处理后,位于19.1°、31.3°、36.9°、44.8°、59.4°以及65.2°处的衍射峰,分别对应Co3O4(PDF No. 43-1003)的(111)、(220)、(222)、(400)、(511)和(440)晶面[24-25]。经NaBH4处理后,没有出现新的衍射峰,表明其主体物相没有发生变化。图 2a为Co2(OH)2(CO3)2的SEM图,其呈现出典型的棒状结构。经过高温热处理后,得到Co3O4样品,如图 2b所示,保持了前驱体的棒状结构,此外,该Co3O4纳米棒是由纳米片组装而成。从不同放大倍数的TEM图(图 2c2d)中可以明显地看出纳米棒是由不规则纳米片状堆积、层叠而成,并具有明显孔结构,孔结构可以增加纳米棒的比表面积,有利于暴露更多的催化活性位点[26]图 2e为Co3O4的选区电子衍射(SAED)图片,衍射环结构明显,属于多晶结构。图 2f为Co3O4的高分辨透射电子显微镜(HRTEM)图,图中显示出清晰的晶格条纹,计算得到晶面间距为0.28 nm,对应为Co3O4的(220)晶面。透射电子显微镜-能谱仪(TEM-EDS)元素分布结果表明(图 2g),Co和O元素均匀分布于整个纳米棒,并且Co和O的原子比(0.69)接近于0.75(图 2h)。

    图 1

    图 1.  Co2(OH)2(CO3)2、Co3O4和CoBx/Co3O4的XRD图
    Figure 1.  XRD patterns of Co2(OH)2(CO3)2, Co3O4 and CoBx/Co3O4

    图 2

    图 2.  (a) Co2(OH)2(CO3)2的SEM图; Co3O4的(b) SEM图、(c、d) TEM图、(e) SAED图、(f) HRTEM图、(g) TEM-EDS元素分布图和(h)能谱图
    Figure 2.  (a) SEM image of Co2(OH)2(CO3)2; (b) SEM image, (c, d) TEM image, (e) SAED pattern, (f) HRTEM image, (g) TEM-EDS elemental mappings, and (h) EDS spectrum of Co3O4

    图 3a3b为不同放大倍数下CoBx/Co3O4的SEM图,可以看出其保持了Co3O4的棒状结构,经过NaBH4处理后形貌结构没有发生明显的变化。进一步地,从不同倍数的TEM图(图 3c3d)看出,经过NaBH4处理后,Co3O4表面出现了明显的薄片结构,这种薄片可以暴露更多的活性位点,并具有较高的电导率[27-28];而由于薄片的包覆,导致构成纳米棒初始本征结构变得模糊。图 3e为CoBx/Co3O4的SAED图,属于典型的多晶结构,其对应的晶面依次为(111)、(220)、(311)和(400)晶面。根据纳米棒出现的晶格条纹,计算得到的晶面间距为0.24 nm,归属于Co3O4的(311)晶面(图 3f);而纳米棒边缘的薄片结构则主要表现出无定型的结构,表明经过NaBH4处理后,有新的物相生成,这主要归因于组装棒状Co3O4的纳米片在NaBH4的作用下(反应式1~3)得到一定程度的剥离,最终CoBx和Co3O4在纳米片中相继出现;纳米片中出现的Co3O4晶格条纹,其晶面间距为0.28 nm,对应于(220)晶面。图 3g为CoBx/Co3O4的TEM-EDS元素分布图,表明Co、O和B均匀地分布于整个纳米棒,其原子比为41.39:57.43:1.18(图 3h)。

    图 3

    图 3.  CoBx/Co3O4的(a、b) SEM图、(c、d) TEM图、(e) SAED图、(f) HRTEM图、(g) TEM-EDS元素分布图和(h)能谱图
    Figure 3.  (a, b) SEM images, (c, d) TEM images, (e) SAED pattern, (f) HRTEM image, (g) TEM-EDS elemental mappings, and (h) EDS spectrum of CoBx/Co3O4

    图 4为样品的表面化学结构分析。图 4a为Co3O4和CoBx/Co3O4的XPS全谱图,如图所示,表明二者均含有C、Co和O元素。由于B含量较低,在谱图中没有明显的B信号。Co3O4的Co2p高分辨XPS图谱显示(图 4b),位于779.6和794.6 eV处的特征峰归属于Co2p3/2和Co2p1/2[6, 23];经NaBH4处理后,Co2p的特征峰向高能态偏移了0.3 eV,这主要是Co3O4表面生成的CoBx导致电子结构变化所致[29-30],表明Co和B之间有电子的转移;并且,与Co3O4相比,CoBx/Co3O4位于790和805 eV附近的卫星峰强度有一定程度的减弱,这主要是NaBH4将Co3O4中高价Co还原为低价Co所致[31]。为进一步研究样品中Co3+和Co2+的占比,对Co2p的高分辨XPS谱进行拟合,结果如图 4c所示。对Co3O4,Co2p3/2特征峰是由位于779.6和781.1 eV处的Co3+和Co2+组成;Co2p1/2的特征峰则可拟合为794.6 eV处的Co3+和796.0 eV处的Co2+ [13, 24-25]。对CoBx/Co3O4,位于779.8和781.2 eV的特征峰对应于Co2p3/2的Co3+和Co2+,794.9和796.2 eV处的特征峰则分别对应于Co2p1/2的Co3+和Co2+ [13, 24]。进一步地,以拟合峰面积为基础,计算了Co3+和Co2+的占比,结果表明,经NaBH4处理后,CoBx/Co3O4表面的Co3+占比由45.24%(Co3O4)降至34.55%,而Co2+的占比则由54.76%(Co3O4)增加至65.45%。图 4d为O1s的高分辨XPS谱图,位于529.8 eV处的特征峰来源于Co3O4的晶格氧[32];对于CoBx/Co3O4,位于531.4 eV处的特征峰则来源于样品中含有的缺陷氧[32],这主要归因于NaBH4将Co3O4中的高价Co还原为低价Co,而这种缺陷位点的存在可以增强电极材料的催化活性[32-33];对于Co3O4,位于530.8 eV处的特征峰则归属于样品表面吸附的羟基氧[34]图 4e为B1s的高分辨XPS谱图,位于192.2和188.3 eV处的特征峰来源于B1s,分别对应于B的氧化物和零价B[16-18],说明Co3O4的表面有新物质CoBx生成,而Co3O4样品没有出现B1s的信号峰。

    图 4

    图 4.  (a) Co3O4和CoBx/Co3O4的XPS全谱图; (b) Co2p、(c)拟合的Co2p、(d) O1s、(e) B1s的高分辨XPS谱图
    Figure 4.  (a) XPS survey spectra of Co3O4 and CoBx/Co3O4; (b) Co2p, (c) fitting-Co2p, (d) O1s, and (e) B1s high resolution XPS spectra for Co3O4 and CoBx/Co3O4

    采用经典的三电极体系在1.0 mol·L-1 KOH溶液中研究了系列催化剂的OER性能。图 5a为不同催化剂的OER线性扫描伏安(LSV)极化曲线,在1.45 V(vs RHE)处出现的氧化峰,是由Co2+到Co3+的转变引起的[33],表明电催化OER过程中有高价态Co生成;进一步地,达到10 mA·cm-2的电流密度时,CoBx/Co3O4所需的过电位为298 mV,优于Co3O4(346 mV)、Co2(OH)2(CO3)2(382 mV)和碳纸基体(CP,590 mV),接近于商业RuO2(255 mV)的OER活性。基于拟合得到的塔菲尔(Tafel)斜率表明(图 5b),CoBx/Co3O4具有最优的电催化OER动力学[35],意味着在过电位小幅度变化时,电流密度增加明显,其Tafel斜率为81.3 mV·dec-1,而Co3O4、Co2(OH)2(CO3)2和CP的Tafel斜率依次为94.2、92.4和280.0 mV·dec-1图 5c为在1.57 V vs RHE条件下得到的基于Nyquist图的各电极电化学阻抗谱(EIS),CoBx/Co3O4、Co3O4、Co2 (OH)2(CO3)2和CP在高频区出现了明显半圆弧,其中,CoBx/Co3O4的半圆直径最小,表明其电荷转移电阻最小,具有最优的电化学活性;而CP的电催化OER活性最差。由电流密度-时间曲线可知(图 5d),CoBx/Co3O4表现出优异的电催化OER稳定性,经过6 h的电催化反应,从35.71 mA·cm-2的初始电流密度下降至34.49 mA·cm-2,仅下降3.4%。如图 5e所示,在1.2~1.5 V(vs RHE)和扫速为20 mV·s-1的条件下,经过1 000个循环伏安(CV)测试后,与初始LSV极化曲线相比,其电流密度没有发生明显的偏移,这进一步表明CoBx/Co3O4在电催化OER过程中具有优良的稳定性。图 5f为近期文献报道的钴基电催化剂OER活性的对比,表明CoBx/Co3O4具有较为优异的OER活性。此外,进一步探究了电极材料的电化学活性面积(ECSA)。首先在非法拉第区间1.025~1.125 V(vs RHE)记录了不同扫速下的CV曲线(图 5g5h),结果表明,与Co3O4相比,CoBx/Co3O4可以达到更大的电流密度,说明其具有更大的双电层电容(Cdl)[28, 36]。经过拟合得到的Co3O4和CoBx/Co3O4Cdl分别为9.5和27.1 mF·cm-2(图 5i),而ECSA与Cdl呈正相关,进一步表明CoBx/Co3O4具有较大的ECSA,因此,表现出优于Co3O4的电催化活性[7, 25]

    图 5

    图 5.  (a) LSV极化曲线; (b)对应的Tafel斜率; (c)基于Nyquist图的EIS谱; (d、e) CoBx/Co3O4的稳定性测试; (f)钴基催化剂OER性能对比[37-48]; (g) Co3O4和(h) CoBx/Co3O4在不同扫速下的CV曲线; (i) Cdl
    Figure 5.  (a) LSV curves; (b) Corresponding Tafel plots; (c) EIS spectra based on Nyquist plots; (d, e) Stability test of CoBx/Co3O4; (f) Reported Co-based catalysts for OER[37-48]; CV curves of (g) Co3O4 and (h) CoBx/Co3O4 at different scan rates; (i) Cdl values

    为进一步研究电催化OER过程对电极材料表面化学结构的影响。对经长时间(24 h)稳定性测试后的CoBx/Co3O4进行表征,结果如图 6所示。分析表明,测试前CoBx/Co3O4位于188、466、510、604和669 cm-1处的Raman特征峰分别对应结晶Co3O4的F2gEgF2gF2gA1g模式(图 6a) [49-51]。经长时间电催化OER后,位于188和604 cm-1处的特征峰信号消失而位于466、510和669 cm-1处的特征峰则向高波数方向移动,表明其表面结构发生一定的变化,这主要是由于电极材料表面有高价态的钴基氧化物生成,导致CoBx/Co3O4的晶体结构发生一定程度的畸变[36-37]。另外,经24 h的电催化OER后,其电极材料的主要物相结构没有发生明显的变化,仍为Co3O4 (图 6b)。从ESR谱中可以看出,与Co3O4相比,CoBx/Co3O4表现出明显的氧空位信号(g=2.001,图 6c)[52-53]图 6d为稳定性测试前后CoBx/Co3O4的XPS全谱图,该图表明样品中主要包含Co和O元素,经过24 h的OER反应后,Co、O和B的原子比为40.64:59.02:0.34(反应前为42.46:56.22:1.32)。如图 6e所示,与初始电极材料相比,位于780 eV以及795 eV附近的Co2p特征峰有明显的宽化现象,并且其特征峰有向高能态迁移的现象(~0.2 eV),这表明经过长时间的OER反应,CoBx/Co3O4表面高价Co的含量有一定的增加,其表面或许有一定量的CoOOH生成,这也被认为是其电催化OER的活性位点[54-55]。而电催化OER过程中低价Co向高价态Co的转变导致了电极表面氧含量的增加,促使B1s的信号减弱或消失(图 6f)。

    图 6

    图 6.  CoBx/Co3O4经长时间电催化OER后的(a) Raman图、(b) XRD图、(c) ESR谱图、(d) XPS总谱图、(e) Co2p的高分辨XPS谱图和(f) B1s的高分辨XPS谱图
    Figure 6.  (a) Raman spectra, (b) XRD patterns, (c) ESR spectra, (d) wide scan XPS spectra, (e) high-resolution XPS spectra of Co2p, and (f) high-resolution B1s XPS spectra of CoBx/Co3O4 after a long period of electrocatalysis OER

    CoBx/Co3O4电催化剂优异的电催化OER活性主要归因于以下几点: (1)在NaBH4的作用下,电极表面生成的氧空位可有效增强电子的传输性能,可以促进其电催化OER活性的提高[56-57];(2)无定型CoBx的薄片结构增加了催化剂表面的电导率,促进了OER过程中的电子传输,同时,薄片结构可以暴露更多的活性位点,这也提高了其电催化活性[24, 28, 58];(3)在电化学过程中,原位生成的高价态Co物种(如CoOOH)也进一步增强了其OER性能[7, 54-55]

    以硝酸钴、尿素、氟化铵为原料,经水热、退火等步骤制备了Co3O4纳米棒,然后通过NaBH4溶液处理,在Co3O4纳米棒表面形成无定型结构的CoBx纳米片,并伴随大量氧空位的生成。在Co3O4、CoBx和氧空位三者的协同作用下,CoBx/Co3O4的OER活性明显提高,达到10 mA·cm-2的电流密度时,所需过电位由Co3O4的346 mV降至CoBx/Co3O4的298 mV,并具有良好的电化学稳定性。


    1. [1]

      赵志敏, 丁佳卫, 段慧宇, 庞欢.无机化学学报, 2020, 36(6):1079-1084 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20200609&flag=1ZHAO Z M, DING J W, DUAN H Y, PANG H. Chinese J. Inorg. Chem., 2020, 36(6):1079-1084 http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20200609&flag=1

    2. [2]

      周琦, 段德东, 冯基伟.无机化学学报, 2019, 35(12):2301-2310 doi: 10.11862/CJIC.2019.258ZHOU Q, DUAN D D, FENG J W. Chinese J. Inorg. Chem., 2019, 35(12):2301-2310 doi: 10.11862/CJIC.2019.258

    3. [3]

      Dou S, Wang X, Wang S Y. Small Methods, 2019, 3(1):1800211 doi: 10.1002/smtd.201800211

    4. [4]

      Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Nano Energy, 2018, 47:275-284 doi: 10.1016/j.nanoen.2018.03.010

    5. [5]

      Wei C, Sun S N, Mandler D, Wang X, Qiao S Z, Xu Z C. Chem. Soc. Rev., 2019, 48:2518-2534 doi: 10.1039/C8CS00848E

    6. [6]

      Wang B, Tang C, Wang H F, Chen X, Cao R, Zhang Q. Adv. Mater., 2019, 31(4):1805658 doi: 10.1002/adma.201805658

    7. [7]

      Yu F, Zhou H Q, Huang Y F, Sun J Y, Qin F, Bao J M, Goddard W A, Chen S, Ren Z F. Nat. Commun., 2018, 9:2551 doi: 10.1038/s41467-018-04746-z

    8. [8]

      Chen P Z, Tong Y, Wu C Z, Xie Y. Acc. Chem. Res., 2018, 51(11):2857-2866 doi: 10.1021/acs.accounts.8b00266

    9. [9]

      Wang C M, Bai S, Xiong Y J. Chinese J. Catal., 2015, 36:1476-1493 doi: 10.1016/S1872-2067(15)60911-1

    10. [10]

      Shan J Q, Zheng Y, Shi B Y, Davey K, Qiao S Z. ACS Energy Lett., 2019, 4(11):2719-2730 doi: 10.1021/acsenergylett.9b01758

    11. [11]

      Kang Q, Cao J Y, Zhang Y J, Liu L Q, Xu H, Ye J H. J. Mater. Chem. A, 2013, 1:5766-5774 doi: 10.1039/c3ta10689f

    12. [12]

      Tang Y Q, Shen H M, Cheng J Q, Liang Z B, Qu C, Tabassum H, Zou R Q. Adv. Funct. Mater., 2020, 30(11):1908223 doi: 10.1002/adfm.201908223

    13. [13]

      Yu X X, Yu Z Y, Zhang X L, Li P, Sun B, Gao X C, Yan K, Liu H, Duan Y, Gao M R, Wang G X, Yu S H. Nano Energy, 2020, 71:104652 doi: 10.1016/j.nanoen.2020.104652

    14. [14]

      He D P, Zhang L B, He D S, Zhou G, Lin Y, Deng Z X, Hong X, Wu Y E, Chen C, Li Y D. Nat. Commun., 2016, 7:12362 doi: 10.1038/ncomms12362

    15. [15]

      Pei Y, Zhou G B, Luan N, Zong B N, Qiao M H, Tao F. Chem. Soc. Rev., 2012, 41:8140-8162

    16. [16]

      Xu N, Cao G X, Chen Z J, Kang Q, Dai H B, Wang P. J. Mater. Chem. A, 2017, 5:12379-12384 doi: 10.1039/C7TA02644G

    17. [17]

      Nsanzimana J M V, Peng Y C, Xu Y Y, Thia L, Wang C, Xia B Y, Wang X. Adv. Energy Mater., 2017, 8(1):1701475

    18. [18]

      Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z Y, Somsen C, Muhler M, Schuhmann W. Adv. Energy Mater., 2016, 6(6):1502313 doi: 10.1002/aenm.201502313

    19. [19]

      Hao W J, Wu R B, Zhang R Q, Ha Y, Chen Z L, Wang L C, Yang Y J, Ma X H, Sun D L, Fang F, Guo Y H. Adv. Energy Mater., 2018, 8(26):1801372 doi: 10.1002/aenm.201801372

    20. [20]

      Guo Y N, Tang J, Wang Z L, Kang Y M, Bando Y, Yamauchi Y. Nano Energy, 2018, 47:494-502 doi: 10.1016/j.nanoen.2018.03.012

    21. [21]

      Hai G T, Jia X L, Zhang K Y, Liu X, Wu Z Y, Wang G. Nano Energy, 2018, 44:345-352 doi: 10.1016/j.nanoen.2017.11.071

    22. [22]

      Yang Y S, Zhuang L Z, Rufford T E, Wang S B, Zhu Z H. RSC Adv., 2017, 7:32923-32930 doi: 10.1039/C7RA02558K

    23. [23]

      Li T T, Zhu C X, Yang X G, Gao Y H, He W W, Yue H W, Zhao X G. Electrochim. Acta, 2017, 246:226-233 doi: 10.1016/j.electacta.2017.06.054

    24. [24]

      Lu Y Z, Jing Wang J, Zeng S Q, Zhou L J, Xu W, Zheng D Z, Liu J, Zeng Y X, Lu X H. J. Mater. Chem. A, 2019, 7:21678-21683 doi: 10.1039/C9TA08625K

    25. [25]

      Zhang L, Liang Q M, Yang P, Huang Y, Chen W J, Deng X M, Yang H H, Yan J H, Liu Y N. Int. J. Hydrogen Energy, 2019, 44:24209-24217 doi: 10.1016/j.ijhydene.2019.07.146

    26. [26]

      Guo Y, Chen S, Li Y, Wang Y W, Zou H B, Tong X L. Chem. Commun., 2020, 56:4448-4451 doi: 10.1039/D0CC01228A

    27. [27]

      Gao S, Jiao X C, Sun Z T, Zhang W H, Sun Y F, Wang C M, Hu Q T, Zu X L, Yang F, Yang S Y, Liang L, Wu J, Xie Y. Angew. Chem. Int. Ed., 2016, 128(2):708-712 doi: 10.1002/ange.201509800

    28. [28]

      Liu G Q, Sun Z T, Zhang X, Wang H J, Wang G Z, Wu X J, Zhang H M, Zhao H J. J. Mater. Chem. A, 2018, 6:19201-19209 doi: 10.1039/C8TA07162D

    29. [29]

      Fernandes R, Patel N, Miotello A, Filippi M. J. Mol. Catal. A:Chem., 2009, 298:1-6 doi: 10.1016/j.molcata.2008.09.014

    30. [30]

      Zhou W J, Lu J, Zhou K, Yang L J, Ke Y T, Tang Z H, Chen S W. Nano Energy, 2016, 28:143-150 doi: 10.1016/j.nanoen.2016.08.040

    31. [31]

      Zhou H Q, Yu F, Sun J Y, He R, Chen S, Chu C W, Ren Z F. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(22):5607-5611 doi: 10.1073/pnas.1701562114

    32. [32]

      Cai Z, Bi Y M, Hu E Y, Liu W, Dwarica N, Tian Y, Li X L, Kuang Y, Li Y P, Yang X Q, Wang H L, Sun X M. Adv. Energy Mater., 2017, 8(3):1701694

    33. [33]

      Wang Y C, Zhou T, Jiang K, Da P M, Peng Z, Tang J, Kong B, Cai W B, Yang Z Q, Zheng G F. Adv. Energy Mater., 2014, 4(16):1400696 doi: 10.1002/aenm.201470082

    34. [34]

      Gregoratti L, Baraldi A, Dhanak V R, Comelli C, Kiskinova M, Rosei R. Surf. Sci., 1995, 340:205-214 doi: 10.1016/0039-6028(95)00695-8

    35. [35]

      Mi Y Y, Qiu Y, Liu Y F, Peng X Y, Hu M, Zhao S Z, Cao H Q, Zhuo L Z, Li H Y, Ren J Q, Liu X J, Luo J. Adv. Funct. Mater., 2020, 30(31):2003438 doi: 10.1002/adfm.202003438

    36. [36]

      Zhang C X, Liu H X, He J, Hu G Z, Bao H F, Lv F, Zhuo L C, Ren J Q, Liu X J, Luo J. Chem. Commun., 2019, 55:10511-10514 doi: 10.1039/C9CC04481G

    37. [37]

      Yan L T, Cao L, Dai P C, Gu X, Liu D D, Li L J, Wang Y, Zhao X B. Adv. Funct. Mater., 2017, 27(40):1703455

    38. [38]

      Gupta S, Jadhav H, Sinha S, Miotello A, Patel M K, Sarkar A, Patel N. ACS Sustainable Chem. Eng., 2019, 7(19):16651-16658

    39. [39]

      Wu J D, Wang D P, Wan S A, Liu H L, Wang C, Wang X. Small, 2020, 16(15):1900550

    40. [40]

      Jin H Y, Mao S J, Zhan G P, Xu F, Bao X B, Wang Y. J. Mater. Chem. A, 2017, 5:1078-1084 doi: 10.1039/C6TA09959A

    41. [41]

      Chi K, Tian X, Wang Q J, Zhang Z Y, Zhang X Y, Zhang Y, Jing F, Lv Q Y, Yao W, Xiao F, Wang S. J. Catal., 2020, 381:44-52

    42. [42]

      Hao S Y, Chen L C, Yu C L, Yang B, Li Z J, Hou Y, Lei L C, Zhang X W. ACS Energy Lett., 2019, 4(4):952-959

    43. [43]

      Zhou G Y, Li M, Li Y L, Dong H, Sun D M, Liu X E, Xu L, Tian Z Q, Tang Y W. Adv. Funct. Mater., 2020, 30(7):1905252

    44. [44]

      Chen Z J, Kang Q, Cao G X, Xu N, Dai H B, Wang P. Int. J. Hydrogen, Energy, 2018, 43:6076-6087

    45. [45]

      Liu G Q, Zhang X, Zhao C J, Xiong Q Z, Gong W B, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. New J. Chem., 2018, 42:6381-6388

    46. [46]

      Zhang J. Li X X, Liu Y T, Zeng Z W, Cheng X, Wang Y D, Tu W M, Pan M. Nanoscale, 2018, 10:11997-12002

    47. [47]

      Liu G Q, Zhao C J, Wang G Z, Zhang Y X, Zhang H M. J. Colloid Interface Sci., 2018, 532:37-46

    48. [48]

      Han X P, Wu X Y, Deng Y D, Liu J, Lu J, Zhong C, Hu W B. Adv. Energy Mater., 2018, 8(24):1800935

    49. [49]

      Xiong S L, Yuan C Z, Zhang X G, Xi B J, Qian Y T. Chem. Eur. J., 2009, 15(21):5320-5326 doi: 10.1002/chem.200802671

    50. [50]

      Navale S T, Liu C, Gaikar P S, Patil V B, Sagar R U R, Du B, Mane R S, Stadler F J. Sensor. Actuat. B, 2017, 245:524-532 doi: 10.1016/j.snb.2016.07.136

    51. [51]

      Chernysheva D, Vlaic C, Leontyev I, Pudova L, Ivanov S, Avramenko M, Allix M, Rakhmatullin A, Maslova O, Bund A, Smirnova N. Solid State Sci., 2018, 86:3-59 doi: 10.1016/j.solidstatesciences.2018.10.005

    52. [52]

      Xu J, Zhang C X, Liu H X, Sun J Q, Xie R C, Qiu Y, Lv Fang, Liu Y F, Zhuo L C, Liu X J, Luo J. Nano Energy, 2020, 70:104529-104536

    53. [53]

      Duan Y, Yu Z U, Hu S J, Zheng X S, Zhang C T, Ding H H, Hu B C, Fu Q Q, Yu Z L, Zheng X, Zhu J F, Gao M R, Yu S H. Angew. Chem. Int. Ed., 2019, 131(44):15919-15924

    54. [54]

      Jiang N, You B, Boonstra R, Rodriguez I M T, Sun Y J. ACS Energy Lett., 2016, 1(2):386-390 doi: 10.1021/acsenergylett.6b00214

    55. [55]

      Jiang N, You B, Sheng M L, Sun Y J. Angew. Chem. Int. Ed., 2015, 127(21):6349-6352 doi: 10.1002/ange.201501616

    56. [56]

      Xu L, Jiang Q Q, Xiao Z H, Li X Y, Huo J, Wang S Y, Dai L M. Angew. Chem. Int. Ed., 2016, 128(17):5363-5367 doi: 10.1002/anie.201600687

    57. [57]

      Xu W J, Lyu F L, Bai Y C, Gao A Q, Feng J, Cai Z X, Yin Y D. Nano Energy, 2018, 43:110-116

    58. [58]

      Nsanzimana J M V, Gong L Q, Dangol R, Reddu V, Jose V, Xia B Y, Yan Q Y, Lee J M, Wang X. Adv. Energy Mater., 2019, 9(28):1901503 doi: 10.1002/aenm.201901503

  • 图 1  Co2(OH)2(CO3)2、Co3O4和CoBx/Co3O4的XRD图

    Figure 1  XRD patterns of Co2(OH)2(CO3)2, Co3O4 and CoBx/Co3O4

    图 2  (a) Co2(OH)2(CO3)2的SEM图; Co3O4的(b) SEM图、(c、d) TEM图、(e) SAED图、(f) HRTEM图、(g) TEM-EDS元素分布图和(h)能谱图

    Figure 2  (a) SEM image of Co2(OH)2(CO3)2; (b) SEM image, (c, d) TEM image, (e) SAED pattern, (f) HRTEM image, (g) TEM-EDS elemental mappings, and (h) EDS spectrum of Co3O4

    图 3  CoBx/Co3O4的(a、b) SEM图、(c、d) TEM图、(e) SAED图、(f) HRTEM图、(g) TEM-EDS元素分布图和(h)能谱图

    Figure 3  (a, b) SEM images, (c, d) TEM images, (e) SAED pattern, (f) HRTEM image, (g) TEM-EDS elemental mappings, and (h) EDS spectrum of CoBx/Co3O4

    图 4  (a) Co3O4和CoBx/Co3O4的XPS全谱图; (b) Co2p、(c)拟合的Co2p、(d) O1s、(e) B1s的高分辨XPS谱图

    Figure 4  (a) XPS survey spectra of Co3O4 and CoBx/Co3O4; (b) Co2p, (c) fitting-Co2p, (d) O1s, and (e) B1s high resolution XPS spectra for Co3O4 and CoBx/Co3O4

    图 5  (a) LSV极化曲线; (b)对应的Tafel斜率; (c)基于Nyquist图的EIS谱; (d、e) CoBx/Co3O4的稳定性测试; (f)钴基催化剂OER性能对比[37-48]; (g) Co3O4和(h) CoBx/Co3O4在不同扫速下的CV曲线; (i) Cdl

    Figure 5  (a) LSV curves; (b) Corresponding Tafel plots; (c) EIS spectra based on Nyquist plots; (d, e) Stability test of CoBx/Co3O4; (f) Reported Co-based catalysts for OER[37-48]; CV curves of (g) Co3O4 and (h) CoBx/Co3O4 at different scan rates; (i) Cdl values

    图 6  CoBx/Co3O4经长时间电催化OER后的(a) Raman图、(b) XRD图、(c) ESR谱图、(d) XPS总谱图、(e) Co2p的高分辨XPS谱图和(f) B1s的高分辨XPS谱图

    Figure 6  (a) Raman spectra, (b) XRD patterns, (c) ESR spectra, (d) wide scan XPS spectra, (e) high-resolution XPS spectra of Co2p, and (f) high-resolution B1s XPS spectra of CoBx/Co3O4 after a long period of electrocatalysis OER

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  8
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2021-02-10
  • 收稿日期:  2020-08-21
  • 修回日期:  2020-11-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章