Citation: Qi ZHOU, Xin-Bao LI, Sun-Zhi JIAO. Mesoporous Regulated Co9S8/Ni3S2 Composite Electrode Materials and Electrocatalytic Hydrogen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2021, 37(11): 1970-1980. doi: 10.11862/CJIC.2021.223 shu

Mesoporous Regulated Co9S8/Ni3S2 Composite Electrode Materials and Electrocatalytic Hydrogen Evolution Performance

  • Corresponding author: Qi ZHOU, zhouxq301@sina.com
  • Received Date: 10 April 2021
    Revised Date: 20 August 2021

Figures(11)

  • The nano-porous Ni-Co alloy was prepared by rapid solidification and dealloying. After vapor deposition of sulfur and hot hydrogen reduction, nano-porous Co9S8/Ni3S2 composite electrode materials with surface mesoporous were prepared. The results showed that sulfur atoms and Ni-Co alloys formed CoS2/NiS2 composite phases in situ, and after thermal hydrogen reduction, Co9S8/Ni3S2 composite phase with a low sulfur atom ratio was formed. This thermal hydrogen reduction process not only increases the electron density around the Co9S8/Ni3S2 elements, but also modulates heterogeneous interface with mesoporous structure, which improves the electron transport capacity and increases the active surface area. Compared with other Ni and Co sulfides that were prepared under the same condition, Co9S8/Ni3S2 had better hydrogen evolution reaction (HER) activity. When current density was 50 mA·cm-2, the hydrogen evolution overpotential of Co9S8/Ni3S2 was 234 mV, and Tafel slope was 106 mV·dec-1. After stabilization test, the voltage changed only 14 mV.
  • 加载中
    1. [1]

      CHANG J F, XIAO Y, LUO Z Y, GE J J, LIU C P, XING W. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Phys.-Chim. Sin., 2016,32(7):1556-1592.  

    2. [2]

      Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar Water Splitting Cells-Chemical Reviews[J]. J. Am. Chem. Soc., 2010,110:6446-6473.

    3. [3]

      Lewis N S, Nocera D G. Powering the Planet: Chemical Challenges in Solar Energy Utilization[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103

    4. [4]

      Gray H B. Powering the Planet with Solar Fuel[J]. Nat. Chem., 2009,1(1)7. doi: 10.1038/nchem.141

    5. [5]

      Ursua A, Gandia L M, Sanchis P. Hydrogen Production from Water Electrolysis: Current Status and Future Trends[J]. Proc. IEEE, 2012,100(2):410-426. doi: 10.1109/JPROC.2011.2156750

    6. [6]

      Zhang R, Wang X X, Yu S J, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction[J]. Adv. Mater., 2017,29(9)1605502. doi: 10.1002/adma.201605502

    7. [7]

      Zhang H J, Li X P, Haehnel A, Naumann V, Lin C, Azimi S, Schweizer S L, Maijenburg A W, Wehrspohn R B. Bifunctional Heterostructure Assembly of Ni-Fe LDH Nanosheets on Ni-Co-P Nanowires for Highly Efficient and Stable Overall Water Splitting[J]. Adv. Funct. Mater., 2018,28(14)1706847. doi: 10.1002/adfm.201706847

    8. [8]

      Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav A K, Bhattacharyya D, Jha S N, Miotello A, Kothari D C. Co-Ni-B Nanocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Range[J]. Appl. Catal. B, 2016,192(5):126-133.  

    9. [9]

      Wu T, Ma Y, Qu Z B, Fan J C, Li Q X, Shi P H, Xu Q J, Min Y L. Black Phosphorus-Graphene Heterostructure-Supported Pd Nanoparticles with Superior Activity and Stability for Ethanol Electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2019,11(5):5136-5145. doi: 10.1021/acsami.8b20240

    10. [10]

      Wu Y S, Liu X J, Han D D, Song X Y, Shi L, Song Y, Niu S W, Xie Y F, Cai J Y, Wu S Y, Kang J, Zhou J B, Chen Z Y, Zheng X S, Xiao X H, Wang G M. Electron Density Modulation of NiCo2S4 Nanowires by Nitrogen Incorporation for Highly Efficient Hydrogen Evolution Catalysis[J]. Nat. Commun., 2018,9(1):1425-1434. doi: 10.1038/s41467-018-03858-w

    11. [11]

      Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting[J]. J. Am. Chem. Soc., 2015,137(44):14023-14026. doi: 10.1021/jacs.5b08186

    12. [12]

      Falkowski J M, Concannon N M, Yan B, Surendranath Y. Heazle-woodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions[J]. J. Am. Chem. Soc., 2015,137(25):7978-7981. doi: 10.1021/jacs.5b03426

    13. [13]

      Zhou W, Zheng J L, Yue Y H, Guo L. Highly Stable rGO-Wrapped Ni3S2 Nanobowls: Structure Fabrication and Superior Long-Life Electrochemical Performance in LIBs[J]. Nano Energy, 2015,11:428-435. doi: 10.1016/j.nanoen.2014.11.022

    14. [14]

      Kumar N, Raman N, Sundaresan A. Synthesis and Properties of Cobalt Sulfide Phases: CoS2 and Co9S8[J]. Z. Anorg. Chem., 2014,640(6):1069-1074. doi: 10.1002/zaac.201300649

    15. [15]

      CHEN J, LI X H, XIONG X B, MA J, ZENG X R, LI J Q, TANG J N, QIAN H X. Hydrothermal Electrochemical Deposition Synthesis of Co9S8 Film Electrode[J]. Rare Met. Mater. Eng., 2019,48(3):967-972.  

    16. [16]

      Yonemoto B T, Hutchings G S, Jiao F. A General Synthetic Approach for Ordered Mesoporous Metal Sulfifides[J]. J. Am. Chem. Soc., 2014,136(25):8895-8898. doi: 10.1021/ja504407e

    17. [17]

      WANG H W, WANG Y D, MAO Q L, AN G Q, CHE Q, ZHANG S J, YIN X. Sulfur-Doped Ordered Mesoporous Carbon as Fuel Cell Electrocatalyst for Oxygen Reduction[J]. Chinese J. Inorg. Chem., 2019,35(3):369-375.  

    18. [18]

      ZHOU Q, LI Z Y, WANG F. Effect of Mo on the Skeleton Structure and Hydrogen Evolution Performance of Ni-Mo Alloys Electrode Prepared by De-alloying[J]. Chem. J. Chinese Universities, 2019,40(8):1717-1725.  

    19. [19]

      Huang Y R, Yang W W, Yu Y S, Hao S. Ordered Mesoporous Spinel CoFe2O4 as Efficient Electrocatalyst for the Oxygen Evolution Reaction[J]. J. Electroanal. Chem., 2019,840:409-414. doi: 10.1016/j.jelechem.2019.04.010

    20. [20]

      Cai B, Zhao M G, Ma Y, Ye Z Z, Huang J Y. Bioinspired Formation of 3D Hierarchical CoFe2O4 Porous Microspheres for Magnetic-Controlled Drug Release[J]. ACS Appl. Mater. Interfaces, 2015,7(2):1327-1333. doi: 10.1021/am507689a

    21. [21]

      Du J, Wang R, Lv Y R, Wei Y L, Zang S Q. One-Step MOF-Derived Co/Co9S8 Nanoparticles Embedded in Nitrogen, Sulfur and Oxygen Ternary-Doped Porous Carbon: An Efficient Electrocatalyst for Over-all Water Splitting[J]. Chem. Commun., 2019,55(22):3203-3206. doi: 10.1039/C9CC00196D

    22. [22]

      Liu Y P, Wang B X, Zhang Q, Yang S Y, Li Y H, Zuo J L, Wang H J, Peng F. A Novel Bicomponent Co3S4/Co@C Cocatalyst on CdS, Accelerating Charge Separation for Highly Efficient Photocatalytic Hydrogen Evolution[J]. Green Chem., 2020,22:238-247. doi: 10.1039/C9GC03323H

    23. [23]

      Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Ni3S2 Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution[J]. Energy Environ. Sci., 2013,6(10):2921-2924. doi: 10.1039/c3ee41572d

    24. [24]

      ZHOU Q, LI X B, LI Z Y. Composite Electrodes of Nano-Porous Ni-Mo Modified by RuO2 and Electrocatalytic Property for Hydrogen Evolution[J]. Chinese J. Inorg. Chem., 2020,36(9):1649-1658.  

    25. [25]

      Wang Q, Gao R, Li J H. Porous, Self-Supported Ni3S2/Ni Nanoarchi-tectured Electrode Operating through Efficient Lithium-Driven Conversion Reactions[J]. Appl. Phys. Lett., 2007,90(14)143107. doi: 10.1063/1.2716308

    26. [26]

      Kandula S, Shrestha K R, Kim N H, Lee J H. Fabrication of a 3D Hierarchical Sandwich Co9S8/α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors[J]. Small, 2018,141800291. doi: 10.1002/smll.201800291

    27. [27]

      Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. Heteronanorods of MoS2-Ni3S2 as Efficient and Stable Bi-Functional Electrocatalysts for Overall Water Splitting[J]. ACS Catal., 2017,7(4):2357-2366. doi: 10.1021/acscatal.6b03192

    28. [28]

      ZHANG C. Preparation and Performance of Mesoporous Iron Phosphide Electrocatalysts for Hydrogen Evolution Reaction. Changchun: Jilin University, 2020.

    29. [29]

      Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces[J]. Science, 2011,334(6060):1256-1260. doi: 10.1126/science.1211934

  • 加载中
    1. [1]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    4. [4]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    7. [7]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    8. [8]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(4)
  • Abstract views(959)
  • HTML views(207)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return