Citation:
Ya-Ru Qu, Kai-Li Tian, Han-Jun Huang, Jia-Jun Tu, Ai-Hao Chen, Hai-Jun Sun, Maxim V. Bermeshev, Shao-Jie Wang, Wen-Bin Li, Xiang-Kui Ren. Fluorescence enhancement of perylene diimide: Design strategy and application[J]. Chinese Journal of Structural Chemistry,
;2025, 44(12): 100756.
doi:
10.1016/j.cjsc.2025.100756
-
Perylene diimide (PDI) derivatives have emerged as a class of important organic fluorescent materials owing to their high extinction coefficient, excellent thermal and photostability, and versatile structural tunability. However, due to its intrinsic rigid planar structure, π-π stacking is easy to occur, resulting in aggregation-caused quenching (ACQ). In recent years, extensive efforts have been devoted to overcome this challenge and enhance the fluorescence performance of PDIs. This review systematically summarizes representative strategies from three major perspectives: (i) Rational molecular design, including the introduction of bulky aromatic substituents, dendritic or polyhedral oligomeric silsesquioxane (POSS) units to provide steric hindrance, as well as the activation of aggregation-induced emission (AIE); (ii) Polymer-based regulation strategies, including physical blending with polymer hosts and covalent integration into polymer backbones, which provide spatial isolation and structural robustness; and (iii) Supramolecular assembly, where host-guest inclusion and self-assembly pathways precisely tune intermolecular packing and excitonic coupling. These strategies have enabled significant improvements in fluorescence quantum yield (FLQY) across solution, aggregate, and solid states. Furthermore, highly emissive perylene diimide (PDI) derivatives have demonstrated broad applicability in biomedicine, sensing and anti-counterfeiting, and optoelectronic devices such as organic light-emitting diodes (OLEDs). This review highlights the fundamental design principles, performance optimization strategies, and emerging application frontiers of PDI-based luminescent materials, providing guidance for their further development toward multifunctional and sustainable optoelectronic technologies.
-
-
-
-
[1]
Chao Wei , Zi-Yi Zhao , Jing-Jing Li , Jinli Zhang , Ming Lu , Xiao-Qin Liu , Guoliang Liu , Jiandong Pang , Lin-Bing Sun . Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100625-100625. doi: 10.1016/j.cjsc.2025.100625
-
[2]
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
-
[3]
Renyuan Wang , Lei Ke , Houxiang Wang , Yueheng Tao , Yujie Cui , Peipei Zhang , Minjie Shi , Xingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920
-
[4]
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
-
[5]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[6]
Lu Li , Suticha Chunta , Xianzi Zheng , Haisheng He , Wei Wu , Yi Lu . β-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662
-
[7]
Jiatong Hu , Qiyi Wang , Ruiwen Tang , Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015
-
[8]
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
-
[9]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[10]
Wen-Wen Xu , Yue-Xiu Qin , Xiao-Yong Yu , Lin-Nan Jiang , Heng-Yi Zhang , Yong Chen , Yu Liu . Multipath cascade light harvesting for multicolor luminescence based on macrocyclic sulfonatocalix[4]arene. Chinese Chemical Letters, 2025, 36(11): 111068-. doi: 10.1016/j.cclet.2025.111068
-
[11]
Xingyue Yuan , Li Wu , Qiuyu Peng , Yanyan Tang , Mingxu Wang , Yuhang Wei , Zhu Tao , Xin Xiao . Developing color-tunable long afterglow anti-counterfeiting materials using cucurbit[6]uril and classical aggregation-caused quenching compounds through multiple non-covalent interactions. Chinese Chemical Letters, 2025, 36(9): 110821-. doi: 10.1016/j.cclet.2025.110821
-
[12]
Yuxia Gao , Li Zhang , Chenhui Zhang , Fengpei Du . Chemical Empowerment for Green Development of Pesticides: From Molecular Design to Field Application. University Chemistry, 2025, 40(12): 78-86. doi: 10.12461/PKU.DXHX202509052
-
[13]
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
-
[14]
Jingjing Zhang , Fei Yang , Liying Zhang , Ran Li , Guo Wang , Yanqing Xu , Wei Wei . Stable radicals in bacteria composites hybridized by a doubly-strapped perylene diimide for near-infrared photothermal conversion. Chinese Chemical Letters, 2025, 36(7): 110627-. doi: 10.1016/j.cclet.2024.110627
-
[15]
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
-
[16]
Lei Zhang , Chenyang Kou , Kun Ni , Yiwen Chen , Tongchuan Zhang , Baoliang Zhang . Microenvironment regulation of copper sites by chelating hydrophobic polymer for electrosynthesis of ethylene. Chinese Chemical Letters, 2025, 36(6): 110836-. doi: 10.1016/j.cclet.2025.110836
-
[17]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[18]
Jinchen Li , Tangxin Xiao , Kai Diao , Zhouyu Wang , Leyong Wang . Supramolecular catalysis enabled by chiral molecular cages with anion-π interaction capability. Chinese Chemical Letters, 2026, 37(1): 111796-. doi: 10.1016/j.cclet.2025.111796
-
[19]
Xiaonan LI , Hui HAN , Yihan ZHANG , Jing XIONG , Tingting GUO , Juanzhi YAN . A viologen‐based Cd(Ⅱ) coordination polymer: Self‐assembly, thermochromism, and electrochemical property. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1439-1444. doi: 10.11862/CJIC.20240376
-
[20]
Bin Yao , Yao Bu , Hongfei Sun , Guowang Li , Xianying Wu , Wei Wang . Interlocked covalent organic cages: Design, synthesis, and self-assembly. Chinese Chemical Letters, 2026, 37(1): 111894-. doi: 10.1016/j.cclet.2025.111894
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(6)
- HTML views(0)
Login In
DownLoad: