Citation: Jing Guo, Chunhui Luo, Peng Li, Mao Ye, Zhihua Qiao, Yubo Wu, Huiqin Hu, Xubiao Luo, Liming Yang, Yulin Cai, Pengwei Li, Kai Zhu, Cheng Fu, Bing Yu, Yueying Chen, Shichang Wang, Ting Wang, Chongchong Qi, Zirou Liu, Dongmei Huang, Zengxi Wei, Fangxin Mao, Yi Wei, Caining Wen, Chao Han, Bo Weng, Han Feng, Junming Hong, Jing Wu, Yu Xiao, Guang Liu, Linlin Song, Rongzheng Ren, Zhenhua Wang, Long Kong, Huaifang Shang, Lihua Wang, Yongzhi Chen, Changjie Ou, Huijun Yang, Xiaoyu Liu, Jin Yi, Siwu Li, Chuang Yu, Yanhui Cao, Zhong Wu, Yida Deng, Wenbin Hu, Jianjian Zhong, Xiong Zhang, Yanwei Ma, Jianmin Ma. Roadmap on sustainable materials and technologies[J]. Chinese Chemical Letters, ;2026, 37(2): 112116. doi: 10.1016/j.cclet.2025.112116 shu

Roadmap on sustainable materials and technologies

Figures(31)

  • Sustainable development for our life is important task, which is driven by key materials and technologies. In this roadmap, we discuss three main aspects in addressing environmental questions, green chemical processes and energy challenges. They are included, such as gas treatment and separation, wastewater treatment, waste gas treatment, solid waste treatment, lithium extraction, hydrogen production, water splitting, CO2 reduction, photocatalytic clean technologies, plastic degradation, fuel cells, lithium batteries, sodium batteries, aqueous batteries, solid state batteries, metal air batteries and supercapacitors. Their status, challenges, progress and future perspectives are also discussed. We hope that this paper can give clear views on sustainable development in materials and technologies.
  • 加载中
    1. [1]

      R.S.K. Valappil, N. Ghasem, M. Al-Marzouqi, J. Ind. Eng. Chem. 98 (2021) 103–129.

    2. [2]

      Y.L. Zhao, X. Zhang, M.Z. Li, et al., Chem. Soc. Rev. 53 (2024) 2056–2098.  doi: 10.1039/d3cs00285c

    3. [3]

      D.S. Sholl, R.P. Lively, Nature 532 (2016) 435–437.  doi: 10.1038/532435a

    4. [4]

      L. Yang, S. Qian, X. Wang, et al., Chem. Soc. Rev. 49 (2020) 5359–5406.  doi: 10.1039/c9cs00756c

    5. [5]

      X. Zhang, X. Ding, Z. Song, et al., AIChE J 67 (2021) e17340.

    6. [6]

      A. Knebel, J. Caro, Nat. Nanotechnol. 17 (2022) 911–923.  doi: 10.1038/s41565-022-01168-3

    7. [7]

      A.A. Uliana, E.O. Velasquez, K.I. Graf, et al., Adv. Mater. (2025) e09150.

    8. [8]

      H. Mukhtar, B. Shimekit, Natural gas purification technologies-Major advances for CO2 separation and future directions, In: H.A. Al-Megren, (Ed.) Advances in Natural Gas Technology, IntechOpen, London, 2012.

    9. [9]

      S.M. Wang, P. Duan, Q.Y. Yang, Coord. Chem. Rev. 525 (2025) 216339.

    10. [10]

      H.N. Li, Z.Y. Sun, Z.J. Yu, et al., Nat. Commun. 16 (2025) 8199.

    11. [11]

      K. Li, H. Tang, Z. Huang, et al., Sep. Purif. Technol. 319 (2023) 124084.

    12. [12]

      Z. Xu, J. Gao, Q. Sun, et al., Fuel 387 (2025) 134447.

    13. [13]

      F. Degen, M. Winter, D. Bendig, et al., Nat. Energy 8 (2023) 1284–1295.  doi: 10.1038/s41560-023-01355-z

    14. [14]

      H. Hu, X. Guo, L. Yang, et al., Adv. Mater. 37 (2025) 2506055.

    15. [15]

      S. Yang, Y. Wang, H. Pan, et al., Nature 636 (2024) 309–321.  doi: 10.1038/s41586-024-08117-1

    16. [16]

      M.L. Vera, W.R. Torres, C.I. Galli, et al., Nat. Rev. Earth Environ. 4 (2023) 149–165.  doi: 10.1038/s43017-022-00387-5

    17. [17]

      J. Xiao, B. Niu, P. Li, et al., Green Chem. 27 (2025) 10291–10315.  doi: 10.1039/d5gc02804c

    18. [18]

      H. Hu, G. Yang, C. Chen, et al., Adv. Funct. Mater. 35 (2025) e13012.  doi: 10.1002/adfm.202513012

    19. [19]

      L. Zhang, J. Yan, Z. Wang, et al., Adv. Mater. 38 (2026) e12998.  doi: 10.1002/adma.202512998

    20. [20]

      L. Yang, Z. Gao, T. Liu, et al., Environ. Sci. Technol. 57 (2023) 4591–4597.  doi: 10.1021/acs.est.3c00287

    21. [21]

      Y. Song, S. Fang, N. Xu, et al., Science 385 (2024) 1444–1449.  doi: 10.1126/science.adm7034

    22. [22]

      X. Tian, C. Ye, L. Zhang, et al., Adv. Mater. 37 (2025) 2402335.

    23. [23]

      J. Zhang, Z. Cheng, X. Qin, et al., Desalination 547 (2023) 116225.

    24. [24]

      Y. Niu, Y. Yuan, Y. Wang, et al., J. Cleaner Prod. 525 (2025) 146535.

    25. [25]

      Y. Boroumand, S. Abrishami, A. Razmjou, Nat. Sustain. 7 (2024) 1550–1551.  doi: 10.1038/s41893-024-01451-2

    26. [26]

      H. Sun, X. Li, B. Wu, et al., Chin. Chem. Lett. 36 (2025) 110041.

    27. [27]

      J. Koloch, J. Schneider, M. Seidenfus, et al., e-Prime 12 (2025) 100995.

    28. [28]

      H. Liu, J. Long, H. Yu, et al., Chin. Chem. Lett. 36 (2025) 109712.

    29. [29]

      P. Li, S. Luo, Y. Lin, et al., Chem. Soc. Rev. 53 (2024) 11967–12013.  doi: 10.1039/d4cs00362d

    30. [30]

      Y. Zang, M. Qu, D.T. Pham, et al., Comput. Ind. Eng. 198 (2024) 110727.

    31. [31]

      C. Wu, C. Xu, Y. Zhang, et al., J. Electr. Eng. 20 (2025) 310–322.

    32. [32]

      J. Luo, L. Chen, G. Cai, Waste Manage. 205 (2025) 115008.

    33. [33]

      J. Gao, G. Wang, J. Xiao, et al., Rob. Comput. Integr. Manuf. 89 (2024) 102775.

    34. [34]

      H. Ma, T. Wang, Y. Ding, et al., Patent CN120017814A, 2025.

    35. [35]

      Q. Song, Y. Ding, T. Shao, Patent CN118037960A, 2024.

    36. [36]

      X. Gu, J. Li, Y. Zhu, et al., Energy 285 (2023) 129342.

    37. [37]

      J. Chen, P. Kollmeyer, R. Ahmed, et al., Appl. Energy 391 (2025) 125923.

    38. [38]

      R.F. Maritz, R.F. van Schalkwyk, N. Elginöz, et al., Waste Manage 200 (2025) 114763.

    39. [39]

      P. Li, X. Xia, L. Wang, et al., Joule 9 (2025) 102003.

    40. [40]

      S. Chen, G. Wu, H. Jiang, et al., Nature 638 (2025) 676–683.

    41. [41]

      Z. Wang, Y. Liu, A. Zhang, et al., J. Environ. Chem. Eng. 13 (2025) 118217.

    42. [42]

      C. Ma, H. Zhang, Z. Liu, et al., Water Res. 281 (2025) 123575.

    43. [43]

      M. He, Z. Xu, D. Hou, et al., Nat. Rev. Earth Environ. 3 (2022) 444–460.  doi: 10.1038/s43017-022-00306-8

    44. [44]

      L. Yu, M. Han, F. He, Arabian J. Chem. 10 (2017) S1913–S1922.  doi: 10.1016/j.arabjc.2013.07.020

    45. [45]

      P. Zhang, Y. Yang, X. Duan, et al., Water Res. 255 (2024) 121485.

    46. [46]

      C. Li, W. Sun, Z. Lu, et al., Water Res. 175 (2020) 115674.

    47. [47]

      A. Singh, D.B. Pal, A. Mohammad, et al., Bioresour. Technol. 343 (2022) 126154.

    48. [48]

      F. Wang, L. Xiang, K. Sze-Yin Leung, et al., Innovation 5 (2024) 100612.

    49. [49]

      V. Shrivastava, I. Ali, M.M. Marjub, et al., Chemosphere 293 (2022) 133553.

    50. [50]

      Y. Zhao, Y. Gu, B. Liu, et al., Nature 608 (2022) 69–73.  doi: 10.1038/s41586-022-04942-4

    51. [51]

      H. Zhao, W. Qi, X. Tan, et al., Chin. Chem. Lett. 36 (2025) 110898.

    52. [52]

      K. Shi, B. Liang, H.Y. Cheng, et al., Water Res. 258 (2024) 121778.

    53. [53]

      Y. Zheng, S. Sun, J. Liu, et al., Chin. Chem. Lett. 36 (2025) 110722.

    54. [54]

      Q. Yu, Y. Feng, J. Wei, et al., Chin. Chem. Lett. 33 (2022) 3087–3090.

    55. [55]

      M. Yin, Y. Lin, M. Zhuang, et al., Chin. Chem. Lett. 36 (2025) 109926.

    56. [56]

      R. Khairova, S. Komaty, A. Dikhtiarenko, et al., Angew. Chem. Int. Ed. 62 (2023) e202311048.

    57. [57]

      C. He, J. Cheng, X. Zhang, et al., Chem. Rev. 119 (2019) 4471–4568.  doi: 10.1021/acs.chemrev.8b00408

    58. [58]

      P. Chu, L. Zhang, Z. Wang, et al., Environ. Sci. Technol. 58 (2024) 17475–17484.  doi: 10.1021/acs.est.4c03049

    59. [59]

      L. Wei, Y. Liu, S. Cui, et al., Adv. Funct. Mater. 33 (2023) 2306129.

    60. [60]

      Y. Long, Y. Su, M. Chen, et al., Environ. Sci. Technol. 57 (2023) 7590–7598.  doi: 10.1021/acs.est.2c08959

    61. [61]

      W. Chen, R. Zou, X. Wang, ACS Catal. 12 (2022) 14347–14375.  doi: 10.1021/acscatal.2c03508

    62. [62]

      Y. Ren, X. Lei, H. Wang, et al., ACS Catal. 13 (2023) 8293–8306.  doi: 10.1021/acscatal.3c01036

    63. [63]

      M. Xiao, D. Han, X. Yang, et al., Appl. Catal. B: Environ. 323 (2023) 122173.

    64. [64]

      L. Ye, P. Lu, Y. Xianhui, et al., Appl. Catal. B: Environ. 331 (2023) 122696.

    65. [65]

      C. Zhang, J. Zhang, Y. Shen, et al., Environ. Sci. Technol. 56 (2022) 3719–3728.  doi: 10.1021/acs.est.1c08009

    66. [66]

      B. Lin, J. Tang, J. Yang, et al., Appl. Catal. B: Environ. Energy 361 (2025) 124619.

    67. [67]

      P.H. Brunner, H. Rechberger, Waste Manage 37 (2015) 3–12.

    68. [68]

      D.M.C. Chen, B.L. Bodirsky, T. Krueger, et al., Environ. Res. Lett. 15 (2020) 074021.  doi: 10.1088/1748-9326/ab8659

    69. [69]

      J. Glüge, M. Scheringer, I.T. Cousins, et al., Environ. Sci. Proc. Imp. 22 (2020) 2345–2373.  doi: 10.1039/d0em00291g

    70. [70]

      C. Qi, T. Hu, J. Zheng, et al., Environ. Res. 249 (2024) 118378.

    71. [71]

      W. Jiao, K. Li, M. Zhou, et al., Environ. Technol. Innovation 38 (2025) 104154.

    72. [72]

      M. Mangal, C.V. Rao, T. Banerjee, Polym. Int. 72 (2023) 984–996.  doi: 10.1002/pi.6555

    73. [73]

      K.L. Zhou, Z. Wang, C.B. Han, et al., Nat. Commun. 12 (2021) 3783.

    74. [74]

      Y. Li, P. Kidkhunthod, Y. Zhou, et al., Adv. Funct. Mater. 32 (2022) 2205985.

    75. [75]

      M.A. Qadeer, X. Zhang, M.A. Farid, et al., J. Power Sources 613 (2024) 234856.

    76. [76]

      M. Liu, J.A. Wang, W. Klysubun, et al., Nat. Commun. 12 (2021) 5260.

    77. [77]

      J. Yan, Y. Lu, G. Chen, et al., Chem. Soc. Rev. 47 (2018) 2518–2533.  doi: 10.1039/c7cs00309a

    78. [78]

      Y. Yan, F. Cai, L. Yang, et al., Adv. Mater. 29 (2017) 1604044.

    79. [79]

      Y. Sun, J. Dai, H. Lv, et al., Adv. Funct. Mater. 35 (2025) 2505867.

    80. [80]

      L. Zhang, H. Hu, C. Sun, et al., Nat. Commun. 15 (2024) 7179.  doi: 10.1007/s10973-024-13284-4

    81. [81]

      Q. Wang, Y. Qin, J. Xie, et al., Adv. Mater. 37 (2025) 2420173.

    82. [82]

      D. Huang, X. Ma, J. Xie, et al., Small 21 (2025) e07002.

    83. [83]

      L. MacDonald, J.C. McGlynn, N. Irvine, et al., Sustain. Energy Fuels 1 (2017) 1782–1787.

    84. [84]

      L. Zhang, M. Li, C. Sun, et al., Adv. Funct. Mater. 35 (2025) 2420163.

    85. [85]

      J. Xiao, Y. Gao, X. Liu, et al., J. Mater. Chem. A 13 (2025) 33716–33728.  doi: 10.1039/d5ta04867b

    86. [86]

      Y. Fan, J. Zhao, J. Zhou, et al., Energy Environ. Sci. 18 (2025) 7527–7540.  doi: 10.1039/d5ee01422k

    87. [87]

      W. Zhang, M. Rafiq, J. Lu, et al., APL Mater. 11 (2023) 051112.

    88. [88]

      A. Al-Qahtani, B. Parkinson, K. Hellgardt, et al., Appl. Energy 281 (2021) 115958.

    89. [89]

      P. Millet, Water electrolysis for hydrogen generation, In: R.S. Liu, L. Zhang, X.L. Sun, H.S. Liu, J.J. Zhang (Eds.), Electrochemical Technologies for Energy Storage and Conversion, Wiley-VCH GmbH., Boschstr, 2011, pp. 383–423.

    90. [90]

      M. Chatenet, B.G. Pollet, D.R. Dekel, et al., Chem. Soc. Rev. 51 (2022) 4583–4762.  doi: 10.1039/d0cs01079k

    91. [91]

      Y. Yuan, J. Li, Y. Zhu, et al., Angew. Chem. Int. Ed. 64 (2025) e202425590.

    92. [92]

      W. Li, Y. Liu, A. Azam, et al., Adv. Mater. 36 (2024) 2404658.

    93. [93]

      J. Ge, X. Wang, H. Tian, et al., Chin. Chem. Lett. 36 (2025) 109906.

    94. [94]

      H.Y. Lin, Z.X. Lou, Y. Ding, et al., Small Methods 6 (2022) 2201130.

    95. [95]

      H.G. Xu, X.Y. Zhang, Y. Ding, et al., Small Struct. 4 (2023) 2200404.

    96. [96]

      Y.J. Son, G. Mirshekari, S.J. Raaijman, et al., ACS Energy Lett. 10 (2025) 3058–3063.  doi: 10.1021/acsenergylett.5c01366

    97. [97]

      G. Gao, G. Zhao, G. Zhu, et al., Chin. Chem. Lett. 36 (2025) 109557.

    98. [98]

      Z. Tang, Z. Dong, L. Yuan, et al., EES Catal. 3 (2025) 943–971.  doi: 10.1039/d5ey00161g

    99. [99]

      Y. Huang, Y. Gao, B. Zhang, Chem 11 (2025) 102533.

    100. [100]

      W. Yin, L. Yuan, H. Huang, et al., Chin. Chem. Lett. 35 (2024) 108351.

    101. [101]

      I. Slobodkin, E. Davydova, M. Sananis, et al., Nat. Mater. 23 (2024) 398–405.  doi: 10.1038/s41563-023-01767-y

    102. [102]

      C. Liu, F. Chen, B.H. Zhao, et al., Nat. Rev. Chem. 8 (2024) 277–293.  doi: 10.1038/s41570-024-00589-z

    103. [103]

      J. Albo, M. Alvarez-Guerra, A. Irabien, Electro-, photo-, and photoelectro–chemical reduction of CO2, in: W.Y. Teoh, A. Urakawa, Y.H. Ng, P. Sit (Eds.), Heterogeneous Catalysts, Wiley, Boschstr, 2021, pp. 649–669.

    104. [104]

      W. Zhao, Natl. Sci. Rev. 9 (2022) nwac115.

    105. [105]

      L. Li, F. Chen, B. Zhao, et al., Chin. Chem. Lett. 35 (2024) 109240.

    106. [106]

      A. Fujishima, K. Honda, Nature 238 (1972) 37–38.  doi: 10.1038/238037a0

    107. [107]

      S. Fang, M. Rahaman, J. Bharti, et al., Nat. Rev. Methods Primers 3 (2023) 61.

    108. [108]

      Y. Li, Y. Wei, W. He, et al., Chin. Chem. Lett. 34 (2023) 108417.

    109. [109]

      G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.  doi: 10.1039/d0cs00071j

    110. [110]

      V. Kumaravel, J. Bartlett, S.C. Pillai, ACS Energy Lett. 5 (2020) 486–519.  doi: 10.1021/acsenergylett.9b02585

    111. [111]

      Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, et al., Nat. Energy 4 (2019) 732–745.  doi: 10.1038/s41560-019-0450-y

    112. [112]

      M. Xu, M. Wang, H. Wang, et al., Adv. Mater. (2025), doi:10.1002/adma.202507144.  doi: 10.1002/adma.202507144

    113. [113]

      Y. Ma, J. Yu, M. Sun, et al., Adv. Mater. 34 (2022) 2110607.

    114. [114]

      S. Hao, A. Elgazzar, S.K. Zhang, et al., Science 388 (2025) eadr3834.

    115. [115]

      Y. Yang, F. Li, Curr. Opin. Green Sustain. Chem. 27 (2021) 100419.

    116. [116]

      Y. Fang, X. Liu, Z. Liu, et al., Chem 9 (2023) 460–471.

    117. [117]

      Y. Fan, T. Liu, Y. Yan, et al., Chem 10 (2024) 2437–2449.

    118. [118]

      B. Weng, M. Zhang, Y. Lin, et al., Nat. Rev. Clean Technol. 1 (2025) 201–215.  doi: 10.1038/s44359-025-00037-1

    119. [119]

      G. Yang, P. Qiu, J. Xiong, et al., Chin. Chem. Lett. 33 (2022) 3709–3712.

    120. [120]

      C. Xu, P. Ravi Anusuyadevi, C. Aymonier, et al., Chem. Soc. Rev. 48 (2019) 3868–3902.  doi: 10.1039/c9cs00102f

    121. [121]

      T. Takata, J. Jiang, Y. Sakata, et al., Nature 581 (2020) 411–414.  doi: 10.1038/s41586-020-2278-9

    122. [122]

      F. Tong, X. Liang, X. Bao, et al., ACS Catal. 14 (2024) 11425–11446.  doi: 10.1021/acscatal.4c03566

    123. [123]

      S.B. Beil, S. Bonnet, C. Casadevall, et al., JACS Au 4 (2024) 2746–2766.  doi: 10.1021/jacsau.4c00527

    124. [124]

      X. Li, Y. Wan, F. Deng, et al., Chin. Chem. Lett. 36 (2025) 111418.

    125. [125]

      Q. Xu, L. Zhang, B. Cheng, et al., Chem 6 (2020) 1543–1559.

    126. [126]

      M. Ahmad, J. Chen, J. Liu, et al., Carbon Energy 6 (2024) e382.

    127. [127]

      Y. Zhao, S. Zhang, R. Shi, et al., Mater. Today 34 (2020) 78–91.  doi: 10.1117/12.2561855

    128. [128]

      Z. Chen, Y. Yan, J. Luo, et al., Chin. Chem. Lett. 36 (2025) 111302.

    129. [129]

      C. Wang, H. Zhang, F. Lai, et al., J. Energy Chem. 83 (2023) 341–362.

    130. [130]

      A. Parra-Marfil, G. Blázquez, A.R. Puente-Santiago, et al., Chem. Eng. J. 518 (2025) 164900.

    131. [131]

      N.P. Ivleva, A.C. Wiesheu, R. Niessner, Angew. Chem. Int. Ed. 56 (2017) 1720–1739.  doi: 10.1002/anie.201606957

    132. [132]

      J. Lin, K. Hu, Y. Wang, et al., Nat. Commun. 15 (2024) 8769.

    133. [133]

      K.L. Law, R.C. Thompson, Science 345 (2014) 144–145.  doi: 10.1126/science.1254065

    134. [134]

      Y. Yang, J. Yang, W.M. Wu, et al., Environ. Sci. Technol. 49 (2015) 12080–12086.  doi: 10.1021/acs.est.5b02661

    135. [135]

      Z. Yang, H. Wang, Y. Li, et al., J. Colloid Interface Sci. 686 (2025) 327–335.  doi: 10.1021/acs.nanolett.4c05070

    136. [136]

      J. Chen, J. Wu, P.C. Sherrell, et al., Adv. Sci. 9 (2022) 2103764.

    137. [137]

      K. Hu, P. Zhou, Y. Yang, et al., ACS EST Engg. 2 (2022) 110–120.  doi: 10.1021/acsestengg.1c00323

    138. [138]

      K. Chen, Y. Hu, X. Dong, et al., ACS Catal. 11 (2021) 7358–7370.  doi: 10.1021/acscatal.1c01062

    139. [139]

      S. Feng, Y. Yue, M. Zheng, et al., ACS Sustain. Chem. Eng. 9 (2021) 9823–9832.  doi: 10.1021/acssuschemeng.1c02420

    140. [140]

      N. Flores-Castañón, S. Sarkar, A. Banerjee, J. Hazard. Mater. Lett. 3 (2022) 100063.

    141. [141]

      X. Wu, P. Liu, X. Zhao, et al., J. Hazard. Mater. Lett. 437 (2022) 129287.

    142. [142]

      F. Miao, Y. Liu, M. Gao, et al., J. Hazard. Mater. Lett. 399 (2020) 123023.

    143. [143]

      C.C. Chen, L. Dai, L. Ma, et al., Nat. Rev. Chem. 4 (2020) 114–126.  doi: 10.1038/s41570-020-0163-6

    144. [144]

      J. Sima, J. Song, X. Du, et al., J. Hazard. Mater. 480 (2024) 136313.

    145. [145]

      A. Zhang, Y. Hou, S. Hou, et al., Chem. Eng. J. 507 (2025) 160579.

    146. [146]

      X. Yu, Z. Tang, D. Sun, et al., Prog. Mater Sci. 88 (2017) 1–48.

    147. [147]

      J. Yang, A. Sudik, C. Wolverton, et al., Chem. Soc. Rev. 39 (2010) 656–675.

    148. [148]

      Z. Hua, W. Gao, S. Chi, et al., Renew. Sust. Energ. Rev. 214 (2025) 115567.

    149. [149]

      R.K. Ahluwalia, J.K. Peng, Int. J. Hydrogen Energy 33 (2008) 4622–4633.

    150. [150]

      E. Boateng, A. Chen, Mater. Today Adv. 6 (2020) 100022.

    151. [151]

      Y. Xu, Y. Li, L. Gao, et al., Nanomaterials 14 (2024) 1036.

    152. [152]

      M.R. Usman, Renew. Sust. Energ. Rev. 167 (2022) 112743.

    153. [153]

      C. Zhou, R.C. Bowman Jr., Z.Z. Fang, et al., ACS Appl. Mater. Interfaces 11 (2019) 38868–38879.  doi: 10.1021/acsami.9b16076

    154. [154]

      M. Chen, Y. Pu, Z. Li, et al., Nano Res. 13 (2020) 2063–2071.  doi: 10.1007/s12274-020-2808-7

    155. [155]

      L. Zeng, J. He, J. Li, et al., ACS Sustain. Chem. Eng. 12 (2024) 5819–5830.  doi: 10.1021/acssuschemeng.3c07291

    156. [156]

      L. Ren, Y. Li, N. Zhang, et al., Nano-Micro Lett. 15 (2023) 93.

    157. [157]

      X. Zhang, Y. Liu, Z. Ren, et al., Energy Environ. Sci. 14 (2021) 2302–2313.  doi: 10.1039/d0ee03160g

    158. [158]

      K. Kajiwara, H. Sugime, S. Noda, et al., J. Alloys Compd. 893 (2022) 162206.

    159. [159]

      N. Hanada, T. Ichikawa, S. Hino, et al., J. Alloys Compd. 420 (2006) 46–49.

    160. [160]

      Z. Wu, J. Fang, N. Liu, et al., Micromachines 12 (2021) 1190.  doi: 10.3390/mi12101190

    161. [161]

      H. Lu, J. Li, X. Zhou, et al., J. Mater. Sci. Technol. 190 (2024) 135–144.

    162. [162]

      A.M. Abdalla, S. Hossain, A.T. Azad, et al., Renew. Sust. Energ. Rev. 82 (2018) 353–368.

    163. [163]

      N. Han, R. Ren, M. Ma, et al., Chin. Chem. Lett. 33 (2022) 2658–2662.

    164. [164]

      J. Cheng, R. Lavery, C.S. McCallum, et al., Fuel 358 (2024) 130172.

    165. [165]

      W. Tang, X. Zhao, Y. Chen, et al., J. Power Sources 646 (2025) 237259.

    166. [166]

      X. Jia, X. Liu, S. Tong, et al., Int. J. Hydrogen Energy 155 (2025) 150322.

    167. [167]

      X. Dang, Y. Lu, Z. Fan, et al., J. Mater. Chem. A 13 (2025) 20268–20288.  doi: 10.1039/d5ta01308a

    168. [168]

      X. Yin, X. Qian, X. Zhang, et al., Chem. Eng. J. 520 (2025) 166085.

    169. [169]

      Y.C. Zhang, X.T. Yu, W. Jiang, et al., Int. J. Hydrogen Energy 45 (2020) 4829–4840.

    170. [170]

      H. Zhang, S. Geng, G. Chen, et al., Int. J. Hydrogen Energy 64 (2024) 864–869.

    171. [171]

      D. Dong, M. Liu, K. Xie, et al., J. Power Sources 175 (2008) 272–275.

    172. [172]

      N. Kostretsova, A. Pesce, S. Anelli, et al., J. Mater. Chem. A 12 (2024) 22960–22970.  doi: 10.1039/d4ta02490g

    173. [173]

      G.D. Han, K. Bae, E.H. Kang, et al., ACS Energy Lett. 5 (2020) 1586–1592.  doi: 10.1021/acsenergylett.0c00721

    174. [174]

      J. Kim, D.H. Kim, W. Lee, et al., Energ. Convers. Manage. 246 (2021) 114682.

    175. [175]

      J.L. Shi, D.D. Xiao, M. Ge, et al., Adv. Mater. 30 (2018) 1705575.

    176. [176]

      N. Nasajpour-Esfahani, H. Garmestani, M. Bagheritabar, et al., Renew. Sust. Energ. Rev. 203 (2024) 114783.

    177. [177]

      A. Manthiram, ACS Cent. Sci. 3 (2017) 1063–1069.  doi: 10.1021/acscentsci.7b00288

    178. [178]

      Y. Cao, M. Li, J. Lu, et al., Nat. Nanotechnol. 14 (2019) 200–207.  doi: 10.1038/s41565-019-0371-8

    179. [179]

      H. Yousuf, M.A. Zahid, M.Q. Khokhar, et al., Energies 15 (2022) 1176.  doi: 10.3390/en15031176

    180. [180]

      Y. Wu, L. Xie, H. Ming, et al., ACS Energy Lett. 5 (2020) 807–816.  doi: 10.1021/acsenergylett.0c00211

    181. [181]

      C. Yang, Appl. Energy 306 (2022) 118116.

    182. [182]

      E. Hosseinzadeh, S. Arias, M. Krishna, et al., Appl. Energy 282 (2021) 115859.

    183. [183]

      F. Baronti, G. Fantechi, R. Roncella, et al., Design of a module switch for battery pack reconfiguration in high-power applications, in: 2012 IEEE International Symposium on Industrial Electronics, IEEE, 2012, pp. 1330–1335.

    184. [184]

      D.U. Eberle, D.R. von Helmolt, Energy Environ. Sci. 3 (2010) 689–699.  doi: 10.1039/c001674h

    185. [185]

      X.G. Yang, T. Liu, C.Y. Wang, Nat. Energy 6 (2021) 176–185.  doi: 10.1038/s41560-020-00757-7

    186. [186]

      T. Kim, W. Song, D.Y. Son, et al., J. Mater. Chem. A 7 (2019) 2942–2964.  doi: 10.1039/c8ta10513h

    187. [187]

      Y. Shang, Y. Huang, L. Li, et al., Chem. Rev. 125 (2025) 5674–5744.  doi: 10.1021/acs.chemrev.4c00863

    188. [188]

      Y. Feng, L. Zhou, H. Ma, et al., Energy Environ. Sci. 15 (2022) 1711–1759.  doi: 10.1039/d1ee03292e

    189. [189]

      J.P. Jones, M.C. Smart, F.C. Krause, et al., Joule 6 (2022) 923–928.

    190. [190]

      H. Li, Z. Wang, L. Chen, et al., Adv. Mater. 21 (2009) 4593–4607.  doi: 10.1002/adma.200901710

    191. [191]

      S. Yin, W. Deng, J. Chen, et al., Nano Energy 83 (2021) 105854.

    192. [192]

      H. Yu, H. Zhou, J. Phys. Chem. Lett. 4 (2013) 1268–1280.  doi: 10.1021/jz400032v

    193. [193]

      S. Xu, Z. Chen, W. Zhao, et al., Energy Environ. Sci. 17 (2024) 3807–3818.  doi: 10.1039/d3ee04199a

    194. [194]

      L. Wang, J.L. Shi, H. Su, et al., Small 14 (2018) 1800887.

    195. [195]

      Y. Wang, C. Li, Y. Li, et al., Angew. Chem. Int. Ed. 64 (2025) e202422789.

    196. [196]

      B. Xu, C.R. Fell, M. Chi, et al., Energy Environ. Sci. 4 (2011) 2223–2233.  doi: 10.1039/c1ee01131f

    197. [197]

      G. Assat, J.-M. Tarascon, Nat. Energy 3 (2018) 373–386.  doi: 10.1038/s41560-018-0097-0

    198. [198]

      D. Eum, B. Kim, S.J. Kim, et al., Nat. Mater. 19 (2020) 419–427.  doi: 10.1038/s41563-019-0572-4

    199. [199]

      R.A. House, U. Maitra, M.A. Pérez-Osorio, et al., Nature 577 (2020) 502–508.  doi: 10.1038/s41586-019-1854-3

    200. [200]

      X.T. Wang, Z.Y. Gu, J.M. Cao, et al., Natl. Sci. Rev. 12 (2025) nwaf321.

    201. [201]

      Z.Y. Gu, X.T. Wang, Y.L. Heng, et al., Mat. Sci. Eng. R 165 (2025) 101008.

    202. [202]

      X. Zhang, K. Ren, Y. Liu, et al., Acta Phys. Chim. Sin. 40 (2024) 2307057.

    203. [203]

      Z.Y. Gu, J.M. Cao, K. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202402371.

    204. [204]

      C. Fan, R. Zhang, X. Luo, et al., Carbon 205 (2023) 353–364.

    205. [205]

      L. Sun, J. Li, E. Li, et al., Carbon 233 (2025) 119866.

    206. [206]

      Z. Zhou, Y. Zhang, Q. Zhang, et al., Chin. Chem. Lett. 37 (2026) 111506.  doi: 10.1016/j.cclet.2025.111506

    207. [207]

      W. Deng, Y. Wang, Z. Chen, et al., Adv. Funct. Mater. (2025) 2501721.

    208. [208]

      Y. He, D. Liu, J. Jiao, et al., Adv. Funct. Mater. 34 (2024) 2403144.

    209. [209]

      X. Yin, Z. Lu, J. Wang, et al., Adv. Mater. 34 (2022) 2109282.

    210. [210]

      Y. Li, A. Vasileiadis, Q. Zhou, et al., Nat. Energy 9 (2024) 134–142.

    211. [211]

      Z. Hou, Y. Zhao, Y. Du, et al., Adv. Funct. Mater. 35 (2025) 2505468.

    212. [212]

      Z. Song, M. Di, X. Zhang, et al., Adv. Energy Mater. 14 (2024) 2401763.

    213. [213]

      L. Sun, J. Li, L. Wang, et al., J. Power Sources 624 (2024) 235474.

    214. [214]

      W. Hou, Z. Yi, H. Yu, et al., Chin. Chem. Lett. (2025), doi:10.1016/j.cclet.2025.111124.  doi: 10.1016/j.cclet.2025.111124

    215. [215]

      Y. Xue, Y. Chen, Y. Liang, et al., Adv. Mater. 37 (2025) 2417886.

    216. [216]

      G. Yang, Z. Hao, C. Fang, et al., Chin. Chem. Lett. 36 (2025) 111185.

    217. [217]

      J. Zhou, Q. Li, X. Hu, et al., Chin. Chem. Lett. 35 (2024) 109143.

    218. [218]

      L. Suo, O. Borodin, T. Gao, et al., Science 350 (2015) 938–943.  doi: 10.1126/science.aab1595

    219. [219]

      Y. Yamada, K. Usui, K. Sodeyama, et al., Nat. Energy 1 (2016) 16129.

    220. [220]

      L. Suo, D. Oh, Y. Lin, et al., J. Am. Chem. Soc. 139 (2017) 18670–18680.  doi: 10.1021/jacs.7b10688

    221. [221]

      L. Suo, O. Borodin, W. Sun, et al., Angew. Chem. Int. Ed. 55 (2016) 7136–7141.  doi: 10.1002/anie.201602397

    222. [222]

      F. Wang, O. Borodin, M.S. Ding, et al., Joule 2 (2018) 927–937.

    223. [223]

      D. Dong, T. Wang, Y. Sun, et al., Nat. Sustain. 6 (2023) 1474–1484.  doi: 10.1038/s41893-023-01172-y

    224. [224]

      W. Yang, X. Du, J. Zhao, et al., Joule 4 (2020) 1557–1574.

    225. [225]

      J. Zhao, J. Zhang, W. Yang, et al., Nano Energy 57 (2019) 625–634.

    226. [226]

      Y. Wang, T. Wang, S. Bu, et al., Nat. Commun. 14 (2023) 1828.

    227. [227]

      S.J. Banik, R. Akolkar, J. Electrochem. Soc. 160 (2013) D519.  doi: 10.1149/2.040311jes

    228. [228]

      Y. Chu, S. Zhang, S. Wu, et al., Energy Environ. Sci. 14 (2021) 3609–3620.  doi: 10.1039/d1ee00308a

    229. [229]

      H. Yang, Z. Chang, Y. Qiao, et al., Angew. Chem. Int. Ed. 59 (2020) 9377–9381.  doi: 10.1002/anie.202001844

    230. [230]

      H. Yang, Y. Qiao, Z. Chang, et al., Adv. Mater. 33 (2021) 2102415.

    231. [231]

      Y. Guo, S. Wu, Y.B. He, et al., eScience 2 (2022) 138–163.

    232. [232]

      Y. Zhu, Y. Mo, Angew. Chem. Int. Ed. 59 (2020) 17472–17476.  doi: 10.1002/anie.202007621

    233. [233]

      L. Porz, T. Swamy, B.W. Sheldon, et al., Adv. Energy Mater. 7 (2017) 1701003.

    234. [234]

      J.M. Doux, H. Nguyen, D.H.S. Tan, et al., Adv. Energy Mater. 10 (2020) 1903253.

    235. [235]

      Z.H. Fu, X. Chen, C.Z. Zhao, et al., Energy Fuels 35 (2021) 10210–10218.  doi: 10.1021/acs.energyfuels.1c00488

    236. [236]

      J. Chen, H. Chen, B. Tian, Chin. Chem. Lett. 36 (2025) 109775.

    237. [237]

      M. Luo, C. Wang, Y. Duan, et al., Energy Environ. Mater. 7 (2024) e12753.

    238. [238]

      M. Liu, J.J. Hong, E. Sebti, et al., Nat. Commun. 16 (2025) 213.

    239. [239]

      Z. Jiang, Y. Xiao, L. Li, et al., ChemSusChem 18 (2025) e202401664.

    240. [240]

      J. Yang, Z. Jiang, C. Liu, et al., Chem. Eng. J. 500 (2024) 157027.

    241. [241]

      H. Yan, J. Yao, Z. Ye, et al., Chin. Chem. Lett. 36 (2025) 109568.

    242. [242]

      J.Y. Jung, S.A. Han, H.S. Kim, et al., ACS Nano 17 (2023) 15931–15941.  doi: 10.1021/acsnano.3c04014

    243. [243]

      T. Yabuzaki, M. Sato, H. Kim, et al., J. Ceram. Soc. Jpn. 131 (2023) 675–684.  doi: 10.2109/jcersj2.23070

    244. [244]

      J. Su, M. Pasta, Z. Ning, et al., Energy Environ. Sci. 15 (2022) 3805–3814.  doi: 10.1039/d2ee01390h

    245. [245]

      X. Li, C. Yi, W. Hu, et al., Chin. Chem. Lett. 36 (2025) 110215.

    246. [246]

      L. Ming, D. Liu, Q. Luo, et al., Chin. Chem. Lett. 35 (2024) 109387.

    247. [247]

      Z. Zhu, T. Jiang, M. Ali, et al., Chem. Rev. 122 (2022) 16610–16751.  doi: 10.1021/acs.chemrev.2c00289

    248. [248]

      Z.F. Huang, J. Wang, Y. Peng, et al., Adv. Energy Mater. 7 (2017) 1700544.

    249. [249]

      Y. Li, H. Wang, C. Chen, et al., Nat. Commun. 16 (2025) 8085.

    250. [250]

      Y. Liu, Z. Gao, Z. Li, et al., Adv. Funct. Mater. 34 (2024) 2315747.

    251. [251]

      E. Liu, D. Higgins, Nat. Catal. 7 (2024) 469–471.  doi: 10.1038/s41929-024-01144-1

    252. [252]

      T. Cui, Y.P. Wang, T. Ye, et al., Angew. Chem. Int. Ed. 61 (2022) e202115219.

    253. [253]

      C. Jia, Q. Sun, R. Liu, et al., Adv. Mater. 36 (2024) 2404659.

    254. [254]

      C.X. Zhao, B.Q. Li, J.N. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 4448–4463.  doi: 10.1002/anie.202003917

    255. [255]

      W. Chen, B. Ma, R. Zou, Acc. Mater. Res. 6 (2025) 210–220.

    256. [256]

      W. Zhou, H. Su, W. Cheng, et al., Nat. Commun. 13 (2022) 6414.

    257. [257]

      J. Ryu, M. Park, J. Cho, Adv. Mater. 31 (2019) 1804784.

    258. [258]

      X. Chen, H. Wang, Q. Zou, et al., Electrochim. Acta 367 (2021) 137518.

    259. [259]

      R. Sui, B. Liu, C. Chen, et al., J. Am. Chem. Soc. 146 (2024) 26442–26453.  doi: 10.1021/jacs.4c09642

    260. [260]

      Z. Han, R. Gao, T. Wang, et al., Nat. Catal. 6 (2023) 1073–1086.  doi: 10.1038/s41929-023-01041-z

    261. [261]

      P. Simon, Y. Gogotsi, Nat. Mater. 19 (2020) 1151–1163.  doi: 10.1038/s41563-020-0747-z

    262. [262]

      S.S. Zhao, X. Zhang, C. Li, et al., New Carbon Mater. 39 (2024) 872–895.

    263. [263]

      X. Guan, X. Li, X. Zhao, et al., J. Energy Storage 111 (2025) 115380.

    264. [264]

      S. Liu, M. Jia, F. Chu, et al., Energy Environ. Mater. 8 (2025) e70002.

    265. [265]

      H. Li, G. Kalaiyarasan, X. Cao, et al., Small 21 (2025) e04350.

    266. [266]

      C. Yang, T. Long, R. Li, et al., Chin. Chem. Lett. 36 (2025) 109675.

    267. [267]

      Q. Dou, S. Lei, D.W. Wang, et al., Energy Environ. Sci. 11 (2018) 3212–3219.  doi: 10.1039/c8ee01040d

    268. [268]

      M. Zhang, T. Jiang, M. Gao, et al., Energy Storage Mater. 80 (2025) 104414.

    269. [269]

      K. Ge, H. Shao, Z. Lin, et al., Nat. Nanotechnol. 20 (2025) 196–208.  doi: 10.1038/s41565-024-01821-z

    270. [270]

      K. Ge, H. Shao, E. Raymundo-Piñero, et al., Nat. Commun. 15 (2024) 1935.

    271. [271]

      B. Chen, Z. Zhai, N. Huang, et al., Adv. Energy Mater. 13 (2023) 2300716.

    272. [272]

      V. Maurel, K. Brousse, T.S. Mathis, et al., J. Electrochem. Soc. 169 (2022) 120510.  doi: 10.1149/1945-7111/aca723

    273. [273]

      R. Futamura, T. Iiyama, Y. Takasaki, et al., Nat. Mater. 16 (2017) 1225–1232.  doi: 10.1038/nmat4974

    274. [274]

      C. Prehal, C. Koczwara, N. Jäckel, et al., Phys. Chem. Chem. Phys. 19 (2017) 15549–15561.

  • 加载中
    1. [1]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    2. [2]

      Siling ChenYang HuSijia ZhangXuesong LiuZhuqun ShiChuanxi XiongWeiwei WuRuizhi NingQuanling Yang . Enhancing the electroactivity of supercapacitors through nitrogen doping on cellulose-derived carbon materials. Chinese Chemical Letters, 2026, 37(2): 111301-. doi: 10.1016/j.cclet.2025.111301

    3. [3]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    4. [4]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    5. [5]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    6. [6]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    7. [7]

      Lei WangPanpan ZhangZhiyuan GuoJing WangJie MaZhi-yong Ji . Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches. Acta Physico-Chimica Sinica, 2026, 42(1): 100127-0. doi: 10.1016/j.actphy.2025.100127

    8. [8]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    9. [9]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    10. [10]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    11. [11]

      Ming XuTeng DengChenzhaosha LiHongyang ZhaoJuan WangYatao LiuJianan WangGuodong FengNa LiShujiang DingKai Xi . Oxygen deficient Eu2O3−δ synchronizes the shielding and catalytic conversion of polysulfides toward high-performance lithium sulfur batteries. Chinese Chemical Letters, 2025, 36(10): 110372-. doi: 10.1016/j.cclet.2024.110372

    12. [12]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    13. [13]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    14. [14]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    15. [15]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    16. [16]

      Xi ChenXue ZhangShuai YangJie WangTian TangMaling Gou . An adhesive hydrogel for the treatment of oral ulcers. Chinese Chemical Letters, 2025, 36(3): 110021-. doi: 10.1016/j.cclet.2024.110021

    17. [17]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    18. [18]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    19. [19]

      Bo-Bo ZouHong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986

    20. [20]

      Li-Ying WangJun-Jie YuShuai WangYang LiuKe-Xian SongJi-Pan YuLi-Yong YuanZhi-Rong LiuWei-Qun Shi . Pyridine-based ionic sp2 carbon-conjugated covalent organic frameworks for selective extraction of Pu(Ⅳ) from high-level liquid waste. Chinese Chemical Letters, 2025, 36(8): 110706-. doi: 10.1016/j.cclet.2024.110706

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return