Rise of colloidal silver bismuth sulfide nanocrystals solar cells
-
* Corresponding authors.
E-mail addresses: jiadonglin5@ncepu.edu.cn (D. Jia), xufan@pku.edu.cn (F. Xu), chem_qiu@ncepu.edu.cn (H. Qiu).
Citation:
Yongqiang Ji, Donglin Jia, Fan Xu, Zhengwei Li, Lin Zhang, Le Li, Hengwei Qiu. Rise of colloidal silver bismuth sulfide nanocrystals solar cells[J]. Chinese Chemical Letters,
;2026, 37(2): 112054.
doi:
10.1016/j.cclet.2025.112054
Q. Li, H. Liu, C.H. Hou, et al., Nat. Energy 9 (2024) 1506–1516.
doi: 10.1038/s41560-024-01642-3
A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119 (2019) 3036–3103.
doi: 10.1021/acs.chemrev.8b00539
G.S. Selopal, H. Zhao, Z.M. Wang, F. Rosei, Adv. Funct. Mater. 30 (2020) 1908762.
doi: 10.1002/adfm.201908762
J. Chen, D. Jia, E.M.J. Johansson, et al., Energy Environ. Sci. 14 (2021) 224–261.
doi: 10.1039/D0EE02900A
Q. Zhao, R. Han, A.R. Marshall, et al., Adv. Mater. 34 (2022) 2107888.
doi: 10.1002/adma.202107888
Q. Jiang, K. Zhu, Nat. Rev. Mater. 9 (2024) 399–419.
doi: 10.1038/s41578-024-00678-x
V.C. Karade, M. He, Z. Song, et al., Energy Environ. Sci. 18 (2025) 6899–6933.
doi: 10.1039/D4EE04526B
H. Qiu, F. Li, S. He, et al., Adv. Sci. 10 (2023) 2206560.
doi: 10.1002/advs.202206560
L. Zhang, X. Meng, W. Hu, et al., J. Phys. Chem. Lett. 16 (2025) 7834–7847.
doi: 10.1021/acs.jpclett.5c01409
J. Ye, D. Gaur, C. Mi, et al., Chem. Soc. Rev. 53 (2024) 8095–8122.
doi: 10.1039/D4CS00077C
L. Zhang, F. Yuan, J. Xi, et al., Adv. Funct. Mater. 30 (2020) 2001834.
doi: 10.1002/adfm.202001834
D. Jia, J. Li, K. Zhu, et al., Nat. Commun. 16 (2025) 8612.
doi: 10.1038/s41467-025-63618-5
H.A.M.G. Vaessen, B. Szteke, Food Addit. Contam. 17 (2000) 149–159.
doi: 10.1080/026520300283504
J. Liu, J. Wang, W. Zhao, et al., Sci. Bull. 68 (2023) 251.
doi: 10.1016/j.scib.2023.01.031
P.C. Huang, W.C. Yang, M.W. Lee, J. Phys. Chem. C 117 (2013) 18308–18314.
doi: 10.1021/jp4046337
Z. Li, H. Han, L. Chao, et al., Electromag. Sci. 3 (2025) 0090451.
M. Bernechea, N. Cates, G. Xercavins, et al., Nat. Photonics 10 (2016) 521–525.
doi: 10.1038/nphoton.2016.108
C. Kim, I. Kozakci, J. Kim, et al., Adv. Energy Mater. 12 (2022) 2200262.
doi: 10.1002/aenm.202200262
N. Ha, G. Lee, J. Park, et al., Adv. Energy Mater. 15 (2025) 2402099.
doi: 10.1002/aenm.202402099
Y. Wang, S.R. Kavanagh, I. Burgués-Ceballos, et al., Nat. Photonics 16 (2022) 235–241.
doi: 10.1038/s41566-021-00950-4
W. Yang, T. Sun, X. Ma, et al., ACS Energy Lett. 10 (2025) 58–67.
doi: 10.1021/acsenergylett.4c03015
L. Yuan, Y. Li, Y. Liu, et al., Angew. Chem. Int. Ed. 64 (2025) e202416369.
doi: 10.1002/anie.202416369
Y. Ji, Q. Zhong, X. Yang, et al., Nano Lett. 24 (2024) 10418–10425.
doi: 10.1021/acs.nanolett.4c00959
Q. Zhong, B. Zhao, Y. Ji, et al., Angew. Chem. Int. Ed. 63 (2024) e202412590.
doi: 10.1002/anie.202412590
J. Lee, C. Sun, J. Park, et al., Adv. Mater. 37 (2025) 2413081.
doi: 10.1002/adma.202413081
J.T. Oh, Y. Wang, C. Rodà, et al., Energy Environ. Sci. 17 (2024) 8885–8892.
doi: 10.1039/D4EE03266G
X. Ling, J. Yuan, W. Ma, Acc. Mater. Res. 3 (2022) 866–878.
doi: 10.1021/accountsmr.2c00081
G.H. Carey, A.L. Abdelhady, Z. Ning, et al., Chem. Rev. 115 (2015) 12732–12763.
doi: 10.1021/acs.chemrev.5b00063
A.L. Efros, L.E. Brus, ACS Nano 15 (2021) 6192–6210.
doi: 10.1021/acsnano.1c01399
L. Liu, A. Najar, K. Wang, et al., Adv. Sci. 9 (2022) 2104577.
doi: 10.1002/advs.202104577
S. Akhil, R.G. Balakrishna, J. Mater. Chem. A 10 (2022) 8615–8625.
doi: 10.1039/D2TA00549B
M. Li, J. Fu, Q. Xu, T.C. Sum, Adv. Mater. 31 (2019) 1802486.
doi: 10.1002/adma.201802486
K.K. Paul, J.H. Kim, Y.H. Lee, Nat. Rev. Phys. 3 (2021) 178–192.
doi: 10.1038/s42254-020-00272-4
L. Hu, R.J. Patterson, Z. Zhang, et al., J. Mater. Chem. C 6 (2018) 731–737.
doi: 10.1039/C7TC05366E
J.T. Oh, S.Y. Bae, S.R. Ha, et al., Nanoscale 11 (2019) 9633–9640.
doi: 10.1039/C9NR01192G
S. Ming, X. Liu, W. Zhang, et al., J. Clean. Prod. 246 (2020) 118966.
doi: 10.1016/j.jclepro.2019.118966
S. Akhil, R.G. Balakrishna, ACS Sustain. Chem. Eng. 10 (2022) 13176–13184.
doi: 10.1021/acssuschemeng.2c04333
A. Senina, A. Prudnikau, A. Wrzesińska-Lashkova, et al., Nanoscale 16 (2024) 9325–9334.
doi: 10.1039/D3NR06128K
A. Onal, T.S. Kaya, Ö. Metin, S. Nizamoglu, Chem. Mater. 37 (2025) 255–265.
doi: 10.1021/acs.chemmater.4c02406
K.T. Chang, W. Liang, S. Gong, et al., J. Am. Chem. Soc. 147 (2025) 14015–14023.
doi: 10.1021/jacs.5c04015
H. Qiu, Y. Ji, W. Hu, et al., Nano Lett. 25 (2025) 4393–4400.
doi: 10.1021/acs.nanolett.4c06595
J.T. Oh, S.Y. Bae, J. Yang, et al., J. Power Sources 514 (2021) 230585.
doi: 10.1016/j.jpowsour.2021.230585
Y. Xiao, H. Wang, F. Awai, et al., ACS Appl. Mater. Interfaces 13 (2021) 3969–3978.
doi: 10.1021/acsami.0c19435
Y. Park, H. Kim, D. Shin, et al., Adv. Optical Mater. 10 (2022) 2201086.
doi: 10.1002/adom.202201086
S.Y. Bae, J.T. Oh, J.Y. Park, et al., Chem. Mater. 32 (2020) 10007–10014.
doi: 10.1021/acs.chemmater.0c03126
Y. Wang, L. Peng, Z. Wang, G. Konstantatos, Adv. Energy Mater. 12 (2022) 2200700.
doi: 10.1002/aenm.202200700
S.Y. Bae, J. Yang, J.T. Oh, et al., Chem. Eng. J. 474 (2023) 145674.
doi: 10.1016/j.cej.2023.145674
A. Sharma, H. Kim, G. Kim, et al., Chem. Eng. J. 473 (2023) 145246.
doi: 10.1016/j.cej.2023.145246
P. Ding, D. Chen, M. Tamtaji, et al., Adv. Mater. 36 (2024) 2470419.
doi: 10.1002/adma.202470419
Y. Liu, Z. Ni, L. Peng, et al., ACS Energy Lett. 10 (2025) 2068–2074.
doi: 10.1021/acsenergylett.5c00506
S. Geller, J.H. Wernick, Acta Crystallogr. 12 (1959) 46–54.
doi: 10.1107/S0365110X59000135
L. Mehdaoui, R. Miloua, M. Khadraoui, et al., Phys. B 564 (2019) 114–124.
doi: 10.1016/j.physb.2019.04.006
S.N. Guin, K. Biswas, Chem. Mater. 25 (2013) 3225–3231.
doi: 10.1021/cm401630d
X. Liu, H. Xiao, Z. Zang, R. Li, Chem. Commun. 58 (2022) 12066–12069.
doi: 10.1039/D2CC04610E
C. Ding, D. Wang, D. Liu, et al., Adv. Energy Mater. 12 (2022) 2201676.
doi: 10.1002/aenm.202201676
M. Righetto, Y. Wang, K.A. Elmestekawy, et al., Adv. Mater. 35 (2023) 2305009.
doi: 10.1002/adma.202305009
S.L. Diedenhofen, M. Bernechea, K.M. Felter, et al., Sol. RRL 3 (2019) 1900075.
doi: 10.1002/solr.201900075
D. Chen, S.B. Shivarudraiah, P. Geng, et al., ACS Appl. Mater. Interfaces 14 (2022) 1634–1642.
doi: 10.1021/acsami.1c17133
D. Rajakaruna, H. Tan, C. Yan, J. Bandara, Electrochim. Acta 526 (2025) 146173.
doi: 10.1016/j.electacta.2025.146173
I. Burgues-Ceballos, Y. Wang, M.Z. Akgul, G. Konstantatos, Nano Energy 75 (2020) 104961.
doi: 10.1016/j.nanoen.2020.104961
V.A. Öberg, M.B. Johansson, X. ZhangErik, M.J. Johansson, ACS Appl. Nano Mater. 3 (2020) 4014–4024.
doi: 10.1021/acsanm.9b02443
N. Liang, W. Chen, F. Dai, et al., CrystEngComm 17 (2015) 1902–1905.
doi: 10.1039/C4CE02405B
C. Chen, X. Qiu, S. Ji, et al., CrystEngComm 15 (2013) 7644–7648.
doi: 10.1039/c3ce41304g
W. Zhang, K. Akiyoshi, T. Kameyama, T. Torimoto, ChemNanoMat 10 (2024) e202400029.
C.H. Mak, J. Qian, L. Rogée, et al., RSC Adv. 8 (2018) 39203–39207.
doi: 10.1039/C8RA08509A
M.Z. Akgul, A. Figueroba, S. Pradhan, et al., ACS Photonics 7 (2020) 588–595.
doi: 10.1021/acsphotonics.9b01757
Q. Li, X. Zheng, X. Shen, et al., Nanomaterials 12 (2022) 3742.
doi: 10.3390/nano12213742
I.B. Ceballos, Y. Wang, G. Konstantatos, Nanoscale 14 (2022) 4987–4993.
doi: 10.1039/D2NR00589A
B. Zou, D. Chen, M. Qammar, et al., ACS Appl. Energy Mater. 7 (2024) 8271–8277.
doi: 10.1021/acsaem.4c01307
T. Manimozhi, J. Archana, M. Navaneethan, K. Ramamurthi, Appl. Surf. Sci. 487 (2019) 664–673.
doi: 10.1016/j.apsusc.2019.05.100
B. Xie, S.W. Yuan, Y. Jiang, et al., Chem. Lett. 31 (2022) 612–613.
T. Thongtem, N. Tipcompor, S. Thongtem, Mater. Lett. 64 (2010) 755–758.
doi: 10.1016/j.matlet.2010.01.003
S. Sugarthi, G. Bakiyaraj, R. Abinaya, et al., Mater. Sci. Semicond. Process. 107 (2020) 104781.
doi: 10.1016/j.mssp.2019.104781
D. Jia, J. Chen, J. Qiu, et al., Joule 6 (2022) 1632–1653.
doi: 10.1016/j.joule.2022.05.007
D. Jia, J. Chen, X. Mei, et al., Energy Environ. Sci. 14 (2021) 4599–4609.
doi: 10.1039/D1EE01463C
J. Chen, Q. Zhong, E. Sirotti, et al., ACS Nano 18 (2024) 33348–33358.
doi: 10.1021/acsnano.4c07621
F. Treber, E. De Grande, U.B. Cappel, E.M. Johansson, J. Mater. Chem. A 12 (2024) 31432–31444.
doi: 10.1039/D4TA04481A
J. Wang, J. Liu, H. Yin, et al., Mater. Chem. Front. 7 (2023) 4693–4706.
doi: 10.1039/D3QM00334E
A. Fischer, L. Rollny, J. Pan, et al., Adv. Mater. 25 (2013) 5742.
doi: 10.1002/adma.201302147
M. Liu, O. Voznyy, R. Sabatini, et al., Nat. Mater. 16 (2017) 258–263.
doi: 10.1038/nmat4800
H.J. Kim, J.Y. Park, Y.J. Choi, et al., Adv. Energy Mater. 15 (2025) 2404552.
doi: 10.1002/aenm.202404552
D. Kim, G. Cho, Y.H. Kim, et al., Adv. Energy Mater. 14 (2024) 2302579.
doi: 10.1002/aenm.202302579
P. Geng, D. Chen, S.B. Shivarudraiah, et al., Adv. Sci. 10 (2023) 2300177.
doi: 10.1002/advs.202300177
S. Akhil, M.P. Ravikumar, M. Jalalah, et al., Energy Fuels 36 (2022) 14393–14402.
doi: 10.1021/acs.energyfuels.2c02287
Y. Xiao, H. Wang, F. Awai, et al., ACS Appl. Mater. Interfaces 14 (2022) 6994–7003.
doi: 10.1021/acsami.1c21762
L. Zhang, S. Cheng, J. Wang, T. Chen, Solar RRL 6 (2022) 2200561.
doi: 10.1002/solr.202200561
J.T. Oh, H. Chao, S.Y. Bae, et al., Int. J. Energy Res. 44 (2020) 11006–11014.
doi: 10.1002/er.5695
C.H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Nat. Mater. 13 (2014) 796–801.
doi: 10.1038/nmat3984
T. Song, H. Zhu, C. Zhang, et al., Surf. Inter. 55 (2024) 105404.
F. Xu, M. Zhang, Z. Li, et al., Adv. Energy Mater. 13 (2023) 2203911.
doi: 10.1002/aenm.202203911
A.F. Xu, R.T. Wang, L.W. Yang, et al., J. Mater. Chem. C 7 (2019) 11104–11108.
doi: 10.1039/C9TC02800E
T. Huang, F. Xu, J. Hu, et al., Energy Environ. Sci. 17 (2024) 5984–5992.
doi: 10.1039/D4EE01547A
N. Liu, F. Xu, J. Jing, et al., Energy Mater. Adv. 6 (2025) 0187.
doi: 10.34133/energymatadv.0187
X. Wang, M. Faizan, Y. Fu, et al., Chin. Phys. Lett. 41 (2024) 106101.
doi: 10.1088/0256-307X/41/10/106101
F. Xu, Z. Bao, Y. Tu, et al., Adv. Mater. Technol. 16 (2024) 2401434.
D. Becker-Koch, M. Albaladejo-Siguan, J. Kress, et al., Nanoscale 14 (2022) 3020–3030.
doi: 10.1039/D1NR06456H
S. Chen, N. Liu, F. Xu, G. Wei, Solar RRL 7 (2023) 2300479.
doi: 10.1002/solr.202300479
R.T. Wang, A.F. Xu, W. Zhang, G. Xu, New J. Chem. 46 (2022) 16130–16137.
doi: 10.1039/D2NJ01711C
R.T. Wang, X. Jin, W. Tan, et al., Energy Technol 11 (2023) 2300523.
doi: 10.1002/ente.202300523
S.N. Guin, S. Banerjee, D. Sanyal, et al., Inorg. Chem. 55 (2016) 6323–6331.
doi: 10.1021/acs.inorgchem.6b00997
A.F. Xu, N. Niu, F. Xie, et al., Nano Lett. 20 (2020) 3864–3871.
doi: 10.1021/acs.nanolett.0c00988
P. Cheng, X. Zhan, Chem. Soc. Rev. 45 (2016) 2544–2582.
doi: 10.1039/C5CS00593K
P. Ding, D. Yang, S. Yang, et al., Chem. Soc. Rev. 53 (2024) 2350–2387.
doi: 10.1039/D3CS00492A
S.C. Yadav, A. Srivastava, V. Manjunath V, et al., Mater. Today Phys. 26 (2022) 100731.
doi: 10.1016/j.mtphys.2022.100731
R. Massadeh, M.M. Hamasha, Opt. Mater. 157 (2024) 116427.
doi: 10.1016/j.optmat.2024.116427
Y. Bekenstein, J.C. Dahl, J.M. Huang, et al., Nano Lett. 18 (2018) 3502–3508.
doi: 10.1021/acs.nanolett.8b00560
N. Liu, S. Chen, X. Liu, et al., Adv. Energy Mater. 15 (2025) 2405212.
doi: 10.1002/aenm.202405212
Y. Ji, L. Tong, K. An, et al., J. Mater. Chem. C 13 (2025) 11421–11426.
doi: 10.1039/D5TC00882D
S. Ma, G. Yuan, Y. Zhang, et al., Energy Environ. Sci. 15 (2022) 13–55.
doi: 10.1039/D1EE02882K
F. Xu, X. Yang, Q. Zhong, et al., Mater. Today Commun. 37 (2023) 107537.
doi: 10.1016/j.mtcomm.2023.107537
M. Albaladejo-Siguan, E.C. Baird, D. Becker-Koch, et al., Adv. Energy Mater. 11 (2021) 2003457.
doi: 10.1002/aenm.202003457
J. Liu, K. Xian, L. Ye, Z. Zhou, Adv. Mater. 33 (2021) 2008115.
doi: 10.1002/adma.202008115
X. Li, H. Yu, X. Ma, et al., Chem. Eng. J. 495 (2024) 153328.
doi: 10.1016/j.cej.2024.153328
Y. Xiao, H. Wang, F. Awai, et al., Chem. Lett. 51 (2022) 1004–1007.
doi: 10.1246/cl.220331
D. Liu, D. Cai, Y. Yang, et al., Appl. Surf. Sci. 366 (2016) 30–37.
doi: 10.1016/j.apsusc.2016.01.050
F.A.N. Mawaddah, S.Z. Bisri, Nanomaterials 14 (2024) 1328.
doi: 10.3390/nano14161328
Y. Zhou, Z. Chen, Y. Wang, et al., Mater. Today Chem. 50 (2025) 103114.
doi: 10.1016/j.mtchem.2025.103114
X. Yang, Y. Ji, Q. Li, et al., Adv. Funct. Mater. 35 (2025) 2413517.
doi: 10.1002/adfm.202413517
Y. Ji, Q. Zhong, M. Yu, et al., ACS Nano 18 (2024) 8157–8167.
doi: 10.1021/acsnano.3c11941
J. Kong, Z. Du, Y. Huang, et al., Small 21 (2025) 2500418.
doi: 10.1002/smll.202500418
Y.T. Huang, M. Schleuning, H. Hempel, et al., Adv. Funct. Mater. 34 (2024) 2310283.
doi: 10.1002/adfm.202310283
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
Siting Cai , Xiang Chen , Shuli Wang , Xinqin Liao , Zhong Chen , Yue Lin . Silica coating of quantum dots and their applications in optoelectronic fields. Chinese Chemical Letters, 2025, 36(6): 110798-. doi: 10.1016/j.cclet.2024.110798
Guiyang Zheng , Xuelian Kang , Haoran Ye , Wei Fan , Christian Sonne , Su Shiung Lam , Rock Keey Liew , Changlei Xia , Yang Shi , Shengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817
Jinge Zhu , Ailing Tang , Leyi Tang , Peiqing Cong , Chao Li , Qing Guo , Zongtao Wang , Xiaoru Xu , Jiang Wu , Erjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233
Zhiyang Zhang , Yi Chen , Yingnan Zhang , Chuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Fengying Zhang , Yanglin Mei , Yuman Jiang , Shenshen Zheng , Kaibo Zheng , Ying Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
Yaohua Li , Qi Cao , Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413
Irshad Ahmad , Yifei Zhang , Ayman Al-Qattan , S. AlFaify , Gao Li . Unlocking the engineering of solar-driven ZnO composites: From fundaments to sustainable and eco-friendly chemical energy. Chinese Journal of Structural Chemistry, 2025, 44(11): 100700-100700. doi: 10.1016/j.cjsc.2025.100700
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Yuetong Gao , Tong Mu , Xinyue Hu , Yang Pang , Chengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763
Ming Yang , Lin-Bo Liu , Shuo Liu , Yan Li , Biao Ouyang , Xian-Zhu Fu , Jing-Li Luo , Yifei Sun , Subiao Liu . Electrosynthesizing high-value fuels from CO2 in solid oxide electrolysis cells: Fundamentals, advances, and perspectives. Chinese Chemical Letters, 2025, 36(12): 110603-. doi: 10.1016/j.cclet.2024.110603
Shuang Ma , Guangying Wan , Zhuoying Yan , Xuecheng Liu , Tiezhu Chen , Xinmin Wang , Jinhang Dai , Juan Lin , Tiefeng Liu , Xingxing Gu . Eco-friendly aqueous binder derived from waste ramie for high-performance Li-S battery. Chinese Chemical Letters, 2025, 36(5): 109853-. doi: 10.1016/j.cclet.2024.109853
Zijie Lin , Qing Li . Covalent organic framework ionomers enable synergistic efficient transport of protons and oxygen in medium-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2026, 37(1): 111784-. doi: 10.1016/j.cclet.2025.111784
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516