Citation: Kangyuan Xie, Tianxiang Fang, Qingli Zhu, Qingyang Xu, Boyu Peng, Guangpeng Wu, Chao Gao, Haocheng Yang, Liping Zhu, Hongqing Liang, Weipu Zhu, Peng Zhang, Qiao Jin, Zhengwei Mao, Kefeng Ren, Yang Zhu, Haoke Zhang, Ziliang Wu, Chao Zhang, Hanying Li. Key progresses of MOE Key laboratory of macromolecular synthesis and functionalization in 2024[J]. Chinese Chemical Letters, ;2026, 37(2): 111990. doi: 10.1016/j.cclet.2025.111990 shu

Key progresses of MOE Key laboratory of macromolecular synthesis and functionalization in 2024

Figures(17)

  • In 2024, the MOE Key Laboratory of Macromolecular Synthesis and Functionalization at Zhejiang University continued its impactful researches across five core areas. In controllable catalytic polymerization, organoboron catalysts were developed for CO2 copolymerization and novel photoresist materials. Studies in microstructure and rheology elucidated universal deformation modes in graphene-based 2D membranes and improved graphene fiber properties through shear alignment engineering, defect control, and enhanced interlayer entanglement. For separating functional polymers, Janus membranes and channels were created for multiphase separation, liquid-phase molecular layer-by-layer deposition technique was developed to fabricate aromatic polyamide nanofilms, and the harmonic amide bond density was established as a valuable parameter for polyamide structural analysis. In biomedical functional polymers, a sustainable carboxyl-ester transesterification strategy was proposed for upcycling poly(ethylene terephthalate) (PET) waste into biodegradable plastics. Additionally, immunocompatible biomaterials were designed utilizing zwitterionic polypeptides and albumin-derived coatings, and Cu2+-phenolic nanoflower was designed to combat fungal infections by combining cuproptosis and cell wall digestion. Further, the researchers developed a gelatin-DOPA-knob/fibrinogen hydrogel to achieve rapid and robust hemostatic sealing, utilized a double-network polyelectrolyte-coated hydrogel for enhancing endothelialization of left atrial appendage (LAA) occluders, and the researchers also demonstrated that image-guided high-intensity focused ultrasound enables manipulation of shape-memory polymers. Finally, in the realm of photo-electro-magnetic functional polymers, precise control of through-space conjugation was shown to enhance organic luminescence. Topologically structured hydrogels were revealed to exhibit autonomous actuation. Also, solar-driven photothermal ion pumps were developed for selective lithium extraction from seawater, and high-performance non-solvated C60 single-crystal films were prepared via facile bar coating. Lastly, the researchers demonstrated outstanding dielectric properties of polyethylene (PE) lamellar single crystals. The relevant works are reviewed in this paper.
  • 加载中
    1. [1]

      J. Ren, X. Shu, Y. Wang, et al., Chin. Chem. Lett. 33 (2022) 1650–1658.

    2. [2]

      Q. Wen, Q. Cai, P. Fu, et al., Chin. Chem. Lett. 34 (2023) 107592.

    3. [3]

      X. Deng, K. Chen, K. Pang, et al., Chin. Chem. Lett. 35 (2024) 108861.

    4. [4]

      G. Yu, C. Xu, H. Ju, et al., Chin. Chem. Lett. 35 (2024) 109893.

    5. [5]

      Y.Y. Zhang, G.W. Yang, C. Lu, et al., Chem. Soc. Rev. 53 (2024) 3384–3456.  doi: 10.1039/d3cs00115f

    6. [6]

      G.W. Yang, R. Xie, Y.Y. Zhang, et al., Chem. Rev. 124 (2024) 12305–12380.  doi: 10.1021/acs.chemrev.4c00517

    7. [7]

      C.K. Xu, C. Lu, S. Zhao, et al., Macromolecules 57 (2024) 9076–9087.  doi: 10.1021/acs.macromol.4c01544

    8. [8]

      R. Xie, G.W. Yang, Y.Y. Zhang, et al., Polym. Chem. 15 (2024) 412–421.  doi: 10.1039/d3py01314f

    9. [9]

      R. Xie, Y. Wang, S. Li, et al., Angew. Chem. 136 (2024) e202404207.

    10. [10]

      X.Y. Lu, R.S. Zhang, G.W. Yang, et al., Angew. Chem. 136 (2024) e202401850.

    11. [11]

      Y. Wang, S. Wang, Y. Gao, et al., Sci. Adv. 10 (2024) eadm7737.

    12. [12]

      P. Li, Z. Wang, Y. Qi, et al., Nat. Commun. 15 (2024) 409.

    13. [13]

      Z. Wang, G. Cai, Y. Xia, et al., Carbon 222 (2024) 118996.

    14. [14]

      J. Lu, X. Ming, M. Cao, et al., ACS Nano 18 (2024) 18560–18571.  doi: 10.1021/acsnano.4c04349

    15. [15]

      L. Wang, K. Li, F. Chen, et al., Nano Lett. 24 (2024) 4256–4264.  doi: 10.1021/acs.nanolett.4c00581

    16. [16]

      Y. Xia, H. Qin, W. Tong, et al., Adv. Mater. 37 (2025) 2417462.

    17. [17]

      K. Pang, J. Ma, X. Song, et al., Small 20 (2024) 2400415.

    18. [18]

      K. Li, H.C. Yang, Z.K. Xu, ACS Appl. Polym. Mater. 6 (2024) 14190–14203.  doi: 10.1021/acsapm.3c03222

    19. [19]

      K. Li, H.C. Yang, H.N. Li, et al., Small Struct. 6 (2025) 2400470.

    20. [20]

      C.Y. Zhu, H.N. Li, B.B. Guo, et al., Research 7 (2024) 0359.

    21. [21]

      Y.Z. Chen, H.C. Yang, H.N. Li, et al., Small 20 (2024) 2310952.

    22. [22]

      H.N. Li, H.C. Yang, C.Y. Zhu, et al., J. Mater. Chem. A 10 (2022) 20856–20865.  doi: 10.1039/d2ta05555d

    23. [23]

      X.Y. Guo, L. Zhao, H.N. Li, et al., Science 386 (2024) 654–659.  doi: 10.1126/science.adq6329

    24. [24]

      X. Shui, J. Li, M. Zhang, et al., J. Membr. Sci. 628 (2021) 119249.

    25. [25]

      H. Guo, F. Li, X. Shui, et al., ACS Appl. Mater. Interfaces 15 (2023) 37077–37085.  doi: 10.1021/acsami.3c07440

    26. [26]

      H. Guo, C. Fang, F. Li, et al., Mater. Horiz. 10 (2023) 5133–5142.  doi: 10.1039/d3mh00957b

    27. [27]

      F. Li, J. Li, H. Guo, et al., J. Membr. Sci. 704 (2024) 122879.

    28. [28]

      W. Feng, J. Li, C. Fang, et al., J. Membr. Sci. 643 (2022) 120013.

    29. [29]

      W. Feng, L. Xu, Y. Chen, et al., Sep. Purif. Technol. 339 (2024) 126560.

    30. [30]

      Y. Chen, W. Feng, C. Fang, et al., Desalination 589 (2024) 117959.

    31. [31]

      L. Xu, W. Feng, C. Fang, et al., J. Membr. Sci. 716 (2025) 123526.

    32. [32]

      Y.R. Xue, C. Liu, Z.Y. Ma, et al., Nat. Commun. 15 (2024) 1539.

    33. [33]

      Q. Cai, X. Li, W. Zhu, Macromolecules 53 (2020) 2177–2186.  doi: 10.1021/acs.macromol.9b02177

    34. [34]

      Q.Q. Cai, H.J. Zhang, X.X. Yao, et al., Acta Polym. Sin. 52 (2021) 489–498.

    35. [35]

      Q. Cai, T. Bai, H. Zhang, et al., Mater. Today 51 (2021) 155–164.

    36. [36]

      H. Zhang, Q. Zhang, Q. Cai, et al., Chem. Eng. J. 424 (2021) 130432.

    37. [37]

      H. Zhang, T. Fang, X. Yao, et al., Adv. Mater. 35 (2023) 2210758.

    38. [38]

      H.M. Zhang, J.Y. Zhao, F.X. Gao, et al., Acta Polym. Sin. 53 (2022) 1142–1149.

    39. [39]

      S. Zhang, Q. Hu, Y.X. Zhang, et al., Nat. Sustainability 6 (2023) 965–973.  doi: 10.1038/s41893-023-01118-4

    40. [40]

      Y. Zhou, Y. Shan, D. Guan, et al., Nat. Food 1 (2020) 552–561.  doi: 10.1038/s43016-020-00145-0

    41. [41]

      C. Jehanno, J.W. Alty, M. Roosen, et al., Nature 603 (2022) 803–814.  doi: 10.1038/s41586-021-04350-0

    42. [42]

      X.H. Liu, S.M. Xu, F. Zhang, et al., Acta Polym. Sin. 53 (2022) 1005–1022.

    43. [43]

      A. Rahimi, J.M. García, Nat. Rev. Chem. 1 (2017) 0046.

    44. [44]

      L.T.J. Korley, T.H. Epps, B.A. Helms, et al., Science 373 (2021) 66–69.  doi: 10.1126/science.abg4503

    45. [45]

      A.A. Shah, F. Hasan, A. Hameed, et al., Biotechnol. Adv. 26 (2008) 246–265.  doi: 10.1504/IJMTM.2008.019663

    46. [46]

      L. Qin, X. Li, G. Ren, et al., ChemSusChem 17 (2024) e202301781.

    47. [47]

      T. Fang, W. Jiang, T. Zheng, et al., Adv. Mater. 36 (2024) 2403728.

    48. [48]

      X. Zhou, Y. Wang, J. Ji, et al., Adv. Healthcare Mater. 13 (2024) 2304478.

    49. [49]

      D. Zhang, Q. Chen, C. Shi, et al., Adv. Funct. Mater. 31 (2021) 2007226.

    50. [50]

      J. Wu, J. Deng, G. Theocharidis, et al., Nature 630 (2024) 360–367.  doi: 10.1038/s41586-024-07426-9

    51. [51]

      S. Bose, L.R. Volpatti, D. Thiono, et al., Nat. Biomed. Eng. 4 (2020) 814–826.  doi: 10.1038/s41551-020-0538-5

    52. [52]

      H.M. Rostam, L.E. Fisher, A.L. Hook, et al., Matter 2 (2020) 1564–1581.

    53. [53]

      J.M. Anderson, A. Rodriguez, D.T. Chang, Semin. Immunol. 20 (2008) 86–100.

    54. [54]

      Q. Li, C. Wen, J. Yang, et al., Chem. Rev. 122 (2022) 17073–17154.  doi: 10.1021/acs.chemrev.2c00344

    55. [55]

      D. Dong, C. Tsao, H.C. Hung, et al., Sci. Adv. 7 (2021) eabc5442.

    56. [56]

      L. Zhang, Z. Cao, T. Bai, et al., Nat. Biotechnol. 31 (2013) 553–556.  doi: 10.1038/nbt.2580

    57. [57]

      Z. Liu, X. Zhou, Y. Chen, et al., Biomater. Sci. 12 (2024) 468–478.  doi: 10.1039/d3bm01783d

    58. [58]

      S. Chen, Z. Cao, S. Jiang, Biomaterials 30 (2009) 5892–5896.

    59. [59]

      X. Zhou, W. Cao, Y. Chen, et al., Adv. Sci. 11 (2024) 2308077.

    60. [60]

      X. Zhou, W. Cao, Y. Chen, et al., Acta Biomater. 185 (2024) 226–239.

    61. [61]

      H. Yan, C. Seignez, M. Hjorth, et al., Adv. Funct. Mater. 29 (2019) 1902581.

    62. [62]

      X. Zhou, H. Hao, Y. Chen, et al., Bioact. Mater. 34 (2024) 482–493.

    63. [63]

      A.J. Vegas, O. Veiseh, J.C. Doloff, et al., Nat. Biotechnol. 34 (2016) 345–352.  doi: 10.1038/nbt.3462

    64. [64]

      C.C. Schreib, M.I. Jarvis, T. Terlier, et al., Adv. Mater. 35 (2023) 2205709.

    65. [65]

      S.J. Karinja, J.L. Bernstein, S. Mukherjee, et al., Plast. Reconstr. Surg. 152 (2023) 775.  doi: 10.1097/prs.0000000000010323

    66. [66]

      X. Zhou, Z. Lu, W. Cao, et al., Nat. Commun. 15 (2024) 7526.

    67. [67]

      M.C. Fisher, D.A. Henk, C.J. Briggs, et al., Nature 484 (2012) 186–194.  doi: 10.1038/nature10947

    68. [68]

      J. Wang, J. Zhang, X. Wang, et al., Chin. Chem. Lett. 35 (2024) 109697.

    69. [69]

      D.W. Denning, Lancet Infect. Dis. 24 (2024) e428–e438.

    70. [70]

      F. Liu, Y. Chen, Y. Huang, et al., J. Mater. Chem. B 12 (2024) 9173–9198.  doi: 10.1039/d4tb01484g

    71. [71]

      C.Y. Wang, Y.Q. Liu, C. Jia, et al., Chin. Chem. Lett. 34 (2023) 108400.

    72. [72]

      F. Liu, Y. Chen, Y. Huang, et al., ChemCatChem 16 (2024) e202401221.

    73. [73]

      Z. Guo, W. Liu, T. Liu, et al., Chin. Chem. Lett. 35 (2024) 109060.

    74. [74]

      Y. Huang, Q. Gao, C. Li, et al., Adv. Funct. Mater. 32 (2022) 2109011.

    75. [75]

      Y. Huang, Y. Chen, Z. Lu, et al., Small 19 (2023) 2302578.

    76. [76]

      F. Liu, Y. Chen, Y. Huang, et al., Nat. Commun. 15 (2024) 9004.

    77. [77]

      D.R. King, N. Engl. J. Med. 380 (2019) 763–770.  doi: 10.1056/nejmra1609326

    78. [78]

      J.W. Cannon, N. Engl. J. Med. 378 (2018) 370–379.  doi: 10.1056/nejmra1705649

    79. [79]

      B. Guo, R. Dong, Y. Liang, et al., Nat. Rev. Chem. 5 (2021) 773–791.  doi: 10.1038/s41570-021-00323-z

    80. [80]

      H. Wang, J. Cheng, F. Sun, et al., Adv. Mater. 35 (2023) 2208622.

    81. [81]

      S. Nam, D. Mooney, Chem. Rev. 121 (2021) 11336–11384.  doi: 10.1021/acs.chemrev.0c00798

    82. [82]

      G.M. Taboada, K. Yang, M.J.N. Pereira, et al., Nat. Rev. Mater. 5 (2020) 310–329.  doi: 10.1038/s41578-019-0171-7

    83. [83]

      S.J. Wu, X. Zhao, Chem. Rev. 123 (2023) 14084–14118.  doi: 10.1021/acs.chemrev.3c00380

    84. [84]

      L. Yu, Z. Liu, Y. Zheng, et al., Nat. Commun. 16 (2025) 1437.

    85. [85]

      L. Yu, Z. Liu, Z. Tong, et al., Adv. Sci. 11 (2024) 2308171.

    86. [86]

      Y. Ding, L. Yu, Z. Mao, Colloid Interface Sci. Commun. 63 (2024) 100809.

    87. [87]

      Q. Guo, Y. Ding, L. Yu, et al., Chin. J. Chem. 42 (2024) 87–103.  doi: 10.1002/cjoc.202300380

    88. [88]

      Z. Liu, Y. Ding, Y. Ding, et al., Biomaterials 317 (2025) 123038.

    89. [89]

      D.H.F. Chow, Y.H. Wong, J.W. Park, et al., Trends Cardiovasc. Med. 29 (2019) 228–236.

    90. [90]

      J.L. Blackshear, J.A. Odell, Ann. Thorac. Surg. 61 (1996) 755–759.

    91. [91]

      G. Saposnik, D. Gladstone, R. Raptis, et al., Stroke 44 (2013) 99–104.

    92. [92]

      R.P. Whitlock, E.P. Belley-Cote, D. Paparella, et al., N. Engl. J. Med. 384 (2021) 2081–2091.  doi: 10.1056/nejmoa2101897

    93. [93]

      M.K. Turagam, P. Velagapudi, S. Kar, et al., J. Am. Coll. Cardiol. 72 (2018) 448–463.

    94. [94]

      H. Yan, Q. Cheng, J. Si, et al., Bioact. Mater. 26 (2023) 292–305.

    95. [95]

      A.J. Grant, N. Yang, M.J. Moore, et al., Adv. Sci. 10 (2023) e2300521.

    96. [96]

      S.R. Dukkipati, S. Kar, D.R. Holmes, et al., Circulation 138 (2018) 874–885.  doi: 10.1161/circulationaha.118.035090

    97. [97]

      Y. Wang, G. Li, L. Yang, et al., Adv. Mater. 34 (2022) 2201971.

    98. [98]

      C.R. Ellis, M. Alkhouli, J.A. Anderson, et al., JACC: Clin. Electrophysiol. 8 (2022) 828–829.

    99. [99]

      S.P. Sharma, D. Singh, D. Nakamura, et al., J. Atr. Fibrillation 11 (2019) 2162.

    100. [100]

      L. Fauchier, A. Cinaud, F. Brigadeau, et al., J. Am. Coll. Cardiol. 71 (2018) 1528–1536.

    101. [101]

      X. Wang, Y. Yin, J. Wang, et al., Adv. Sci. 11 (2024) 2401301.

    102. [102]

      X. Wang, C. Ye, Q. Tang, et al., Nat. Commun. 16 (2025) 1928.

    103. [103]

      Y. Zhu, K. Deng, J. Zhou, et al., Nat. Commun. 15 (2024) 1123.

    104. [104]

      J. Guo, Y. Xu, S. Jin, et al., Nat. Commun. 4 (2013) 2736.

    105. [105]

      Y. Shen, K. Luo, Q. Xu, et al., Chin. J. Org. Chem. 44 (2024) 2453.  doi: 10.6023/cjoc202404041

    106. [106]

      W. Tu, Z. Xiong, Z. Zhang, et al., Smart Mol. 1 (2023) e20220006.

    107. [107]

      W. Tu, Z. Xiong, L. Wang, et al., Sci. China Chem. 67 (2024) 3121–3130.  doi: 10.1007/s11426-024-2015-9

    108. [108]

      J. Zhang, L. Hu, K. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 9565–9574.  doi: 10.1021/jacs.1c03882

    109. [109]

      Y. Wang, J. Zhang, Q. Xu, et al., Nat. Commun. 15 (2024) 6426.

    110. [110]

      H. Zhang, X. Zheng, N. Xie, et al., J. Am. Chem. Soc. 139 (2017) 16264–16272.  doi: 10.1021/jacs.7b08592

    111. [111]

      B. Chu, H. Zhang, L. Hu, et al., Angew. Chem. Int. Ed. 61 (2022) e202114117.

    112. [112]

      Q. Xu, J. Zhang, J.Z. Sun, et al., Nat. Photonics 18 (2024) 1185–1194.  doi: 10.1038/s41566-024-01527-7

    113. [113]

      D. Jiao, Q.L. Zhu, C.Y. Li, et al., Acc. Chem. Res. 55 (2022) 1533–1545.  doi: 10.1021/acs.accounts.2c00046

    114. [114]

      H.Y. Bai, Q.L. Zhu, H.L. Cheng, et al., Mater. Horiz. 12 (2025) 719–733.  doi: 10.1039/d4mh01187b

    115. [115]

      L. Chen, X. Wei, F. Wang, et al., Chin. Chem. Lett. 33 (2022) 2635–2638.  doi: 10.3390/plants11192635

    116. [116]

      Z. Hu, H. Zhang, Z. Li, et al., Chin. Chem. Lett. 35 (2024) 109527.

    117. [117]

      C.Y. Li, S.Y. Zheng, X.P. Hao, et al., Sci. Adv. 8 (2022) eabm9608.

    118. [118]

      L.P. Xiao, L.M. Qiu, Z. Wu, et al., Chin. J. Polym. Sci. 42 (2024) 1758–1767.  doi: 10.1007/s10118-024-3158-9

    119. [119]

      C.F. Dai, Q.L. Zhu, O. Khoruzhenko, et al., Adv. Sci. 11 (2024) 2402824.

    120. [120]

      L. Su, D. Jin, Y. Wang, et al., Sci. Adv. 9 (2023) eadj0883.

    121. [121]

      Q.L. Zhu, C. Du, Y. Dai, et al., Nat. Commun. 11 (2020) 5166.

    122. [122]

      Y.S. Kim, M. Liu, Y. Ishida, et al., Nat. Mater. 14 (2015) 1002–1007.

    123. [123]

      Z.Z. Nie, B. Zuo, M. Wang, et al., Nat. Commun. 12 (2021) 2334.

    124. [124]

      X. Yao, H. Chen, H. Qin, et al., Nat. Commun. 15 (2024) 9254.

    125. [125]

      K. Kruse, F. Jülicher, Curr. Opin. Cell Biol. 17 (2005) 20–26.

    126. [126]

      S. Maeda, Y. Hara, T. Sakai, et al., Adv. Mater. 19 (2007) 3480–3484.  doi: 10.1002/adma.200700625

    127. [127]

      Y. Zhao, Z. Liu, P. Shi, et al., Nat. Mater. 24 (2025) 116–124.  doi: 10.1038/s41563-024-02035-3

    128. [128]

      A. Baumann, A. SánchezFerrer, L. Jacomine, et al., Nat. Mater. 17 (2018) 523–527.  doi: 10.1038/s41563-018-0062-0

    129. [129]

      M. Dong, Q. Zheng, Z.L. Wu, Nat. Mater. 23 (2024) 1612–1614.  doi: 10.1038/s41563-024-02051-3

    130. [130]

      Q.L. Zhu, W. Liu, O. Khoruzhenko, et al., Nat. Commun. 15 (2024) 300.

    131. [131]

      Q.L. Zhu, W. Liu, O. Khoruzhenko, et al., Adv. Mater. 36 (2024) 2314152.

    132. [132]

      S. Yang, Y. Wang, H. Pan, et al., Nature 636 (2024) 309–321.  doi: 10.1038/s41586-024-08117-1

    133. [133]

      H.N. Li, C. Zhang, J.H. Xin, et al., ACS Nano 18 (2024) 2434–2445.  doi: 10.1021/acsnano.3c10910

    134. [134]

      C. Liu, C.Y. Zhu, C. Zhang, et al., Prog. Polym. Sci. 152 (2024) 101815.

    135. [135]

      J.H. Xin, C. Liu, J.B. Li, et al., ACS Mater. Lett. 6 (2024) 1897–1905.  doi: 10.1021/acsmaterialslett.4c00568

    136. [136]

      Y. Xue, C. Liu, H. Yang, et al., Small 20 (2024) 2310092.

    137. [137]

      J.B. Li, C.Y. Zhu, H.N. Li, et al., J. Membr. Sci. 704 (2024) 122841.

    138. [138]

      C. Liu, C. Yao, Y. Zhu, et al., Sens. Actuators B 220 (2015) 227–232.

    139. [139]

      H.Y. Fan, C.Y. Zhu, Y.R. Xue, et al., Desalination 596 (2025) 118334.

    140. [140]

      B.B. Guo, C. Liu, C.Y. Zhu, et al., Nat. Commun. 15 (2024) 2282.

    141. [141]

      H. Li, B.C.K. Tee, J.J. Cha, et al., J. Am. Chem. Soc. 134 (2012) 2760–2765.  doi: 10.1021/ja210430b

    142. [142]

      K. Wu, T. Wu, S. Chang, et al., Adv. Mater. 27 (2015) 4371–4376.  doi: 10.1002/adma.201501140

    143. [143]

      Z. Lu, W. Deng, X. Fang, et al., Adv. Funct. Mater. 31 (2021) 2105459.

    144. [144]

      T.C. Chang, Y.C. Tsao, P.H. Chen, et al., Mater. Today Adv. 5 (2020) 100040.

    145. [145]

      S. Zheng, X. Xiong, Z. Zheng, et al., Carbon 126 (2018) 299–304.

    146. [146]

      L. Wei, J. Yao, H. Fu, ACS Nano 7 (2013) 7573–7582.  doi: 10.1021/nn402889h

    147. [147]

      H.X. Ji, J.S. Hu, L.J. Wan, et al., J. Mater. Chem. 18 (2008) 328–332.

    148. [148]

      Y. Zhao, Q. Sheng, S. Ke, et al., Small 20 (2024) 2404770.

    149. [149]

      S.Z.D. Cheng, C.Y. Li, Mater. Sci. Forum 408–412 (2002) 25–38.

    150. [150]

      A. Keller, Philos. Mag. J. Theor. Exp. Appl. Phys. 2 (1957) 1171–1175.  doi: 10.1080/14786435708242746

    151. [151]

      B. Chu, X. Zhou, K. Ren, et al., Science 313 (2006) 334–336.  doi: 10.1126/science.1127798

    152. [152]

      J. Chen, Y. Zhou, X. Huang, et al., Nature 615 (2023) 62–66.  doi: 10.1038/s41586-022-05671-4

    153. [153]

      A.M. Pourrahimi, R.T. Olsson, M.S. Hedenqvist, Adv. Mater. 30 (2018) 1703624.

    154. [154]

      H. Li, Y. Zhou, Y. Liu, et al., Chem. Soc. Rev. 50 (2021) 6369–6400.  doi: 10.1039/d0cs00765j

    155. [155]

      G. Wu, B. Tian, L. Liu, et al., Nat. Electron. 3 (2020) 43–50.  doi: 10.1038/s41928-019-0350-y

    156. [156]

      M. Li, H.J. Wondergem, M.J. Spijkman, et al., Nat. Mater. 12 (2013) 433–438.  doi: 10.1038/nmat3577

    157. [157]

      Y. Huang, G. Rui, Q. Li, et al., Nat. Commun. 12 (2021) 675.  doi: 10.1111/jfd.13329

    158. [158]

      Q.K. Feng, S.L. Zhong, J.Y. Pei, et al., Chem. Rev. 122 (2022) 3820–3878.  doi: 10.1021/acs.chemrev.1c00793

    159. [159]

      A. van Roggen, Phys. Rev. Lett. 9 (1962) 368–370.

    160. [160]

      Y. Miyoshi, K. Chino, Jpn. J. Appl. Phys. 6 (1967) 181.

    161. [161]

      M. Chen, W.L. Ong, B. Peng, et al., Angew. Chem. Int. Ed. 63 (2024) e202314685.

  • 加载中
    1. [1]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    2. [2]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    3. [3]

      Heng-Su Liu Xi-Ming Zhang Ge-Hao Liang Shisheng Zheng Jian-Feng Li . Investigation of water structure and proton transfer within confined graphene by ab initio molecule dynamics and multiscale data analysis. Chinese Journal of Structural Chemistry, 2025, 44(6): 100596-100596. doi: 10.1016/j.cjsc.2025.100596

    4. [4]

      Xiao-Yu Han Si-Hua Liu Su-Yun Zhang Jian-Ke Sun . Functionally graded materials based on porous poly(ionic liquid)s: Design strategies and applications. Chinese Journal of Structural Chemistry, 2025, 44(7): 100601-100601. doi: 10.1016/j.cjsc.2025.100601

    5. [5]

      Zhaoyu Liu Dan Wang Guohui Liu Huili Zhang He Li Xiaoju Li Ruihu Wang . Sound-Bioinspired Dual-Conductive Hydrogel Sensors for High Sensitivity and Environmental Weatherability. Chinese Journal of Structural Chemistry, 2025, 44(8): 100628-100628. doi: 10.1016/j.cjsc.2025.100628

    6. [6]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    7. [7]

      Yuanmao FuZiang WangKefan WuFeiyang LiXian ZhangHongyuan CuiXiaolin WangHui GuoYuezhong Meng . Bio-inspired multifunctional hydrogels with adhesive, anti-bacterial, anti-icing and sensing properties. Chinese Chemical Letters, 2025, 36(7): 110479-. doi: 10.1016/j.cclet.2024.110479

    8. [8]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    9. [9]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    12. [12]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    13. [13]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    14. [14]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    15. [15]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    16. [16]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    17. [17]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    18. [18]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    19. [19]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    20. [20]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

Metrics
  • PDF Downloads(0)
  • Abstract views(14)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return