Interlocked covalent organic cages: Design, synthesis, and self-assembly
-
* Corresponding authors.
E-mail addresses: yaobin@ctbu.edu.cn (B. Yao), wwang@chem.ecnu.edu.cn (W. Wang).
Citation:
Bin Yao, Yao Bu, Hongfei Sun, Guowang Li, Xianying Wu, Wei Wang. Interlocked covalent organic cages: Design, synthesis, and self-assembly[J]. Chinese Chemical Letters,
;2026, 37(1): 111894.
doi:
10.1016/j.cclet.2025.111894
R.S. Forgan, J.P. Sauvage, J.F. Stoddart, Chem. Rev. 111 (2011) 5434–5464.
doi: 10.1021/cr200034u
S. Erbas-Cakmak, D.A. Leigh, C.T. McTernan, et al., Chem. Rev. 115 (2015) 10081–10206.
doi: 10.1021/acs.chemrev.5b00146
E.M.G. Jamieson, F. Modicom, S.M. Goldup, Chem. Soc. Rev. 47 (2018) 5266–5311.
doi: 10.1039/c8cs00097b
L. Chen, X. Sheng, G. Li, et al., Chem. Soc. Rev. 51 (2022) 7046–7065.
doi: 10.1039/d2cs00202g
X.-Q. Xu, X.-Q. Wang, W. Wang, Chin. Chem. Lett. 34 (2023) 107665.
Y. Liu, M. O’Keeffe, M.M.J. Treacy, et al., Chem. Soc. Rev. 47 (2018) 4642–4664.
doi: 10.1039/c7cs00695k
Z. Ashbridge, S.D.P. Fielden, D.A. Leigh, et al., Chem. Soc. Rev. 51 (2022) 7779–7809.
doi: 10.1039/d2cs00323f
Z. Niu, H.W. Gibson, Chem. Rev. 109 (2009) 6024–6046.
doi: 10.1021/cr900002h
A. Saura-Sanmartin, C.A. Schalley, Chem 9 (2023) 823–846.
D. Dattler, G. Fuks, J. Heiser, et al., Chem. Rev. 120 (2020) 310–433.
doi: 10.1021/acs.chemrev.9b00288
G. Gil-Ramírez, D.A. Leigh, A.J. Stephens, Angew. Chem. Int. Ed. 54 (2015) 6110–6150.
doi: 10.1002/anie.201411619
M.J. Langton, P.D. Beer, Acc. Chem. Res. 47 (2014) 1935–1949.
doi: 10.1021/ar500012a
E. Wasserman, J. Am. Chem. Soc. 82 (1960) 4433–4434.
doi: 10.1021/ja01501a082
H.L. Frisch, E. Wasserman, J. Am. Chem. Soc. 83 (1961) 3789–3795.
doi: 10.1021/ja01479a015
G. Liu, P.M. Rauscher, B.W. Rawe, et al., Chem. Soc. Rev. 51 (2022) 4928–4948.
doi: 10.1039/d2cs00256f
B.T. Shahraki, S. Maghsoudi, Y. Fatahi, et al., Coordin. Chem. Rev. 423 (2020) 213484.
H.Y. Au-Yeung, Y. Deng, Chem. Sci. 13 (2022) 3315–3334.
doi: 10.1039/d1sc05391d
M. Fujita, N. Fujita, K. Ogura, et al., Nature 400 (1999) 52–55.
W.X. Gao, H.J. Feng, B.B. Guo, et al., Chem. Rev. 120 (2020) 6288–6325.
doi: 10.1021/acs.chemrev.0c00321
E.G. Percástegui, V. Jancik, Coordin. Chem. Rev. 407 (2020) 213165.
Q.Y. Hong, B. Huang, M.X. Wu, et al., Nat. Commun. 16 (2025) 2484.
D. Luo, B. Pan, J. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1397–1399.
T.R. Schulte, J.J. Holstein, L. Schneider, et al., Angew. Chem. Int. Ed. 59 (2020) 22489–22493.
doi: 10.1002/anie.202010995
Y. Wang, Y. Zhang, Z. Zhou, et al., Nat. Commun. 11 (2020) 2727.
Y. Li, H. Jiang, W. Zhang, et al., J. Am. Chem. Soc. 146 (2024) 3147–3159.
doi: 10.1021/jacs.3c10734
J. Martí-Rujas, Commun. Chem. 8 (2025) 92.
Y. Li, K.M. Mullen, T.D. Claridge, et al., Chem. Commun. 45 (2009) 7134–7136.
doi: 10.1039/b915548a
Q. Chen, K. Zhu, Chem. Soc. Rev. 53 (2024) 5677–5703.
N.H. Evans, P.D. Beer, Chem. Soc. Rev. 43 (2014) 4658–4683.
doi: 10.1039/c4cs00029c
G. Montà-González, F. Sancenón, R. Martínez-Mañez, et al., Chem. Rev. 122 (2022) 13636–13708.
doi: 10.1021/acs.chemrev.2c00198
X. Yang, Z. Ullah, J.F. Stoddart, et al., Chem. Rev. 123 (2023) 4602–4634.
doi: 10.1021/acs.chemrev.2c00667
R.A. Borse, Y.X. Tan, D. Yuan, et al., Energy Environ. Sci. 17 (2024) 1307–1329.
doi: 10.1039/d3ee03360k
T. Hasell, A.I. Cooper, Nat. Rev. Mater. 1 (2016) 16053.
J. Li, Y. Yang, J. Yang, et al., Coordin. Chem. Rev. 523 (2025) 216260.
I.A. Rather, F. Wang, R. Siddiqui, et al., Coordin. Chem. Rev. 535 (2025) 216648.
M. Frank, M.D. Johnstone, G.H. Clever, Chem. Eur. J. 22 (2016) 14104–14125.
doi: 10.1002/chem.201601752
S. La Cognata, A. Miljkovic, R. Mobili, et al., ChemPlusChem 85 (2020) 1145–1155.
doi: 10.1002/cplu.202000274
S.L. Huang, T.S.A. Hor, G.X. Jin, Coordin. Chem. Rev. 333 (2017) 1–26.
doi: 10.1145/2897512
R. Zhu, J. Ding, L. Jin, et al., Coordin. Chem. Rev. 389 (2019) 119–140.
E. Du, X. Tang, W. Zhang, et al., Nat. Rev. Chem. 9 (2025) 506–522.
doi: 10.1038/s41570-025-00721-7
K.D. Hänni, D.A. Leigh, Chem. Soc. Rev. 39 (2010) 1240–1251.
R. Peng, Y. Xu, Q. Cao, Chin. Chem. Lett. 29 (2018) 1465–1474.
Y. Liu, W. Zhao, C.H. Chen, et al., Science 365 (2019) 159–161.
doi: 10.1126/science.aaw5145
D. Chakraborty, R. Modak, P. Howlader, et al., Chem. Commun. 57 (2021) 3995–3998.
doi: 10.1039/d1cc00627d
T. Jiao, K. Cai, Z. Liu, et al., Chem. Sci. 10 (2019) 5114–5123.
doi: 10.1039/c9sc00591a
Y. Shi, K. Cai, H. Xiao, et al., J. Am. Chem. Soc. 140 (2018) 13835–13842.
doi: 10.1021/jacs.8b08555
Y. Wu, Q.H. Guo, Y. Qiu, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2118573119.
X.Y. Chen, D. Shen, K. Cai, et al., J. Am. Chem. Soc. 142 (2020) 20152–20160.
doi: 10.1021/jacs.0c09896
Y. Jin, Q. Wang, P. Taynton, et al., Acc. Chem. Res. 47 (2014) 1575–1586.
doi: 10.1021/ar500037v
Y. Jin, C. Yu, R.J. Denman, et al., Chem. Soc. Rev. 42 (2013) 6634–6654.
doi: 10.1039/c3cs60044k
J. Yu, M. Gaedke, F. Schaufelberger, Eur. J. Org. Chem. 26 (2022) e202201130.
W. Drożdż, A. Ciesielski, A.R. Stefankiewicz, Angew. Chem. Int. Ed. 62 (2023) e202307552.
F.B.L. Cougnon, A.R. Stefankiewicz, S. Ulrich, Chem. Sci. 15 (2024) 879–895.
doi: 10.1039/d3sc05343a
K. Acharyya, P.S. Mukherjee, Angew. Chem. Int. Ed. 58 (2019) 8640–8653.
doi: 10.1002/anie.201900163
M.E. Belowich, J.F. Stoddart, Chem. Soc. Rev. 41 (2012) 2003–2024.
doi: 10.1039/c2cs15305j
X. Cao, Y. Jin, H. Wang, et al., Chin. Chem. Lett. 35 (2024) 109201.
Y.L. Lai, H.J. Zhang, J. Su, et al., Chin. Chem. Lett. 34 (2023) 107686.
Y. Pang, M. Wang, N.-H. Yang, et al., Chin. Chem. Lett. 35 (2024) 109575.
K. Su, W. Wang, S. Du, et al., J. Am. Chem. Soc. 142 (2020) 18060–18072.
doi: 10.1021/jacs.0c07367
Q. Chen, Z. Li, Y. Lei, et al., Nat. Commun. 14 (2023) 4627.
A.U. Malik, F. Gan, C. Shen, et al., J. Am. Chem. Soc. 140 (2018) 2769–2772.
doi: 10.1021/jacs.7b13512
L. Feng, Y.X. Tan, E.S.M. El-Sayed, et al., CCS Chem. 6 (2024) 2264–2274.
doi: 10.31635/ccschem.024.202303625
T. Hasell, X. Wu, J.T. Jones, et al., Nat. Chem. 2 (2010) 750–755.
doi: 10.1038/nchem.739
S. Xu, P. Li, Z.-Y. Li, et al., CCS Chem. 3 (2021) 1838–1850.
doi: 10.31635/ccschem.020.202000360
P. Li, S. Xu, C. Yu, et al., Angew. Chem. Int. Ed. 59 (2020) 7113–7121.
doi: 10.1002/anie.202000442
Z. Sun, P. Li, S. Xu, et al., J. Am. Chem. Soc. 142 (2020) 10833–10840.
doi: 10.1021/jacs.0c03330
P. Li, Z. Sun, J. Chen, et al., J. Am. Chem. Soc. 144 (2022) 1342–1350.
doi: 10.1021/jacs.1c11452
C. Chen, S. Zhang, Acc. Chem. Res. 58 (2025) 583–598.
doi: 10.1021/acs.accounts.4c00754
L. Chen, Z. Chen, W. Wang, et al., J. Am. Chem. Soc. 146 (2024) 30303–30313.
doi: 10.1021/jacs.4c10104
W. Wang, S. Zhou, X. Yu, et al., CCS Chem. 6 (2024) 2084–2109.
doi: 10.31635/ccschem.024.202404398
D. Wang, L. Zhang, Y. Zhao, J. Org. Chem. 87 (2022) 2767–2772.
doi: 10.1021/acs.joc.1c02688
P. Wagner, F. Rominger, J.H. Gross, et al., Angew. Chem. Int. Ed. 62 (2023) e202217251.
B.P. Benke, T. Kirschbaum, J. Graf, et al., Nat. Chem. 15 (2023) 413–423.
doi: 10.1038/s41557-022-01094-w
T. Jiao, G. Wu, Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 18350–18367.
doi: 10.1002/anie.201910739
M. Yang, F. Qiu, E.-S.M. El-Sayed, et al., Chem. Sci. 12 (2021) 13307–13315.
doi: 10.1039/d1sc04531h
O. Vestrheim, M.E. Schenkelberg, Q. Dai, et al., Org. Chem. Front. 10 (2023) 3965–3974.
doi: 10.1039/d3qo00480e
H. Li, H. Zhang, A.D. Lammer, et al., Nat. Chem. 7 (2015) 1003–1008.
doi: 10.1038/nchem.2392
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
A.P. Côté, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
S.M. Elbert, N.I. Regenauer, D. Schindler, et al., Chem. Eur. J. 24 (2018) 11438–11443.
doi: 10.1002/chem.201802123
M. Rondelli, S. Delgado-Hernández, A.H. Daranas, et al., Chem. Sci. 14 (2023) 12953–12960.
doi: 10.1039/d3sc02920d
S. Klotzbach, F. Beuerle, Angew. Chem. Int. Ed. 54 (2015) 10356–10360.
doi: 10.1002/anie.201502983
S. Ivanova, E. Koster, J.J. Holstein, et al., Angew. Chem. Int. Ed. 60 (2021) 17455–17463.
doi: 10.1002/anie.202102982
K. Ono, K. Johmoto, N. Yasuda, et al., J. Am. Chem. Soc. 137 (2015) 7015–7018.
doi: 10.1021/jacs.5b02716
N. Schäfer, L. Glanz, A. Lützen, et al., Org. Chem. Front. 12 (2025) 1763–1771.
doi: 10.1039/d4qo02012j
G. Zhang, O. Presly, F. White, et al., Angew. Chem. Int. Ed. 53 (2014) 1516–1520.
doi: 10.1002/anie.201308924
G. Zhang, O. Presly, F. White, et al., Angew. Chem. Int. Ed. 53 (2014) 5126–5130.
doi: 10.1002/anie.201400285
S. Huang, Z. Lei, Y. Jin, et al., Chem. Sci. 12 (2021) 9591–9606.
doi: 10.1039/d1sc01881g
A. Fürstner, J. Am. Chem. Soc. 143 (2021) 15538–15555.
doi: 10.1021/jacs.1c08040
M. Cui, G. Jia, J. Am. Chem. Soc. 144 (2022) 12546–12566.
doi: 10.1021/jacs.2c01192
C. Zhang, Q. Wang, H. Long, et al., J. Am. Chem. Soc. 133 (2011) 20995–21001.
doi: 10.1021/ja210418t
Q. Wang, C. Zhang, B.C. Noll, et al., Angew. Chem. Int. Ed. 53 (2014) 10663–10667.
doi: 10.1002/anie.201404880
B. Bishop, S. Huang, H. Chen, et al., Chin. Chem. Lett. 35 (2024) 109966.
Q. Wang, C. Yu, H. Long, et al., Angew. Chem. Int. Ed. 54 (2015) 7550–7554.
doi: 10.1002/anie.201501679
Q. Wang, C. Yu, C. Zhang, et al., Chem. Sci. 7 (2016) 3370–3376.
J.R.J. Maynard, S.M. Goldup, Chem 6 (2020) 1914–1932.
P. Montes-Tolentino, A.S. Mikherdov, C. Drechsler, et al., Angew. Chem. Int. Ed. 64 (2025) e202423810.
S. Datta, Y. Kato, S. Higashiharaguchi, et al., Nature 583 (2020) 400–405.
doi: 10.1038/s41586-020-2445-z
Q. Wu, P.M. Rauscher, X. Lang, et al., Science 358 (2017) 1434–1439.
doi: 10.1126/science.aap7675
W. Wang, Z. Chen, S. Zhang, J. Am. Chem. Soc. 147 (2025) 20082–20091.
doi: 10.1021/jacs.5c05684
L. Cheng, C. Liang, W. Liu, et al., J. Am. Chem. Soc. 142 (2020) 16218–16222.
doi: 10.1021/jacs.0c08117
T. Li, Y. Pan, L. Ding, et al., Chem. Synth. 4 (2024) 35.
R. Wang, Y. Liang, J. Rebek, et al., Chin. Chem. Lett. 35 (2024) 109228.
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Qunpeng Duan , Qiaona Zhang , Jiayuan Zhang , Shihao Lin , Tangxin Xiao , Leyong Wang . Artificial light-harvesting systems based on supramolecular polymers ✩. Chinese Chemical Letters, 2025, 36(12): 111421-. doi: 10.1016/j.cclet.2025.111421
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Xinhui Fan , Yonghao Fan , Yuli Dang , Puhui Xie , Xin Li , Zhanqi Cao , Song Jiang , Lijie Liu , Xin Zheng , Lixia Xie , Caoyuan Niu , Guoxing Liu , Yong Chen . Logically ordered control of organic room-temperature long-lived supramolecular luminophors. Chinese Chemical Letters, 2025, 36(8): 110648-. doi: 10.1016/j.cclet.2024.110648
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102