Citation: Jingying Wang, Jianhui Zhao, Shaopo Wang, Jingjie Yu, Ning Li. Single-atom catalysts for CO2-to-methanol conversion: A critical review[J]. Chinese Chemical Letters, ;2026, 37(2): 111859. doi: 10.1016/j.cclet.2025.111859 shu

Single-atom catalysts for CO2-to-methanol conversion: A critical review

    * Corresponding authors.
    E-mail addresses: zhaojianhui@tcu.edu.cn (J. Zhao), liningec@tju.edu.cn (N. Li).
  • Received Date: 27 March 2025
    Revised Date: 7 August 2025
    Accepted Date: 17 September 2025
    Available Online: 18 September 2025

Figures(3)

  • Catalytic CO2-to-methanol conversion presents a synergistic approach for concurrent greenhouse gas abatement and sustainable energy carrier synthesis. Single-atom catalysts (SACs) with maximized atomic utilization, tailored electronic configurations and unique metal-support interactions, exhibit superior performance in CO2 activation and methanol synthesis. This review systematically compares reaction mechanisms and pathways across thermal, photocatalytic and electrocatalytic systems, emphasizing structure-activity relationships governed by active sites, coordination microenvironments and support functionalities. Through case studies of representative SACs, we elucidate how metal-support synergies dictate intermediate binding energetics and methanol selectivity. A critical analysis of reaction parameters (e.g., temperature, pressure) reveals condition-dependent catalytic behaviors in thermal system, with fewer studies in photo/electrocatalytic systems identified as key knowledge gaps. While thermal catalysis achieves industrially viable methanol yields, the scalability is constrained by energy-intensive operation and catalyst sintering. Conversely, photo/electrocatalytic routes offer renewable energy integration but suffer from inefficient charge dynamics and mass transport limitations. To address the challenges, we propose strategic research priorities on precise design of active sites, synergy of multiple technological pathways, development of intelligent catalytic systems and diverse CO2 feedstock compatibility. These insights establish a framework for developing next-generation SACs, offering both theoretical foundations and technological blueprints for developing carbon-negative catalytic technologies.
  • 加载中
    1. [1]

      H. Akbar, M.S. Javed, S.T. Iqbal, et al., J. Korean Ceram. Soc. 61 (2024) 367–390.  doi: 10.1007/s43207-024-00365-1

    2. [2]

      J. Ma, N. Sun, X. Zhang, et al., Catal. Today 148 (2009) 221–231.

    3. [3]

      S. Sorcar, Y. Hwang, J. Lee, et al., Energy Environ. Sci. 12 (2019) 2685–2696.  doi: 10.1039/c9ee00734b

    4. [4]

      E. Gong, S. Ali, C.B. Hiragond, et al., Energy Environ. Sci. 15 (2022) 880–937.  doi: 10.1039/d1ee02714j

    5. [5]

      W. Ma, X. He, W. Wang, et al., Chem. Soc. Rev. 50 (2021) 12897–12914.  doi: 10.1039/d1cs00535a

    6. [6]

      X. Gao, B. Guo, C. Guo, et al., ACS Appl. Mater. Interfaces 12 (2020) 24059–24065.  doi: 10.1021/acsami.0c05631

    7. [7]

      X. Sun, X. Kang, Q. Zhu, et al., Chem. Sci. 7 (2016) 2883–2887.

    8. [8]

      M. Li, P. Li, K. Chang, et al., Chem. Commun. 51 (2015) 7645–7648.

    9. [9]

      S. Zhao, S. Guo, C. Zhu, et al., RSC Adv. 7 (2017) 1376–1381.

    10. [10]

      S. Xu, R. Xu, Y. Zhu, et al., J. Mater. Chem. A 12 (2024) 17628–17641.  doi: 10.1039/d4ta01556h

    11. [11]

      J. Jia, X. Hao, Y. Chang, et al., J. Colloid Interface Sci. 586 (2021) 491–497.

    12. [12]

      H. Wang, S. Cheng, X. Cai, et al., Catal. Commun. 162 (2022) 106372.

    13. [13]

      H. Song, J.T. Song, B. Kim, et al., Appl. Catal. B: Environ. 272 (2020) 119049.

    14. [14]

      Y. Mao, M. Zhang, G. Zhai, et al., Adv. Sci. 11 (2024) 2401933.

    15. [15]

      J. Li, R. Cai, H. Mu, et al., ACS Catal. 14 (2024) 3266–3277.

    16. [16]

      S. Wang, X. Bai, Q. Li, et al., Nanoscale Horiz. 6 (2021) 661–668.  doi: 10.1039/d1nh00196e

    17. [17]

      X. Zou, A. Li, C. Ma, et al., Chem. Eng. J. 468 (2023) 143606.

    18. [18]

      D. Zeng, H. Wang, X. Zhu, et al., Chem. Eng. J. 451 (2023) 138801.

    19. [19]

      J. Li, Y. He, L. Tan, et al., Nat. Catal. 1 (2018) 787–793.  doi: 10.1038/s41929-018-0144-z

    20. [20]

      G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 2636–2639.  doi: 10.1002/anie.200462121

    21. [21]

      G.A. Olah, G.K.S. Prakash, A. Goeppert, J. Am. Chem. Soc. 133 (2011) 12881–12898.  doi: 10.1021/ja202642y

    22. [22]

      I. Ganesh, Renew. Sustain. Energy Rev. 31 (2014) 221–257.

    23. [23]

      L. Liu, M. Li, F. Chen, et al., Small Struct. 4 (2023) 2200188.

    24. [24]

      X. Yan, C. Duan, S. Yu, et al., Renew. Sustain. Energy Rev. 190 (2024) 114086.

    25. [25]

      Q. Wang, X. Zheng, J. Wu, et al., Small Struct. 3 (2022) 2200059.

    26. [26]

      Z. Shang, X. Feng, G. Chen, et al., Small 19 (2023) 2304975.

    27. [27]

      H. Zhao, X. Liu, C. Zeng, et al., J. Am. Chem. Soc. 146 (2024) 23649–23662.  doi: 10.1021/jacs.4c08523

    28. [28]

      X. Guan, S.S. Mao, S. Shen, ChemNanoMat 7 (2021) 873–880.  doi: 10.1002/cnma.202100103

    29. [29]

      L. Gloag, S.V. Somerville, J.J. Gooding, Nat. Rev. Mater. 9 (2024) 173–189.  doi: 10.1038/s41578-023-00633-2

    30. [30]

      J. Xiao, T. Zhang, Q. Wang, Curr. Opin. Green Sustain. Chem. 37 (2022) 100660.

    31. [31]

      W. Hu, H. Yang, C. Wang, RSC Adv. 13 (2023) 20889–20908.  doi: 10.1039/d3ra03462c

    32. [32]

      C.B. Hiragond, N.S. Powar, J. Lee, et al., Small 18 (2022) 2201428.

    33. [33]

      F. Wang, Y. Liu, M. Peng, et al., ACS Catal. 14 (2024) 16434–16458.  doi: 10.1021/acscatal.4c06065

    34. [34]

      Z. Wang, G. Zou, J.H. Park, et al., Sci. China Mater. 67 (2024) 397–423.  doi: 10.1007/s40843-023-2698-5

    35. [35]

      S. Wang, L. Wang, D. Wang, et al., Energy Environ. Sci. 16 (2023) 2759–2803.  doi: 10.1039/d3ee00037k

    36. [36]

      Q. Sun, C. Jia, Y. Zhao, et al., Chin. J. Catal. 43 (2022) 1547–1597.

    37. [37]

      J. Zhang, W. Cai, F.X. Hu, et al., Chem. Sci. 12 (2021) 6800–6819.  doi: 10.1039/d1sc01375k

    38. [38]

      C. Chen, J. Li, X. Tan, et al., EES Catal. 2 (2024) 71–93.  doi: 10.1039/d3ey00150d

    39. [39]

      K. Atsonios, K.D. Panopoulos, E. Kakaras, Int. J. Hydrog. Energy 41 (2016) 2202–2214.

    40. [40]

      N.H.M. Dostagir, C. Thompson, H. Kobayashi, et al., Catal. Sci. Technol. 10 (2020) 8196–8202.  doi: 10.1039/d0cy01789b

    41. [41]

      J. Zhong, X. Yang, Z. Wu, et al., Chem. Soc. Rev. 49 (2020) 1385–1413.  doi: 10.1039/c9cs00614a

    42. [42]

      R.P. Ye, J. Ding, W. Gong, et al., Nat. Commun. 10 (2019) 5698.

    43. [43]

      L.C. Grabow, M. Mavrikakis, ACS Catal. 1 (2011) 365–384.  doi: 10.1021/cs200055d

    44. [44]

      Y. Li, S.H. Chan, Q. Sun, Nanoscale 7 (2015) 8663–8683.

    45. [45]

      Y. Yang, J. Evans, J.A. Rodriguez, et al., Phys. Chem. Chem. Phys. 12 (2010) 9909–9917.  doi: 10.1039/c001484b

    46. [46]

      Y. Kim, T.S.B. Trung, S. Yang, et al., ACS Catal. 6 (2016) 1037–1044.  doi: 10.1021/acscatal.5b02083

    47. [47]

      J.A. Rodriguez, J. Evans, L. Feria, et al., J. Catal. 307 (2013) 162–169.

    48. [48]

      L. Liu, X. Wang, S. Lu, et al., N. J. Chem. 46 (2022) 5043–5051.  doi: 10.1039/d1nj05938f

    49. [49]

      Y. Yang, C.A. Mims, D.H. Mei, et al., J. Catal. 298 (2013) 10–17.

    50. [50]

      Y.F. Zhao, Y. Yang, C. Mims, et al., J. Catal. 281 (2011) 199–211.

    51. [51]

      W. Cui, F. Wang, X. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202407733.

    52. [52]

      X. Han, T. Xiao, M. Li, et al., ACS Catal. 13 (2023) 13679–13690.  doi: 10.1021/acscatal.3c03431

    53. [53]

      T. Yang, X. Mao, Y. Zhang, et al., Nat. Commun. 12 (2021) 6022.

    54. [54]

      H. Li, L. Wang, Y. Dai, et al., Nat. Nanotechnol. 13 (2018) 411–417.  doi: 10.1038/s41565-018-0089-z

    55. [55]

      X. Jia, K. Sun, J. Wang, et al., J. Energy Chem. 50 (2020) 409–415.

    56. [56]

      A. Han, J. Ding, Q. Zhong, Colloid Surf. A 641 (2022) 128535.

    57. [57]

      S. Zhou, W. Ma, U. Anjum, et al., Nat. Commun. 14 (2023) 5872.

    58. [58]

      J. Chen, Y. Wang, F. Wang, Y. Li, Angew. Chem. 62 (2023) e202218115.

    59. [59]

      Y. Shi, Q. Gu, Y. Zhao, et al., Chem. Eng. J. 485 (2024) 150093.

    60. [60]

      K. Lee, U. Anjum, T.P. Araújo, et al., Appl. Catal. B: Environ. 304 (2022) 120994.

    61. [61]

      Z. Han, C. Tang, J. Wang, et al., J. Catal. 394 (2021) 236–244.

    62. [62]

      M.S. Frei, C. Mondelli, R. García-Muelas, et al., Nat. Commun. 10 (2019) 3377.

    63. [63]

      J. Zhu, F. Cannizzaro, L. Liu, et al., ACS Catal. 11 (2021) 11371–11384.  doi: 10.1021/acscatal.1c03170

    64. [64]

      C. Shen, K. Sun, R. Zou, et al., ACS Catal. 12 (2022) 12658–12669.  doi: 10.1021/acscatal.2c03709

    65. [65]

      T. Len, M. Bahri, O. Ersen, et al., Green Chem. 23 (2021) 7259–7268.  doi: 10.1039/d1gc01761f

    66. [66]

      Y. Chai, B. Qin, B. Li, et al., Natl. Sci. Rev. 10 (2023) nwad043.

    67. [67]

      L.L. Ling, X. Guan, X. Liu, et al., Natl. Sci. Rev. 11 (2024) nwae114.

    68. [68]

      A. Rosado, I.-M. Popa, A.A. Markeb, et al., J. Mater. Chem. A 12 (2024) 21758–21771.  doi: 10.1039/d4ta03268c

    69. [69]

      J. Chen, D. Zhang, B. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202401168.

    70. [70]

      N.H.M. Dostagir, C.R. Tomuschat, K. Oshiro, et al., JACS Au 4 (2024) 1048–1058.  doi: 10.1021/jacsau.3c00789

    71. [71]

      R. Gaikwad, A. Bansode, A. Urakawa, J. Catal. 343 (2016) 127–132.

    72. [72]

      W. Wu, Y. Wang, L. Luo, et al., Angew. Chem. Int. Ed. 61 (2022) e202213024.

    73. [73]

      D. Xu, X. Hong, G. Liu, Chin. J. Catal. 393 (2022) 207–214.  doi: 10.3390/land11020207

    74. [74]

      T.P. Araújo, J. Morales-Vidal, T. Zou, et al., Adv. Energy Mater. 13 (2023) 2204122.

    75. [75]

      Y. Chen, H. Li, W. Zhao, et al., Nat. Commun. 10 (2019) 1885.

    76. [76]

      D. Li, M. Kassymova, X. Cai, et al., Coord. Chem. Rev. 412 (2020) 213262.

    77. [77]

      W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26 (2014) 4607–4626.  doi: 10.1002/adma.201400087

    78. [78]

      M. Tahir, N.S. Amin, Renew. Sustain. Energy Rev. 25 (2013) 560–579.

    79. [79]

      J. Wu, Y. Huang, W. Ye, et al., Adv. Sci. 4 (2017) 1700194.

    80. [80]

      X. Li, J. Wen, J. Low, et al., Sci. China Mater. 57 (2014) 70–100.  doi: 10.1007/s40843-014-0003-1

    81. [81]

      X. Jiang, L. Zhang, H. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 23112–23116.  doi: 10.1002/anie.202011495

    82. [82]

      S.K. Kaiser, Z. Chen, D. Faust Akl, et al., Chem. Rev. 120 (2020) 11703–11809.  doi: 10.1021/acs.chemrev.0c00576

    83. [83]

      Z. Li, B. Li, Y. Hu, et al., Small Struct. 3 (2022) 2200041.

    84. [84]

      W. Liu, L. Cao, W. Cheng, et al., Angew. Chem. Int. Ed. 56 (2017) 9312–9317.  doi: 10.1002/anie.201704358

    85. [85]

      B.B. Sarma, F. Maurer, D.E. Doronkin, et al., Chem. Rev. 123 (2023) 379–444.  doi: 10.1021/acs.chemrev.2c00495

    86. [86]

      J. Wu, H. Lu, X. Zhang, et al., Chem. Commun. 52 (2016) 5027–5029.

    87. [87]

      D. Adekoya, M. Tahir, N.A.S. Amin, Renew. Sustain. Energy Rev. 116 (2019) 109389.

    88. [88]

      A. Kumar, P. Raizada, V.K. Thakur, et al., Chem. Eng. Sci. 230 (2021) 116219.

    89. [89]

      T. Qu, S. Wei, Z. Xiong, et al., Fuel Process. Technol. 251 (2023) 107933.

    90. [90]

      A. Francis, S.S. Priya, S.Harish Kumar, et al., J. CO2 Util. 47 (2021) 101515.

    91. [91]

      X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9 (2016) 2177–2196.

    92. [92]

      M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594 (2006) 1–19.

    93. [93]

      J. Fu, K. Jiang, X. Qiu, et al., Mater. Today 32 (2020) 222–243.

    94. [94]

      S. Kattel, P.J. Ramírez, J.G. Chen, et al., Science 355 (2017) 1296–1299.  doi: 10.1126/science.aal3573

    95. [95]

      Y. Yang, D. Mei, C.H.F. Peden, et al., ACS Catal. 5 (2015) 7328–7337.  doi: 10.1021/acscatal.5b02060

    96. [96]

      A. Li, E. Kan, S. Chen, et al., Small 18 (2022) 2200073.

    97. [97]

      G. Wang, C.T. He, R. Huang, et al., J. Am. Chem. Soc. 142 (2020) 19339–19345.  doi: 10.1021/jacs.0c09599

    98. [98]

      M. Ma, Z. Huang, L. Li, et al., Appl. Catal. B: Environ. 330 (2023) 122626.

    99. [99]

      P. Sharma, S. Kumar, O. Tomanec, et al., Small 17 (2021) 2006478.

    100. [100]

      C.S. Vennapoosa, S. Varangane, B.M. Abraham, et al., J. Phys. Chem. Lett. 14 (2023) 11400–11411.  doi: 10.1021/acs.jpclett.3c02347

    101. [101]

      L. Su, P. Wang, X. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 21261–21266.  doi: 10.1002/anie.202108937

    102. [102]

      Z.S. Zhu, S. Zhong, C. Cheng, et al., Chem. Rev. 124 (2024) 11348–11434.  doi: 10.1021/acs.chemrev.4c00276

    103. [103]

      K. Wang, M. Cheng, F. Xia, et al., Small 19 (2023) 2207581.

    104. [104]

      P. Li, Z. Qi, D. Yan, et al., Angew. Chem. Int. Ed. 63 (2024) e202411000.

    105. [105]

      M. Ma, Z. Huang, D.E. Doronkin, et al., Appl. Catal. B: Environ. 300 (2022) 120695.

    106. [106]

      X. Liu, C. Zhu, M. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202412048.

    107. [107]

      K. Mori, H. Yamashita, M. Anpo, RSC Adv. 2 (2012) 3165.  doi: 10.1039/c2ra01332k

    108. [108]

      G. Mele, C. Annese, L. D’Accolti, et al., Molecules 20 (2014) 396–415.  doi: 10.3390/molecules20010396

    109. [109]

      I.H. Tseng, W.C. Chang, J. C.S.Wu, Appl. Catal. B: Environ. 37 (2002) 37–48.

    110. [110]

      K. Kočí, L. Obalová, Z. Lacný, Chem. Pap. 62 (2008) 1–9.  doi: 10.2478/s11696-007-0072-x

    111. [111]

      S. Kaneco, Y. Shimizu, K. Ohta, et al., J. Photochem. Photobiol. A: Chem. 115 (1998) 223–226.

    112. [112]

      J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Green Chem. 17 (2015) 2304–2324.

    113. [113]

      Z. Zhou, S. Sun, Natl. Sci. Rev. 4 (2017) 155–156.  doi: 10.1093/nsr/nww083

    114. [114]

      K. P.Kuhl, T. Hatsukade, E. R.Cave, et al., J. Am. Chem. Soc. 136 (2014) 14107–14113.

    115. [115]

      G. A. Olah, A. Goeppert, G.K.S. Prakash, et al., J. Org. Chem. 74 (2009) 487–498.  doi: 10.1021/jo801260f

    116. [116]

      A. Liu, M. Gao, X. Ren, et al., J. Mater. Chem. A 8 (2020) 3541–3562.  doi: 10.1039/c9ta11966c

    117. [117]

      X. Feng, Z. Shang, R. Qin, et al., Acta Phys. Chim. Sin. 40 (2024) 2305005.

    118. [118]

      H. Yang, Y. Wu, G. Li, et al., J. Am. Chem. Soc. 141 (2019) 12717–12723.  doi: 10.1021/jacs.9b04907

    119. [119]

      S. Kong, X. Lv, X. Wang, et al., Nat. Catal. 6 (2023) 6–15.

    120. [120]

      W. Guo, S. Liu, X. Tan, et al., Angew. Chem. Int. Ed. 60 (2021) 21979–21987.  doi: 10.1002/anie.202108635

    121. [121]

      Q. Zhao, C. Zhang, R. Hu, et al., ACS Nano 15 (2021) 4927–4936.  doi: 10.1021/acsnano.0c09755

    122. [122]

      S. Dutta, S.K. Pati, Phys. Chem. Chem. Phys. 25 (2023) 15788–15797.  doi: 10.1039/d3cp00933e

    123. [123]

      J. Liu, D. Yang, Y. Zhou, et al., Angew. Chem. Int. Ed. 60 (2021) 14473–14479.  doi: 10.1002/anie.202103398

    124. [124]

      J. Yuan, Y. Chen, F. Liu, et al., Catal. Commun. 177 (2023) 106640.

    125. [125]

      G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.  doi: 10.1039/d0cs00071j

    126. [126]

      L. Hu, X. Sai, X. Liu, et al., ChemCatChem 16 (2024) e202301335.

    127. [127]

      G. Feng, W. Chen, B. Wang, et al., Chem. Asian J. 13 (2018) 1992–2008.  doi: 10.1002/asia.201800637

  • 加载中
    1. [1]

      Manqi Zhao Heting Hou Dehua He Huimin Liu Shaoyuan Sun Dezheng Li Chao Wang Yiming Lei . Vanadium-based catalysts for propane direct dehydrogenation to propylene: Modification strategies and research direction. Chinese Journal of Structural Chemistry, 2025, 44(11): 100709-100709. doi: 10.1016/j.cjsc.2025.100709

    2. [2]

      Jinshu HuangZhuochun HuangTengyu LiuYu WenJili YuanSong YangHu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179

    3. [3]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    4. [4]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    5. [5]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

    6. [6]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    7. [7]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    8. [8]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    9. [9]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    10. [10]

      Giulia BrufaniEdoardo BazzicaYanlong GuFrancesco MaurielloLuigi Vaccaro . Csp2–H functionalization as an efficient catalytic route to carbazoles. Chinese Chemical Letters, 2026, 37(1): 111545-. doi: 10.1016/j.cclet.2025.111545

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Jingting HeMan DongYang ZhaoJianxia GuChunyi SunDongxu CuiXiaohui YaoFanfei MengChunjing TaoXinlong WangZhongmin Su . Single atoms anchored on zirconium-organic cage for efficient carbon dioxide photoreduction. Chinese Chemical Letters, 2026, 37(1): 111253-. doi: 10.1016/j.cclet.2025.111253

    13. [13]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    14. [14]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    17. [17]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    18. [18]

      Li-Min CuiWei-Hui FangJian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386

    19. [19]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    20. [20]

      Chunhui GaoLurong LiGuanwei PengJinni ShenWenxin DaiZizhong Zhang . Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flower-like microspheres. Acta Physico-Chimica Sinica, 2026, 42(3): 100165-0. doi: 10.1016/j.actphy.2025.100165

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return