Single-atom catalysts for CO2-to-methanol conversion: A critical review
-
* Corresponding authors.
E-mail addresses: zhaojianhui@tcu.edu.cn (J. Zhao), liningec@tju.edu.cn (N. Li).
Citation:
Jingying Wang, Jianhui Zhao, Shaopo Wang, Jingjie Yu, Ning Li. Single-atom catalysts for CO2-to-methanol conversion: A critical review[J]. Chinese Chemical Letters,
;2026, 37(2): 111859.
doi:
10.1016/j.cclet.2025.111859
H. Akbar, M.S. Javed, S.T. Iqbal, et al., J. Korean Ceram. Soc. 61 (2024) 367–390.
doi: 10.1007/s43207-024-00365-1
J. Ma, N. Sun, X. Zhang, et al., Catal. Today 148 (2009) 221–231.
S. Sorcar, Y. Hwang, J. Lee, et al., Energy Environ. Sci. 12 (2019) 2685–2696.
doi: 10.1039/c9ee00734b
E. Gong, S. Ali, C.B. Hiragond, et al., Energy Environ. Sci. 15 (2022) 880–937.
doi: 10.1039/d1ee02714j
W. Ma, X. He, W. Wang, et al., Chem. Soc. Rev. 50 (2021) 12897–12914.
doi: 10.1039/d1cs00535a
X. Gao, B. Guo, C. Guo, et al., ACS Appl. Mater. Interfaces 12 (2020) 24059–24065.
doi: 10.1021/acsami.0c05631
X. Sun, X. Kang, Q. Zhu, et al., Chem. Sci. 7 (2016) 2883–2887.
M. Li, P. Li, K. Chang, et al., Chem. Commun. 51 (2015) 7645–7648.
S. Zhao, S. Guo, C. Zhu, et al., RSC Adv. 7 (2017) 1376–1381.
S. Xu, R. Xu, Y. Zhu, et al., J. Mater. Chem. A 12 (2024) 17628–17641.
doi: 10.1039/d4ta01556h
J. Jia, X. Hao, Y. Chang, et al., J. Colloid Interface Sci. 586 (2021) 491–497.
H. Wang, S. Cheng, X. Cai, et al., Catal. Commun. 162 (2022) 106372.
H. Song, J.T. Song, B. Kim, et al., Appl. Catal. B: Environ. 272 (2020) 119049.
Y. Mao, M. Zhang, G. Zhai, et al., Adv. Sci. 11 (2024) 2401933.
J. Li, R. Cai, H. Mu, et al., ACS Catal. 14 (2024) 3266–3277.
S. Wang, X. Bai, Q. Li, et al., Nanoscale Horiz. 6 (2021) 661–668.
doi: 10.1039/d1nh00196e
X. Zou, A. Li, C. Ma, et al., Chem. Eng. J. 468 (2023) 143606.
D. Zeng, H. Wang, X. Zhu, et al., Chem. Eng. J. 451 (2023) 138801.
J. Li, Y. He, L. Tan, et al., Nat. Catal. 1 (2018) 787–793.
doi: 10.1038/s41929-018-0144-z
G.A. Olah, Angew. Chem. Int. Ed. 44 (2005) 2636–2639.
doi: 10.1002/anie.200462121
G.A. Olah, G.K.S. Prakash, A. Goeppert, J. Am. Chem. Soc. 133 (2011) 12881–12898.
doi: 10.1021/ja202642y
I. Ganesh, Renew. Sustain. Energy Rev. 31 (2014) 221–257.
L. Liu, M. Li, F. Chen, et al., Small Struct. 4 (2023) 2200188.
X. Yan, C. Duan, S. Yu, et al., Renew. Sustain. Energy Rev. 190 (2024) 114086.
Q. Wang, X. Zheng, J. Wu, et al., Small Struct. 3 (2022) 2200059.
Z. Shang, X. Feng, G. Chen, et al., Small 19 (2023) 2304975.
H. Zhao, X. Liu, C. Zeng, et al., J. Am. Chem. Soc. 146 (2024) 23649–23662.
doi: 10.1021/jacs.4c08523
X. Guan, S.S. Mao, S. Shen, ChemNanoMat 7 (2021) 873–880.
doi: 10.1002/cnma.202100103
L. Gloag, S.V. Somerville, J.J. Gooding, Nat. Rev. Mater. 9 (2024) 173–189.
doi: 10.1038/s41578-023-00633-2
J. Xiao, T. Zhang, Q. Wang, Curr. Opin. Green Sustain. Chem. 37 (2022) 100660.
W. Hu, H. Yang, C. Wang, RSC Adv. 13 (2023) 20889–20908.
doi: 10.1039/d3ra03462c
C.B. Hiragond, N.S. Powar, J. Lee, et al., Small 18 (2022) 2201428.
F. Wang, Y. Liu, M. Peng, et al., ACS Catal. 14 (2024) 16434–16458.
doi: 10.1021/acscatal.4c06065
Z. Wang, G. Zou, J.H. Park, et al., Sci. China Mater. 67 (2024) 397–423.
doi: 10.1007/s40843-023-2698-5
S. Wang, L. Wang, D. Wang, et al., Energy Environ. Sci. 16 (2023) 2759–2803.
doi: 10.1039/d3ee00037k
Q. Sun, C. Jia, Y. Zhao, et al., Chin. J. Catal. 43 (2022) 1547–1597.
J. Zhang, W. Cai, F.X. Hu, et al., Chem. Sci. 12 (2021) 6800–6819.
doi: 10.1039/d1sc01375k
C. Chen, J. Li, X. Tan, et al., EES Catal. 2 (2024) 71–93.
doi: 10.1039/d3ey00150d
K. Atsonios, K.D. Panopoulos, E. Kakaras, Int. J. Hydrog. Energy 41 (2016) 2202–2214.
N.H.M. Dostagir, C. Thompson, H. Kobayashi, et al., Catal. Sci. Technol. 10 (2020) 8196–8202.
doi: 10.1039/d0cy01789b
J. Zhong, X. Yang, Z. Wu, et al., Chem. Soc. Rev. 49 (2020) 1385–1413.
doi: 10.1039/c9cs00614a
R.P. Ye, J. Ding, W. Gong, et al., Nat. Commun. 10 (2019) 5698.
L.C. Grabow, M. Mavrikakis, ACS Catal. 1 (2011) 365–384.
doi: 10.1021/cs200055d
Y. Li, S.H. Chan, Q. Sun, Nanoscale 7 (2015) 8663–8683.
Y. Yang, J. Evans, J.A. Rodriguez, et al., Phys. Chem. Chem. Phys. 12 (2010) 9909–9917.
doi: 10.1039/c001484b
Y. Kim, T.S.B. Trung, S. Yang, et al., ACS Catal. 6 (2016) 1037–1044.
doi: 10.1021/acscatal.5b02083
J.A. Rodriguez, J. Evans, L. Feria, et al., J. Catal. 307 (2013) 162–169.
L. Liu, X. Wang, S. Lu, et al., N. J. Chem. 46 (2022) 5043–5051.
doi: 10.1039/d1nj05938f
Y. Yang, C.A. Mims, D.H. Mei, et al., J. Catal. 298 (2013) 10–17.
Y.F. Zhao, Y. Yang, C. Mims, et al., J. Catal. 281 (2011) 199–211.
W. Cui, F. Wang, X. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202407733.
X. Han, T. Xiao, M. Li, et al., ACS Catal. 13 (2023) 13679–13690.
doi: 10.1021/acscatal.3c03431
T. Yang, X. Mao, Y. Zhang, et al., Nat. Commun. 12 (2021) 6022.
H. Li, L. Wang, Y. Dai, et al., Nat. Nanotechnol. 13 (2018) 411–417.
doi: 10.1038/s41565-018-0089-z
X. Jia, K. Sun, J. Wang, et al., J. Energy Chem. 50 (2020) 409–415.
A. Han, J. Ding, Q. Zhong, Colloid Surf. A 641 (2022) 128535.
S. Zhou, W. Ma, U. Anjum, et al., Nat. Commun. 14 (2023) 5872.
J. Chen, Y. Wang, F. Wang, Y. Li, Angew. Chem. 62 (2023) e202218115.
Y. Shi, Q. Gu, Y. Zhao, et al., Chem. Eng. J. 485 (2024) 150093.
K. Lee, U. Anjum, T.P. Araújo, et al., Appl. Catal. B: Environ. 304 (2022) 120994.
Z. Han, C. Tang, J. Wang, et al., J. Catal. 394 (2021) 236–244.
M.S. Frei, C. Mondelli, R. García-Muelas, et al., Nat. Commun. 10 (2019) 3377.
J. Zhu, F. Cannizzaro, L. Liu, et al., ACS Catal. 11 (2021) 11371–11384.
doi: 10.1021/acscatal.1c03170
C. Shen, K. Sun, R. Zou, et al., ACS Catal. 12 (2022) 12658–12669.
doi: 10.1021/acscatal.2c03709
T. Len, M. Bahri, O. Ersen, et al., Green Chem. 23 (2021) 7259–7268.
doi: 10.1039/d1gc01761f
Y. Chai, B. Qin, B. Li, et al., Natl. Sci. Rev. 10 (2023) nwad043.
L.L. Ling, X. Guan, X. Liu, et al., Natl. Sci. Rev. 11 (2024) nwae114.
A. Rosado, I.-M. Popa, A.A. Markeb, et al., J. Mater. Chem. A 12 (2024) 21758–21771.
doi: 10.1039/d4ta03268c
J. Chen, D. Zhang, B. Liu, et al., Angew. Chem. Int. Ed. 63 (2024) e202401168.
N.H.M. Dostagir, C.R. Tomuschat, K. Oshiro, et al., JACS Au 4 (2024) 1048–1058.
doi: 10.1021/jacsau.3c00789
R. Gaikwad, A. Bansode, A. Urakawa, J. Catal. 343 (2016) 127–132.
W. Wu, Y. Wang, L. Luo, et al., Angew. Chem. Int. Ed. 61 (2022) e202213024.
D. Xu, X. Hong, G. Liu, Chin. J. Catal. 393 (2022) 207–214.
doi: 10.3390/land11020207
T.P. Araújo, J. Morales-Vidal, T. Zou, et al., Adv. Energy Mater. 13 (2023) 2204122.
Y. Chen, H. Li, W. Zhao, et al., Nat. Commun. 10 (2019) 1885.
D. Li, M. Kassymova, X. Cai, et al., Coord. Chem. Rev. 412 (2020) 213262.
W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26 (2014) 4607–4626.
doi: 10.1002/adma.201400087
M. Tahir, N.S. Amin, Renew. Sustain. Energy Rev. 25 (2013) 560–579.
J. Wu, Y. Huang, W. Ye, et al., Adv. Sci. 4 (2017) 1700194.
X. Li, J. Wen, J. Low, et al., Sci. China Mater. 57 (2014) 70–100.
doi: 10.1007/s40843-014-0003-1
X. Jiang, L. Zhang, H. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 23112–23116.
doi: 10.1002/anie.202011495
S.K. Kaiser, Z. Chen, D. Faust Akl, et al., Chem. Rev. 120 (2020) 11703–11809.
doi: 10.1021/acs.chemrev.0c00576
Z. Li, B. Li, Y. Hu, et al., Small Struct. 3 (2022) 2200041.
W. Liu, L. Cao, W. Cheng, et al., Angew. Chem. Int. Ed. 56 (2017) 9312–9317.
doi: 10.1002/anie.201704358
B.B. Sarma, F. Maurer, D.E. Doronkin, et al., Chem. Rev. 123 (2023) 379–444.
doi: 10.1021/acs.chemrev.2c00495
J. Wu, H. Lu, X. Zhang, et al., Chem. Commun. 52 (2016) 5027–5029.
D. Adekoya, M. Tahir, N.A.S. Amin, Renew. Sustain. Energy Rev. 116 (2019) 109389.
A. Kumar, P. Raizada, V.K. Thakur, et al., Chem. Eng. Sci. 230 (2021) 116219.
T. Qu, S. Wei, Z. Xiong, et al., Fuel Process. Technol. 251 (2023) 107933.
A. Francis, S.S. Priya, S.Harish Kumar, et al., J. CO2 Util. 47 (2021) 101515.
X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9 (2016) 2177–2196.
M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594 (2006) 1–19.
J. Fu, K. Jiang, X. Qiu, et al., Mater. Today 32 (2020) 222–243.
S. Kattel, P.J. Ramírez, J.G. Chen, et al., Science 355 (2017) 1296–1299.
doi: 10.1126/science.aal3573
Y. Yang, D. Mei, C.H.F. Peden, et al., ACS Catal. 5 (2015) 7328–7337.
doi: 10.1021/acscatal.5b02060
A. Li, E. Kan, S. Chen, et al., Small 18 (2022) 2200073.
G. Wang, C.T. He, R. Huang, et al., J. Am. Chem. Soc. 142 (2020) 19339–19345.
doi: 10.1021/jacs.0c09599
M. Ma, Z. Huang, L. Li, et al., Appl. Catal. B: Environ. 330 (2023) 122626.
P. Sharma, S. Kumar, O. Tomanec, et al., Small 17 (2021) 2006478.
C.S. Vennapoosa, S. Varangane, B.M. Abraham, et al., J. Phys. Chem. Lett. 14 (2023) 11400–11411.
doi: 10.1021/acs.jpclett.3c02347
L. Su, P. Wang, X. Ma, et al., Angew. Chem. Int. Ed. 60 (2021) 21261–21266.
doi: 10.1002/anie.202108937
Z.S. Zhu, S. Zhong, C. Cheng, et al., Chem. Rev. 124 (2024) 11348–11434.
doi: 10.1021/acs.chemrev.4c00276
K. Wang, M. Cheng, F. Xia, et al., Small 19 (2023) 2207581.
P. Li, Z. Qi, D. Yan, et al., Angew. Chem. Int. Ed. 63 (2024) e202411000.
M. Ma, Z. Huang, D.E. Doronkin, et al., Appl. Catal. B: Environ. 300 (2022) 120695.
X. Liu, C. Zhu, M. Li, et al., Angew. Chem. Int. Ed. 63 (2024) e202412048.
K. Mori, H. Yamashita, M. Anpo, RSC Adv. 2 (2012) 3165.
doi: 10.1039/c2ra01332k
G. Mele, C. Annese, L. D’Accolti, et al., Molecules 20 (2014) 396–415.
doi: 10.3390/molecules20010396
I.H. Tseng, W.C. Chang, J. C.S.Wu, Appl. Catal. B: Environ. 37 (2002) 37–48.
K. Kočí, L. Obalová, Z. Lacný, Chem. Pap. 62 (2008) 1–9.
doi: 10.2478/s11696-007-0072-x
S. Kaneco, Y. Shimizu, K. Ohta, et al., J. Photochem. Photobiol. A: Chem. 115 (1998) 223–226.
J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Green Chem. 17 (2015) 2304–2324.
Z. Zhou, S. Sun, Natl. Sci. Rev. 4 (2017) 155–156.
doi: 10.1093/nsr/nww083
K. P.Kuhl, T. Hatsukade, E. R.Cave, et al., J. Am. Chem. Soc. 136 (2014) 14107–14113.
G. A. Olah, A. Goeppert, G.K.S. Prakash, et al., J. Org. Chem. 74 (2009) 487–498.
doi: 10.1021/jo801260f
A. Liu, M. Gao, X. Ren, et al., J. Mater. Chem. A 8 (2020) 3541–3562.
doi: 10.1039/c9ta11966c
X. Feng, Z. Shang, R. Qin, et al., Acta Phys. Chim. Sin. 40 (2024) 2305005.
H. Yang, Y. Wu, G. Li, et al., J. Am. Chem. Soc. 141 (2019) 12717–12723.
doi: 10.1021/jacs.9b04907
S. Kong, X. Lv, X. Wang, et al., Nat. Catal. 6 (2023) 6–15.
W. Guo, S. Liu, X. Tan, et al., Angew. Chem. Int. Ed. 60 (2021) 21979–21987.
doi: 10.1002/anie.202108635
Q. Zhao, C. Zhang, R. Hu, et al., ACS Nano 15 (2021) 4927–4936.
doi: 10.1021/acsnano.0c09755
S. Dutta, S.K. Pati, Phys. Chem. Chem. Phys. 25 (2023) 15788–15797.
doi: 10.1039/d3cp00933e
J. Liu, D. Yang, Y. Zhou, et al., Angew. Chem. Int. Ed. 60 (2021) 14473–14479.
doi: 10.1002/anie.202103398
J. Yuan, Y. Chen, F. Liu, et al., Catal. Commun. 177 (2023) 106640.
G. Wang, J. Chen, Y. Ding, et al., Chem. Soc. Rev. 50 (2021) 4993–5061.
doi: 10.1039/d0cs00071j
L. Hu, X. Sai, X. Liu, et al., ChemCatChem 16 (2024) e202301335.
G. Feng, W. Chen, B. Wang, et al., Chem. Asian J. 13 (2018) 1992–2008.
doi: 10.1002/asia.201800637
Manqi Zhao , Heting Hou , Dehua He , Huimin Liu , Shaoyuan Sun , Dezheng Li , Chao Wang , Yiming Lei . Vanadium-based catalysts for propane direct dehydrogenation to propylene: Modification strategies and research direction. Chinese Journal of Structural Chemistry, 2025, 44(11): 100709-100709. doi: 10.1016/j.cjsc.2025.100709
Jinshu Huang , Zhuochun Huang , Tengyu Liu , Yu Wen , Jili Yuan , Song Yang , Hu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Giulia Brufani , Edoardo Bazzica , Yanlong Gu , Francesco Mauriello , Luigi Vaccaro . Csp2–H functionalization as an efficient catalytic route to carbazoles. Chinese Chemical Letters, 2026, 37(1): 111545-. doi: 10.1016/j.cclet.2025.111545
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Jingting He , Man Dong , Yang Zhao , Jianxia Gu , Chunyi Sun , Dongxu Cui , Xiaohui Yao , Fanfei Meng , Chunjing Tao , Xinlong Wang , Zhongmin Su . Single atoms anchored on zirconium-organic cage for efficient carbon dioxide photoreduction. Chinese Chemical Letters, 2026, 37(1): 111253-. doi: 10.1016/j.cclet.2025.111253
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
Li-Min Cui , Wei-Hui Fang , Jian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Chunhui Gao , Lurong Li , Guanwei Peng , Jinni Shen , Wenxin Dai , Zizhong Zhang . Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flower-like microspheres. Acta Physico-Chimica Sinica, 2026, 42(3): 100165-0. doi: 10.1016/j.actphy.2025.100165