Citation: Feng Zhao, Hongyu Ding, Ting Sun, Chao Shen, Zu-Li Wang, Wei Wei, Dong Yi. Visible-light-promoted multi-component carbene transfer reactions of diazo compounds via ring-opening of cyclic ethers[J]. Chinese Chemical Letters, ;2026, 37(2): 111834. doi: 10.1016/j.cclet.2025.111834 shu

Visible-light-promoted multi-component carbene transfer reactions of diazo compounds via ring-opening of cyclic ethers

    * Corresponding authors.
    E-mail addresses: shenchaozju@zjsru.edu.cn (C. Shen), weiweiqfnu@163.com (W. Wei), yidong@swmu.edu.cn (D. Yi).
    1 These authors contributed equally to this work.
  • Received Date: 19 July 2025
    Revised Date: 1 September 2025
    Accepted Date: 11 September 2025
    Available Online: 13 September 2025

Figures(37)

  • Carbenes as one of the most important class of intermediates have been widely utilized in various organic synthetic transformations. Carbene insertion-initiated ring-opening reactions of cyclic ethers offer a valuable strategy for constructing new carbon-oxygen bonds. In comparison with traditional thermal or metal-mediated carbene transfer reactions, visible-light-promoted multi-component reaction strategy provides a mild and eco-friendly approach to access densely functionalized molecules. Recently, visible-light-induced multi-component carbene transfer reactions of diazo compounds have been rapidly developed and attracted a great deal of research interest of chemists owing to their advantages of simple operation, mild condition, high atom economy and rich structural diversity. This paper summarizes the recent research progress on the visible-light-promoted multi-component carbene transfer reactions of diazo compounds via ring-opening of cyclic ethers with various nucleophiles. The reaction patterns of different nucleophiles and their corresponding mechanism are described in this review. The future research direction and challenges in this area are also discussed.
  • 加载中
    1. [1]

      C. Empel, S. Jana, R.M. Koenigs, Molecules 25 (2020) 880.  doi: 10.3390/molecules25040880

    2. [2]

      S.T. Liu, K.R. Reddy, Chem. Soc. Rev. 28 (1999) 315–322.

    3. [3]

      T.R. Roose, D.S. Verdoorn, P. Mampuys, et al., Chem. Soc. Rev. 51 (2022) 5842–5877.  doi: 10.1039/d1cs00305d

    4. [4]

      D. Zhu, L. Chen, H. Fan, et al., Chem. Soc. Rev. 49 (2020) 908–950.  doi: 10.1039/c9cs00542k

    5. [5]

      M.Y. Huang, S.F. Zhu, Chem. Sci. 12 (2021) 15790–15801.  doi: 10.1039/d1sc03328j

    6. [6]

      X. Shen, Acc. Chem. Res. 58 (2025) 1519–1533.  doi: 10.1021/acs.accounts.5c00136

    7. [7]

      Y. Zhang, G. Zhou, S. Liu, X. Shen, Chem. Soc. Rev. 54 (2025) 1870–1904.  doi: 10.1039/d4cs01275e

    8. [8]

      C. Damiano, P. Sonzini, E. Gallo, Chem. Soc. Rev. 49 (2020) 4867–4905.  doi: 10.1039/d0cs00221f

    9. [9]

      X. Zhang, L. Li, P. Sivaguru, et al., Chem. Commun. 58 (2022) 13699–13715.  doi: 10.1039/d2cc04845k

    10. [10]

      D. Qiu, J. Wang, Recent Developments of Diazo Compounds in Organic Synthesis, World Scientific, 2021.

    11. [11]

      J. Wang, C.M. Che, M.P. Doyle, Transition Metal-Catalyzed Carbene Transformations, John Wiley & Sons, 2021.

    12. [12]

      Y. He, Z. Huang, K. Wu, et al., Chem. Soc. Rev. 51 (2022) 2759–2852.  doi: 10.1039/d1cs00895a

    13. [13]

      C. Jing, Q.Q. Cheng, Y. Deng, et al., Org. Lett. 18 (2016) 4550–4553.  doi: 10.1021/acs.orglett.6b02192

    14. [14]

      C. Qin, H.M.L. Davies, J. Am. Chem. Soc. 135 (2013) 14516–14519.  doi: 10.1021/ja4069003

    15. [15]

      W. Zhang, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 64 (2025) e202422020.

    16. [16]

      D.M. Hodgson, F.Y.T.M. Pierard, P.A. Stupple, Chem. Soc. Rev. 30 (2001) 50–61.

    17. [17]

      F. Tan, X. Liu, X. Hao, et al., ACS Catal. 6 (2016) 6930–6934.  doi: 10.1021/acscatal.6b02184

    18. [18]

      S.F. Zhu, B. Xu, G.P. Wang, et al., J. Am. Chem. Soc. 134 (2012) 436–442.  doi: 10.1021/ja2084493

    19. [19]

      C. Qin, H.M.L. Davies, J. Am. Chem. Soc. 136 (2014) 9792–9796.  doi: 10.1021/ja504797x

    20. [20]

      Y. Xia, D. Qiu, J.B. Wang, Chem. Rev. 117 (2017) 13810–13889.  doi: 10.1021/acs.chemrev.7b00382

    21. [21]

      Y. Xia, Y. Zhang, J.B. Wang, ACS Catal. 3 (2013) 2586–2598.  doi: 10.1021/cs4006666

    22. [22]

      S. Gupta, A. Kundu, S. Ghosh, et al., Green Chem. 25 (2023) 8459–8493.  doi: 10.1039/d3gc03291d

    23. [23]

      Q. Feng, J. Hao, Y. Hu, et al., Chin. Chem. Lett. 36 (2025) 110582.

    24. [24]

      H.C. Li, M. Zhang, Q. Lv, et al., Chin. Chem. Lett. 36 (2025) 110579.

    25. [25]

      Q. Zhao, Q. Zhang, X. Wu, et al., Chin. Chem. Lett. 36 (2025) 110167.

    26. [26]

      Y. Wang, J. Wang, C. Chen, et al., Chem. Commun. 61 (2025) 10812–10815.  doi: 10.1039/d5cc02744f

    27. [27]

      Y.H. Lu, C. Wu, J.C. Hou, et al., ACS Catal. 13 (2023) 13071–13076.  doi: 10.1021/acscatal.3c02268

    28. [28]

      H.T. Ji, K.L. Wang, W.T. Ouyang, et al., Green Chem. 25 (2023) 7983–7987.  doi: 10.1039/d3gc02575f

    29. [29]

      L.W. Ciszewski, K. Rybicka-Jasinska, D. Gryko, Org. Biomol. Chem. 17 (2019) 432–448.  doi: 10.1039/c8ob02703j

    30. [30]

      Z. Yang, M.L. Stivanin, I.D. Jurberg, et al., Chem. Soc. Rev. 49 (2020) 6833–6847.  doi: 10.1039/d0cs00224k

    31. [31]

      W.T. Ouyang, J. Jiang, Y.F. Jiang, et al., Chin. Chem. Lett. 35 (2024) 110038.

    32. [32]

      H.Y. Song, J. Jiang, C. Wu, et al., Green Chem. 25 (2023) 3292–3296.  doi: 10.1039/d2gc04843d

    33. [33]

      N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.

    34. [34]

      M. Zhang, G. Nan, X. Zhao, et al., Chin. J. Org. Chem. 42 (2022) 4315–4322.  doi: 10.6023/cjoc202209013

    35. [35]

      Y.H. Lu, S.Y. Mu, J. Jiang, et al., ChemSusChem 16 (2023) e202300523.

    36. [36]

      X. Cheng, B.G. Cai, H. Mao, et al., Org. Lett. 23 (2021) 4109–4114.  doi: 10.1021/acs.orglett.1c00979

    37. [37]

      H.B. Ye, X.Y. Zhou, L. Li, et al., Org. Lett. 24 (2022) 6018–6023.  doi: 10.1021/acs.orglett.2c02313

    38. [38]

      S. Li, J. Ling, L. Zhou, Org. Lett. 26 (2024) 5220–5225.  doi: 10.1021/acs.orglett.4c01876

    39. [39]

      I.D. Jurberg, H.M.L. Davies, Chem. Sci. 9 (2018) 5112–5118.  doi: 10.1039/c8sc01165f

    40. [40]

      T. Xiao, M. Mei, Y. He, L. Zhou, Chem. Commun. 54 (2018) 8865–8868.  doi: 10.1039/c8cc04609c

    41. [41]

      R. Hommelsheim, Y. Guo, Z. Yang, et al., Angew. Chem. Int. Ed. 58 (2019) 1203–1207.  doi: 10.1002/anie.201811991

    42. [42]

      B.G. Cai, S.S. Luo, L. Li, et al., CCS Chem. 2 (2020) 2764–2771.

    43. [43]

      R. Cheng, C. Qi, L. Wang, et al., Chem. Soc. Rev. 49 (2020) 6833–6847.

    44. [44]

      S. Zhou, B. Cai, C. Hu, et al., Chin. Chem. Lett. 32 (2021) 2577–2581.

    45. [45]

      Z. Chen, J. Chen, J. Xuan, Chin. Chem. Lett. 33 (2022) 2763–2764.

    46. [46]

      P. Duan, H. Zhao, J. Yang, et al., Org. Lett. 24 (2022) 608–612.  doi: 10.1021/acs.orglett.1c04048

    47. [47]

      Y. Guo, G. Zhou, X. Shen, Chin. J. Chem. 42 (2024) 887–902.  doi: 10.1002/cjoc.202300569

    48. [48]

      G. Zhou, X. Shen, Angew. Chem. Int. Ed. 61 (2022) e202115334.

    49. [49]

      S. Chen, Y. Zhang, S. Liu, X. Shen, Sci. China Chem. 66 (2023) 3141–3147.  doi: 10.1007/s11426-023-1676-y

    50. [50]

      R.D.C. Gallo, G. Cariello, T.A.C. Goulart, I.D. Jurberg, Chem. Commun. 59 (2023) 7346–7360.  doi: 10.1039/d3cc00988b

    51. [51]

      Z. Zhang, V. Gevorgyan, Chem. Rev. 124 (2024) 7214–7261.  doi: 10.1021/acs.chemrev.3c00869

    52. [52]

      D. Qi, J. Bai, H. Zhang, et al., Green Chem. 24 (2022) 5046–5051.  doi: 10.1039/d2gc01362b

    53. [53]

      D.K. Jha, S. Acharya, N. Sakkani, et al., Org. Lett. 26 (2024) 172–177.  doi: 10.1021/acs.orglett.3c03805

    54. [54]

      Y.N. Wang, X. Wang, S.J. Li, Y. Lan, Org. Chem. Front. 9 (2022) 1247–1253.  doi: 10.1039/d1qo01730f

    55. [55]

      T. Wang, N. Jiao, Acc. Chem. Res. 47 (2014) 1137–1145.  doi: 10.1021/ar400259e

    56. [56]

      F.F. Fleming, L. Yao, P.C. Ravikumar, et al., J. Med. Chem. 53 (2010) 7902–7917.  doi: 10.1021/jm100762r

    57. [57]

      J.M. Crance, N. Scaramozzino, A. Jouan, D. Garin, Antiviral Res. 58 (2003) 73–79.

    58. [58]

      J. Liu, Y. Gong, J. Shi, et al., Eur. J. Med. Chem. 194 (2020) 112244.

    59. [59]

      W. Yuan, K.J. Szabó, ACS Catal. 6 (2016) 6687–6691.  doi: 10.1021/acscatal.6b01760

    60. [60]

      F. He, C. Pei, R.M. Koenigs, Chem. Commun. 56 (2020) 599–602.  doi: 10.1039/c9cc08888a

    61. [61]

      D. Maiti, R. Das, S. Sen, Green Chem. 23 (2021) 8533–8544.  doi: 10.1039/d1gc02797b

    62. [62]

      S.K. Hota, S. Murarka, Chem. Asian J. (2023) e202301027.

    63. [63]

      M.L. Stivanin, R.D.C. Gallo, J.P.M. Spadeto, et al., Org. Chem. Front. 9 (2022) 1321–1326.  doi: 10.1039/d1qo01780b

    64. [64]

      S. Xia, Y. Jian, L. Zhang, et al., RSC Adv. 13 (2023) 14501–14505.  doi: 10.1039/d3ra02407e

    65. [65]

      Z. Wang, J. Hao, Y. Lv, et al., Asian J. Org. Chem. 11 (2022) e202200484.

    66. [66]

      B.G. Cai, G.Y. Xu, J. Xuan, Chin. Chem. Lett. 34 (2023) 108335.

    67. [67]

      S. Fustero, M. Sánchez-Roselló, P. Barrio, A. Simón-Fuentes, Chem. Rev. 111 (2011) 6984–7034.  doi: 10.1021/cr2000459

    68. [68]

      M.F. Khan, M.M. Alam, G. Verma, et al., Eur. J. Med. Chem. 120 (2016) 170–201.

    69. [69]

      V. Kumar, K. Kaur, G.K. Gupta, A.K. Sharma, Eur. J. Med. Chem. 69 (2013) 735–753.

    70. [70]

      H. Ding, Z. Wang, C. Qu, et al., Org. Chem. Front. 9 (2022) 5530–5535.  doi: 10.1039/d2qo01082h

    71. [71]

      J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 55 (2016) 7296–7343.  doi: 10.1002/anie.201507458

    72. [72]

      S.S. Yan, Q. Fu, L.L. Liao, et al., Coord. Chem. Rev. 374 (2018) 439–463.

    73. [73]

      R. Cheng, C. Qi, L. Wang, et al., Green Chem. 22 (2020) 4890–4895.  doi: 10.1039/d0gc00910e

    74. [74]

      B. Rong, G. Xu, H. Yan, et al., Chem. Commun. 57 (2021) 7272–7275.  doi: 10.1039/d1cc02422a

    75. [75]

      M. Murakami, N. Ishida, Chem. Rev. 121 (2021) 264–299.  doi: 10.1021/acs.chemrev.0c00569

    76. [76]

      Q. Li, B.G. Cai, L. Li, J. Xuan, Org. Lett. 23 (2021) 6951–6955.  doi: 10.1021/acs.orglett.1c02555

    77. [77]

      M.L. Stivanin, M. Duarte, L.P.M.O. Leão, et al., J. Org. Chem. 86 (2021) 17528–17532.  doi: 10.1021/acs.joc.1c02411

    78. [78]

      B.-G. Cai, Q. Li, Q. Zhang, et al., Org. Chem. Front. 8 (2021) 5982–5987.  doi: 10.1039/d1qo01102b

    79. [79]

      C. Qu, J. Hao, H. Ding, et al., J. Org. Chem. 87 (2022) 12921–12931.  doi: 10.1021/acs.joc.2c01499

    80. [80]

      S. Bertrand, J.J. Helesbeux, G. Larcher, O. Duval, Mini-Rev. Med. Chem. 13 (2013) 1311–1326.  doi: 10.2174/13895575113139990007

    81. [81]

      A. Citarella, D. Moi, L. Pinzi, et al., ACS Omega 6 (2021) 21843–21849.  doi: 10.1021/acsomega.1c03628

    82. [82]

      B.G. Cai, Li Q, C. Empel, et al., ACS Catal. 12 (2022) 11129–11136.  doi: 10.1021/acscatal.2c02875

    83. [83]

      R. Liu, S. Fu, X. Chu, et al., Chin. J. Org. Chem. 42 (2022) 2462–2470.  doi: 10.6023/cjoc202204014

    84. [84]

      K. Zhu, W.J. Yu, X. Zhou, et al., Chem. Commun. 59 (2023) 12605–12608.  doi: 10.1039/d3cc03317a

    85. [85]

      P. Li, X. Jia, Synthesis (2018) 711–722.

    86. [86]

      R. Bag, D. Sar, T. Punniyamurthy, ACS Omega 2 (2017) 6278–6290.  doi: 10.1021/acsomega.7b01111

    87. [87]

      B.A. Mir, S. Rajamanickam, P. Begum, B.K. Patel, Eur. J. Org. Chem. (2020) 2617–2625.  doi: 10.1002/ejoc.202000149

    88. [88]

      Y. Lv, J. Hao, J. Huang, et al., Chem. Commun. 60 (2024) 9801–9804.  doi: 10.1039/d4cc03272a

    89. [89]

      S. Dutta, H. Abe, S. Aoyagi, et al., J. Am. Chem. Soc. 127 (2005) 15004–15005.  doi: 10.1021/ja053735i

    90. [90]

      M. Burow, A. Bergner, J. Gershenzon, U. Wittstock, Plant Mol. Biol. 63 (2006) 49–61.  doi: 10.1007/s11103-006-9071-5

    91. [91]

      R. Ding, S. Shi, C. Ma, et al., Chin. J. Org. Chem. 44 (2024) 2216–2222.  doi: 10.6023/cjoc202403029

    92. [92]

      X.M. Chen, L. Song, J. Pan, et al., Chin. Chem. Lett. 35 (2024) 110112.

    93. [93]

      X. Chen, J. Huang, J. Pan, et al., Org. Lett. 26 (2024) 3883–3888.  doi: 10.1021/acs.orglett.4c01038

    94. [94]

      J. Li, C. Chen, X. Li, et al., Chin. Chem. Lett. 35 (2024) 109732.

    95. [95]

      J. Hao, Y. Lv, S. Tian, et al., Chin. Chem. Lett. 35 (2024) 109513.

    96. [96]

      C. Wu, S. Wu, Q. Huang, et al., Chin. Chem. Lett. 36 (2025) 110250.

    97. [97]

      Y. Lv, R. Liu, H. Ding, et al., Org. Chem. Front. 9 (2022) 3486–3492.  doi: 10.1039/d2qo00311b

    98. [98]

      C. Qu, R. Liu, Z. Wang, et al., Green Chem. 24 (2022) 4915–4920.  doi: 10.1039/d2gc00903j

    99. [99]

      Z. Wang, R. Liu, C. Qu, et al., Org. Chem. Front. 9 (2022) 3565–3570.  doi: 10.1039/d2qo00539e

    100. [100]

      Z. Wang, N. Meng, Y. Lv, et al., Chin. Chem. Lett. 34 (2023) 107599.

    101. [101]

      Y. Lv, Z. Wang, J. Hao, et al., Asian J. Org. Chem. 12 (2023) e202300290.

    102. [102]

      Y. Lv, H. Ding, J. You, et al., Chin. Chem. Lett. 35 (2024) 109107.

  • 加载中
    1. [1]

      Jun HuangJiangping QinCaijin BanJingmei YuanJing YangGuoping Yang . Visible-light induced cascade sulfonation/cyclization reaction in water towards sulfonated dihydroisoquinolino[1,2-b]quinazolinones. Chinese Chemical Letters, 2026, 37(2): 111379-. doi: 10.1016/j.cclet.2025.111379

    2. [2]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    3. [3]

      Hua TianXin YangGe ShiHeng XuYi Dong . Rhodium-catalyzed site-selective cross-couplings of indoles and pyridotriazoles through carbene insertion. Chinese Chemical Letters, 2025, 36(7): 110434-. doi: 10.1016/j.cclet.2024.110434

    4. [4]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    5. [5]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    6. [6]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    7. [7]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    8. [8]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    9. [9]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    10. [10]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    11. [11]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    12. [12]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    13. [13]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    14. [14]

      Shifang SongChenyu WuLi ZhangDezhi YangYang LuZhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911

    15. [15]

      Nana YangRui YuanXinyue FuXiao TianJin YuShengzhou MaLiuqing WenJiabin Zhang . Concise synthesis of NDP-activated uronic acid by an oxidation reaction insertion strategy. Chinese Chemical Letters, 2025, 36(8): 110757-. doi: 10.1016/j.cclet.2024.110757

    16. [16]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    17. [17]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    20. [20]

      Yao ZouDifei GongHaiguang YangHongmei YuGuorong HeNingbo GongLianhua FangGuanhua DuYang Lu . Prediction, screening, characterization, antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid. Chinese Chemical Letters, 2025, 36(9): 110768-. doi: 10.1016/j.cclet.2024.110768

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return