F/N interface engineering of nonflammable polymer electrolyte for wide-temperature quasi-solid-state Li metal batteries
-
* Corresponding author.
E-mail address: dengkuir@wyu.edu.cn (K. Deng)
Citation:
Lisi Xu, Maosheng Li, Anqi He, Haijiao Xie, Kuirong Deng. F/N interface engineering of nonflammable polymer electrolyte for wide-temperature quasi-solid-state Li metal batteries[J]. Chinese Chemical Letters,
;2026, 37(2): 111815.
doi:
10.1016/j.cclet.2025.111815
S. Chen, C. Yu, C. Wei, et al., Chin. Chem. Lett. 34 (2023) 107544.
doi: 10.1016/j.cclet.2022.05.058
H. Li, H. Chen, Q. Kang, et al., Chin. Chem. Lett. 36 (2025) 110325.
doi: 10.1016/j.cclet.2024.110325
H. Zhang, Z. Zeng, S. Cheng, J. Xie, eScience 4 (2024) 100265.
doi: 10.1016/j.esci.2024.100265
Z. Wang, S. Xie, X. Gao, et al., Chin. Chem. Lett. 34 (2023) 108151.
doi: 10.1016/j.cclet.2023.108151
R. He, K. Deng, D. Mo, et al., Angew. Chem. Int. Ed. 63 (2024) e202317176.
doi: 10.1002/anie.202317176
L. Wang, S. Xu, Z. Wang, et al., eScience 3 (2023) 100090.
doi: 10.1016/j.esci.2022.100090
H. Li, H. Hou, D.H. Liu, et al., Chin. Chem. Lett. 37 (2026) 111020.
doi: 10.1016/j.cclet.2025.111020
K. Deng, Q. Zeng, D. Wang, et al., J. Mater. Chem. A 8 (2020) 1557–1577.
doi: 10.1039/c9ta11178f
K. Deng, S. Zhou, Z. Xu, et al., Chem. Eng. J. 428 (2022) 131224.
doi: 10.1016/j.cej.2021.131224
Q. Song, Y. Zhang, J. Liang, et al., Chin. Chem. Lett. 35 (2024) 108797.
doi: 10.1016/j.cclet.2023.108797
X. Li, C. Yi, W. Hu, et al., Chin. Chem. Lett. 36 (2025) 110215.
doi: 10.1016/j.cclet.2024.110215
Y. Li, Y. Xu, X. Han, et al., Chin. Chem. Lett. 35 (2024) 109189.
doi: 10.1016/j.cclet.2023.109189
S. Zhao, J. Lu, B. Sheng, et al., Chin. Chem. Lett. 36 (2025) 110008.
doi: 10.1016/j.cclet.2024.110008
J. Yu, X. Lin, J. Liu, et al., Adv. Energy Mater. 12 (2022) 2102932.
doi: 10.1002/aenm.202102932
Z. Li, R. Yu, S. Weng, et al., Nat. Commun. 14 (2023) 482.
doi: 10.1109/neessc59976.2023.10349253
X. Ma, F. Shao, W. Li, et al., Adv. Funct. Mater. 34 (2024) 2409144.
doi: 10.1002/adfm.202409144
J. Fu, X. Zhou, Z. Li, et al., Chem. Eng. J. 500 (2024) 156720.
doi: 10.1016/j.cej.2024.156720
K. Xi, Y. Wang, C. Li, et al., J. Colloid Interface Sci. 679 (2025) 1277–1287.
doi: 10.1016/j.jcis.2024.10.024
X. Wang, L. Xu, M. Li, et al., Energy Storage Mater. 73 (2024) 103778.
doi: 10.1016/j.ensm.2024.103778
B. Wang, Q. Zhou, J. Lu, et al., Chin. Chem. Lett. (2025), doi:10.1016/j.cclet.2025.111557.
doi: 10.1016/j.cclet.2025.111557
Y. -H. Li, X. -L. Wu, J. -H. Kim, et al., J. Power Sources 244 (2013) 234–239.
doi: 10.1111/j.1525-1470.2012.01854.x
Y. Ma, J. Wan, Y. Yang, et al., Adv. Energy Mater. 12 (2022) 2103720.
doi: 10.1002/aenm.202103720
H. Xiang, N. Deng, L. Gao, et al., Chin. Chem. Lett. 35 (2024) 109182.
doi: 10.1016/j.cclet.2023.109182
M. Jia, P. Wen, Z. Wang, et al., Adv. Funct. Mater. 31 (2021) 2101736.
doi: 10.1002/adfm.202101736
S. Qin, Z. Wang, Y. Ren, et al., Nano Energy 119 (2024) 109075.
doi: 10.1016/j.nanoen.2023.109075
Y. Guo, X. Qu, Z. Li, et al., Chin. Chem. Lett. 35 (2024) 108482.
doi: 10.1016/j.cclet.2023.108482
L. Xu, X. Wang, Y. Wu, et al., J. Energy Chem. 102 (2025) 63–72.
doi: 10.1016/j.jechem.2024.10.040
X. Wang, D. Pan, L. Xu, et al., Energy Storage Mater. 76 (2025) 104129.
doi: 10.1016/j.ensm.2025.104129
Z. Zhang, Y. Ren, J. Liang, et al., Energy Storage Mater. 71 (2024) 103667.
doi: 10.1016/j.ensm.2024.103667
J. Huang, C. Xu, J. Wang, et al., J. Colloid Interface Sci. 683 (2025) 984–993.
doi: 10.1016/j.jcis.2024.12.103
Q. Wang, T. Gao, X. Lu, et al., Chin. Chem. Lett. 35 (2024) 108887.
doi: 10.1016/j.cclet.2023.108887
H. Liao, T. Xiao, T. Zhang, et al., Chin. Chem. Lett. (2025), doi:10.1016/j.cclet.2025.111344.
doi: 10.1016/j.cclet.2025.111344
M. Yao, H. Zhang, K. Dong, et al., J. Mater. Chem. A 9 (2021) 6232–6241.
doi: 10.1039/d0ta10932k
L. Hu, X. Gao, H. Wang, et al., Small 20 (2024) 2312251.
doi: 10.1002/smll.202312251
H. Zhang, S. Feng, M. Cao, et al., Chin. Chem. Lett. 36 (2025) 111096.
doi: 10.1016/j.cclet.2025.111096
X. Wang, S. Wang, Z. Han, et al., Chin. Chem. Lett. 37 (2026) 111434.
doi: 10.1016/j.cclet.2025.111434
M. Xin, Z. Liu, Y. Liu, et al., Renewables 1 (2023) 591–600.
doi: 10.31635/renewables.023.202300040
Y. Yang, S. Ma, H. Yin, et al., Adv. Sci. 11 (2024) 2404248.
doi: 10.1002/advs.202404248
Q. Wang, Z. Yao, C. Zhao, et al., Nat. Commun. 11 (2020) 4188.
doi: 10.1038/s41467-020-17976-x
Y. Wu, Q. Zhang, N. Wang, K. Deng, Energy Storage Mater. 75 (2025) 104066.
doi: 10.1016/j.ensm.2025.104066
Q. Liu, Z. Chen, Y. Liu, et al., Energy Storage Mater. 37 (2021) 521–529.
doi: 10.1016/j.ensm.2021.02.039
X. Chen, S. Yan, T. Tan, et al., Energy Storage Mater. 45 (2022) 182–190.
doi: 10.1016/j.ensm.2021.11.026
L. Chen, Q. Nian, D. Ruan, et al., Chem. Sci. 14 (2023) 1184–1193.
doi: 10.1039/d2sc05723a
Q. Liu, Y. Liu, Z. Chen, et al., Adv. Funct. Mater. 33 (2023) 2209725.
doi: 10.1002/adfm.202209725
K. Deng, Q. Zeng, D. Wang, et al., Energy Storage Mater. 32 (2020) 425–447.
doi: 10.1016/j.ensm.2020.07.018
M. Mao, B. Huang, Q. Li, et al., Nano Energy 78 (2020) 105282.
doi: 10.1016/j.nanoen.2020.105282
K. Deng, Z. Xu, S. Zhou, et al., J. Power Sources 510 (2021) 230411.
doi: 10.1016/j.jpowsour.2021.230411
R. He, Q. Zhang, Y. Hu, et al., Energy Storage Mater. 73 (2024) 103836.
doi: 10.1016/j.ensm.2024.103836
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
Xiaodong Wang , Miaomiao Zhou , Yirui Deng , Zijun Liu , Huiyou Dong , Peng Yan , Ruiping Liu . Dual functional Ti3(PO4)4-coated NCM811 cathode enables highly stable sulfide-based all-solid-state lithium batteries. Chinese Chemical Letters, 2025, 36(9): 110307-. doi: 10.1016/j.cclet.2024.110307
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Liyang Liu , De-Xiang Zhang , Tian Wen . MOF-driven interaction engineering in solid polymer electrolytes for durable lithium metal batteries. Chinese Journal of Structural Chemistry, 2025, 44(5): 100517-100517. doi: 10.1016/j.cjsc.2025.100517
Haotian Zhang , Shengfa Feng , Mufan Cao , Xiong Xiong Liu , Pengcheng Yuan , Yaping Wang , Min Gao , Long Pan , Zhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096
Xueqi Du , Ge Gao , Guoxiang Pan , Zhong Qiu , Yongqi Zhang , Shenghui Shen , Tianqi Yang , Xinqi Liang , Ping Liu , Xinhui Xia . Utilizing BBr3 plasma to create high-quality solid electrolyte interphases for enhanced lithium metal anodes. Chinese Chemical Letters, 2025, 36(11): 110753-. doi: 10.1016/j.cclet.2024.110753
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Xuning Gao , Nan Piao , Yukun Yan , Jinghao Wang , Haolun Zou , Siqi Guan , Leiying Zeng , Zhenhua Sun , Guangjian Hu , Feng Li . Synergistic fluorinated and non-fluorinated solvents for electrolytes of lithium-ion batteries at low temperatures. Chinese Chemical Letters, 2026, 37(2): 110591-. doi: 10.1016/j.cclet.2024.110591
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Haowen Li , Hongying Hou , Dai-Huo Liu , Bao Li , Dongmei Dai , Bao Wang , Mengmin Jia , Zhuangzhuang Zhang , Liang Wang , Yaru Qiao , Canhui Wu , Huihui Zhu , Pengyao Yan . A designed flexible solid-state electrolyte with rich hydrogen-bonded networks from TPU-PEGDA/LLZTO for Li metal batteries. Chinese Chemical Letters, 2026, 37(2): 111020-. doi: 10.1016/j.cclet.2025.111020
Jie Chen , Hannan Chen , Bingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Mengya Ge , Zijie Zhou , Huaiyang Zhu , Ying Wang , Chao Wang , Chao Lai , Qinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121
Xingjie Li , Chengjun Yi , Weifei Hu , Huishan Zhang , Jiale Xia , Yuanyuan Li , Jinping Liu . Emerging sulfide-polymer composite solid electrolyte membranes. Chinese Chemical Letters, 2025, 36(6): 110215-. doi: 10.1016/j.cclet.2024.110215