Citation: Jiadong Li, Yanduo Liu, Yang Qu. Highly efficient methane-to-low alcohols conversion via ZnO based photocatalysis in aqueous medium[J]. Chinese Chemical Letters, ;2026, 37(1): 111741. doi: 10.1016/j.cclet.2025.111741 shu

Highly efficient methane-to-low alcohols conversion via ZnO based photocatalysis in aqueous medium

Figures(5)

  • The photocatalytic oxidation of methane (CH4) to valuable chemicals like low alcohols (CH3OH and C2H5OH) represents a significant technological advancement with implications for energy conversion and environmental purification. A major challenge in this field is the chemical inertness of methane and the strong oxidizing nature of photogenerated holes, which can lead to over-oxidation and reduced selectivity and efficiency. To address these issues, we have developed a sodium-doped zinc oxide (Na-ZnO) modified with cobalt oxide (CoO) catalyst. This catalyst has demonstrated excellent performance in converting methane to low alcohols, achieving a yield of 130 µmol g−1 h−1 and a selectivity of up to 96 %. The doping of Na in ZnO significantly enhances methane adsorption, while the surface-modified CoO effectively captures photogenerated holes, activates water molecules, and uses hydroxyl radicals to activate methane, thus controlling the dehydrogenation degree of methane and preventing the formation of over-oxidized products. This strategy has successfully improved the efficiency and selectivity of photocatalytic methane oxidation to low alcohols, offering a new perspective for the application of photocatalytic technology in energy and environmental fields.
  • 加载中
    1. [1]

      C.Q. Han, Y.H. Cao, W. Yu, et al., J. Am. Chem. Soc. 145 (2023) 8609–8620.  doi: 10.1021/jacs.3c01317

    2. [2]

      J. Duan, S.Y. Fan, X.Y. Li, et al., Chem. Eng. J. 485 (2024) 149904.

    3. [3]

      Z.S. Yang, Q.Q. Zhang, H. Song, et al., Chin. Chem. Lett. 35 (2024) 108418.

    4. [4]

      Y.H. Jiang, Y.Y. Fan, X.L. Liu, et al., J. Am. Chem. Soc. 146 (2024) 16039–16051.  doi: 10.1021/jacs.4c03083

    5. [5]

      L.Q. Li, X.W. Shi, L.Y. Liu, et al., Small 21 (2025) 2500835.

    6. [6]

      R.X. Zhang, J.L. Shi, L. Fu, et al., ACS Nano. 18 (2024) 12994–13005.  doi: 10.1021/acsnano.4c01318

    7. [7]

      Z.Y. Huang, C. Guo, Q.X. Zheng, et al., Chin. Chem. Lett. 35 (2024) 109580.

    8. [8]

      Y.H. Zhi, C. Gu, H.C. Ji, et al., Chin. Chem. Lett. 36 (2025) 110234.

    9. [9]

      S.Y. Nie, L. Wu, X. Wang. J. Am. Chem. Soc. 145 (2023) 23681–23690.  doi: 10.1021/jacs.3c07984

    10. [10]

      J. Ding, Z.Y. Teng, X.Z. Su, et al., Chem 9 (2023) 1017–1035.

    11. [11]

      Q. Zhang, C. Yang, Y.S. Chen, et al., Angew. Chem. Int. Ed. 64 (2025) e202419282.

    12. [12]

      T. Luo, Y. Peng, L. Chen, et al., Environ. Sci. Technol. 54 (2020) 10261–10269.  doi: 10.1021/acs.est.9b07078

    13. [13]

      Y.D. Liu, Y.H. Chen, W.B. Jiang, et al., Research 2022 (2022) 9831340.  doi: 10.34133/2022/9831340

    14. [14]

      E. Han, Y.G. Kim, H.M. Yang, et al., Chem. Mater. 30 (2018) 5777–5785.  doi: 10.1021/acs.chemmater.8b02782

    15. [15]

      T. Ito, J.X. Wang, C.H. Lin, et al., J. Am. Chem. Soc. 107 (1985) 5062–5068.  doi: 10.1021/ja00304a008

    16. [16]

      W.F. Kong, Z.P. Xing, B. Fang, et al., Appl. Catal. B: Environ. 304 (2022) 120969.

    17. [17]

      Q.Y. Wang, M.Y. Dai, H.M. Li, et al., Adv. Mater. 35 (2023) 2300695.

    18. [18]

      W.Y. Zhang, A. Mehmood, G. Ali, et al., Angew. Chem. Int. Ed. 64 (2025) e202424552.

    19. [19]

      Q.Y. Wang, T. Luo, X.Y. Cao, et al., Nat. Commun. 16 (2025) 2985.

    20. [20]

      D.X. Song, M.X. Li, F. Yang, et al., Chin. Chem. Lett. 35 (2024) 108591.

    21. [21]

      Y. Hu, X.B. Li, W.W. Wang, et al., Chin. J. Struct. Chem. 41 (2022) 2206069–2206078.

    22. [22]

      G.Y. Zhai, S.Y. Yang, Y.H. Chen, et al., J. Am. Chem. Soc. 147 (2025) 2444–2454.  doi: 10.1021/jacs.4c12758

    23. [23]

      Z.L. Ma, Y.H. Chen, C. Gao, et al., Chem. Commun. 60 (2024) 1132–1135.  doi: 10.1039/d3cc04645a

    24. [24]

      X.Y. Li, C. Wang, J.W. Tang. Nat. Rev. Mater. 7 (2022) 617–632.

    25. [25]

      X.Z. Deng, Y. Ke, J.W. Ding, et al., Chin. Chem. Lett. 35 (2024) 109064.

    26. [26]

      B.T. Song, Y.H. Li, X.P. Wu, et al., J. Am. Chem. Soc. 144 (2022) 23340–23351.  doi: 10.1021/jacs.2c08356

    27. [27]

      X.L. Zhou, Y.R. Zhong, M. Yang, et al., ACS Appl. Mater. Interfaces 7 (2015) 12022–12029.  doi: 10.1021/acsami.5b02152

    28. [28]

      Y.F. Li, L. Lin, L.J. Gao, et al., J. Phys. Chem. C. 125 (2021) 7990–7998.  doi: 10.1021/acs.jpcc.1c01203

    29. [29]

      Y.D. Liu, M.W. Li, J.N. Guo, et al., J. Colloid. Interface Sci. 667 (2024) 23–31.

    30. [30]

      D. Saikia, J.R. Deka, Y.C. Chen, et al., Ceram. Int. 51 (2025) 22498–22510.

    31. [31]

      J.D. Li, X.L. Zhang, F. Raziq, et al., Appl. Catal. B: Environ. 218 (2017) 60–67.  doi: 10.3901/JME.2017.17.060

    32. [32]

      J.T. Lu, H.W. Zhang, S. Li, et al., Inorg. Chem. 59 (2020) 3152–3159.  doi: 10.1021/acs.inorgchem.9b03512

    33. [33]

      X. Guo, X.J. Sun, Z.Y. Wang, et al., Fuel 343 (2023) 128004.

    34. [34]

      Y.D. Liu, N. Sun, S.Y. Chen, et al., Nano Res. 11 (2018) 1612–1624.  doi: 10.1007/s12274-017-1776-z

    35. [35]

      Y.D. Liu, J.D. Li, X.L. Dong, et al., Inorg. Chem. Front. 11 (2024) 5310–5318.  doi: 10.1039/d4qi01381f

    36. [36]

      H. Wang, Y.S. Hu, Y.L. Shen, et al., ACS Catal. 14 (2024) 10712–10727.  doi: 10.1021/acscatal.4c02608

    37. [37]

      J.A. Rodriguez, N. Rui, F. Zhang, et al., ACS Catal. 12 (2022) 5470–5488.  doi: 10.1021/acscatal.2c00941

    38. [38]

      S. Kim, J. Lauterbach, E. Sasmaz. ACS Catal. 11 (2021) 8247–8260.  doi: 10.1021/acscatal.1c01223

    39. [39]

      R. Davì, G. Carraro, M. Stojkovska, et al., Phys. Chem. Chem. Phys. 24 (2022) 28486–28494.  doi: 10.1039/d2cp03441g

    40. [40]

      E.J. Jang, J. Lee, D.G. Oh, et al., ACS Catal. 11 (2021) 5894–5905.  doi: 10.1021/acscatal.1c00156

    41. [41]

      W.B. Jiang, J.X. Low, K.K. Mao, et al., J. Am. Chem. Soc. 143 (2021) 269–278.  doi: 10.1021/jacs.0c10369

    42. [42]

      W.Q. Zhang, D.W. Xi, Y.H. Chen, et al., Nat. Commun. 14 (2023) 3047.

  • 加载中
    1. [1]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    2. [2]

      Haoyu LuoJinsong ChenMengfei LuoHui MaShengyan Pu . Heterogeneous Fenton catalytic degradation of nitrobenzene by controlled-release nano calcium peroxide. Chinese Chemical Letters, 2025, 36(6): 110367-. doi: 10.1016/j.cclet.2024.110367

    3. [3]

      Xifeng LuPei Su . Design and application of metal-organic frameworks derivatives as 3-electron ORR electrocatalysts for OH generation in wastewater treatment: A review. Chinese Chemical Letters, 2025, 36(11): 110909-. doi: 10.1016/j.cclet.2025.110909

    4. [4]

      Guanjun ChenJiayi YangZheming HuangLong ChenWenyuan DuanTong WangXingang KongHaibo Yang . Engineering the interlayer sodium density in layered sodium cobalt oxide for boosted chlorine evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111662-. doi: 10.1016/j.cclet.2025.111662

    5. [5]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    6. [6]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    7. [7]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Chunrui ZhaoTianren LiJiage LiYansong LiuZian FangXinyu WangMingxin HuoShuangshi DongMingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201

    10. [10]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    11. [11]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    12. [12]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    13. [13]

      Yining LiShimei WuLantao ChenHaosen FanYufei ZhangLingxing Zeng . Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(9): 110371-. doi: 10.1016/j.cclet.2024.110371

    14. [14]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    15. [15]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    16. [16]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    17. [17]

      Chen-Xin WangGuang-Lei LiYu HangDan-Feng LuJian-Qi YeHao SuBing HouTao SuoDan Wen . Shock-resistant wearable pH sensor based on tungsten oxide aerogel. Chinese Chemical Letters, 2025, 36(7): 110502-. doi: 10.1016/j.cclet.2024.110502

    18. [18]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

Metrics
  • PDF Downloads(0)
  • Abstract views(6)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return