Citation: Yuge Zhang, Siqi Xu, Chenpeng Chen, Haiyu Xian, Qitao Wen, Yunfeng Lin, Tao Wang. Tetrahedral framework nucleic acids in the prevention and treatment of skin and mucosal diseases: Advances and prospects[J]. Chinese Chemical Letters, ;2026, 37(2): 111728. doi: 10.1016/j.cclet.2025.111728 shu

Tetrahedral framework nucleic acids in the prevention and treatment of skin and mucosal diseases: Advances and prospects

    * Corresponding authors.
    E-mail addresses: yunfenglin@scu.edu.cn (Y. Lin), 18608917377@163.com (T. Wang).
  • Received Date: 8 June 2025
    Revised Date: 13 August 2025
    Accepted Date: 15 August 2025
    Available Online: 16 August 2025

  • The application of DNA hybridization technology, grounded in Watson-Crick base pairing, has facilitated the rational design of framework nucleic acids (FNAs) featuring adaptable shapes and dimensions. These nanostructures exhibit remarkable stability and reproducibility, making them promising candidates for biomedical applications. Among various FNAs, tetrahedral FNAs (tFNAs), first introduced by Turberfield, are nanoscale assemblies of oligonucleotides that possess unique physical, chemical, and biological properties. Previous studies have demonstrated that tFNAs exhibit excellent cellular uptake, enhanced tissue permeability, and strong capabilities to promote cell migration, proliferation, and differentiation. Moreover, the intrinsic ability of tFNAs to efficiently penetrate cell membranes allows tFNAs to serve as versatile carriers for small-molecule drugs or functional oligonucleotides, thereby exerting significant anti-inflammatory, antioxidant, antibacterial, and immunomodulatory effects. These features highlight the therapeutic potential of tFNA-based complexes in skin, mucosal, and barrier tissue repair and regeneration. This review provides a comprehensive analysis of recent advances in the application of tFNAs for the prevention and treatment of skin, mucosal, and barrier tissue diseases, with a focus on their mechanisms of action and future prospects in regenerative medicine and targeted therapies.
  • 加载中
    1. [1]

      H. Zeng, Y. Qi, Z. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1857–1868.

    2. [2]

      R. Shi, Y. Zhu, Y. Chen, Y. Lin, S. Shi, J. Control. Release 375 (2024) 155–177.

    3. [3]

      W. Lou, L. Zhang, J. Wang, Int. Immunopharmacol. 142 (2024) 113157.

    4. [4]

      N. Maishi, Y. Sakurai, H. Hatakeyama, et al., Cancer Sci. 113 (2022) 1855–1867.  doi: 10.1111/cas.15323

    5. [5]

      B. Tang, W. Ma, Y. Lin, J. Control. Release 364 (2023) 61–78.

    6. [6]

      X. Tan, F. Jia, P. Wang, K. Zhang, J. Control. Release 323 (2020) 240–252.

    7. [7]

      H. Chen, M.K. Jayasinghe, E.Y.M. Yeo, et al., Cell Prolif. 55 (2022) e13255.

    8. [8]

      L. Yao, Q. Hai, T. Zhang, Curr. Drug Metab. 24 (2023) 393–403.  doi: 10.2174/1389200224666230614115655

    9. [9]

      F. Liu, F. Meng, Z. Yang, et al., Chin. Chem. Lett. 35 (2024) 109335.

    10. [10]

      S. Guo, B. Liu, M. Zhang, et al., Chin. Chem. Lett. 32 (2021) 102–106.

    11. [11]

      T.M. Allen, P.R. Cullis, Adv. Drug Deliv. Rev. 65 (2013) 36–48.

    12. [12]

      A.S. Abu Lila, T. Ishida, Biol. Pharm. Bull. 40 (2017) 1–10.  doi: 10.1248/bpb.b16-00624

    13. [13]

      R. Liu, C. Luo, Z. Pang, et al., Chin. Chem. Lett. 34 (2023) 107518.

    14. [14]

      L. Yao, G. Zhang, Y. Wang, et al., Adv. Mater. 37 (2025) 2414336.

    15. [15]

      J. Guo, Z.G. Lu, R.C. Zhao, B.K. Li, X. Zhang, Chin. Chem. Lett. 36 (2025) 109875.

    16. [16]

      H. Büning, A. Srivastava, Ther. Methods Clin. Dev. 12 (2019) 248–265.

    17. [17]

      W. Wang, S. Chen, B. An, et al., Nat. Commun. 10 (2019) 1067.

    18. [18]

      L.L. Ong, N. Hanikel, O.K. Yaghi, et al., Nature 552 (2017) 72–77.  doi: 10.1038/nature24648

    19. [19]

      C.J. Kearney, C.R. Lucas, F.J. O'Brien, C.E. Castro, Adv. Mater. 28 (2016) 5509–5524.  doi: 10.1002/adma.201504733

    20. [20]

      N.C. Seeman, Nano Lett. 10 (2010) 1971–1978.  doi: 10.1021/nl101262u

    21. [21]

      N. Liu, X. Zhang, N. Li, et al., Small 15 (2019) 1901907.

    22. [22]

      Q. Wu, J. Zhu, X. Zhang, et al., Cell Prolif. 57 (2024) e13635.

    23. [23]

      P. Li, L. Fu, C. Ning, et al., Cell Prolif. 57 (2024) e13605.

    24. [24]

      K. Dai, C. Gong, Y. Xu, et al., Nano Lett. 23 (2023) 7188–7196.  doi: 10.1021/acs.nanolett.3c02185

    25. [25]

      T. Tian, T. Zhang, S. Shi, et al., Nat. Protoc. 18 (2023) 1028–1055.  doi: 10.1038/s41596-022-00791-7

    26. [26]

      Y. Wang, W. Jia, J. Zhu, R. Xu, Y. Lin, Chin. Chem. Lett. 34 (2023) 107746.

    27. [27]

      W. Cui, Z. Guo, X. Chen, et al., Sci. Bull. 69 (2024) 3925–3935.

    28. [28]

      T. Zhang, M. Zhou, D. Xiao, et al., Adv. Sci. 9 (2022) e2202058.

    29. [29]

      J. Li, Y. Yao, Y. Wang, et al., Adv. Mater. 34 (2022) e2202513.

    30. [30]

      L. Bai, M. Feng, Q. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2314789.

    31. [31]

      X. Yang, F. Zhang, Y. Du, et al., Chin. Chem. Lett. 33 (2022) 1901–1906.

    32. [32]

      J. Li, R. Yan, S. Shi, Y. Lin, Expert. Opin. Drug Deliv. 20 (2023) 1511–1530.  doi: 10.1080/17425247.2023.2276285

    33. [33]

      K. Zagorovsky, L.Y.T. Chou, W.C.W. Chan, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 13600–13605.  doi: 10.1073/pnas.1610028113

    34. [34]

      Y. Li, J. Li, Y. Chang, Y. Lin, L. Sui, Chin. Chem. Lett. 35 (2024) 109414.

    35. [35]

      J. Cao, D. Huang, N.A. Peppas, Adv. Drug Deliv. Rev. 167 (2020) 170–188.

    36. [36]

      X. He, X. Wang, L. Yang, et al., Acta. Pharm. Sin. B 12 (2022) 1987–1999.

    37. [37]

      Y. Yu, L. Xing, L. Li, et al., J. Control. Release 341 (2022) 215–226.

    38. [38]

      S. Cheng, M. Pan, D. Hu, et al., Chin. Chem. Lett. 34 (2023) 108276.

    39. [39]

      X. Li, D. Zhang, Y. Yu, L. Wang, M. Zhao, Cell Prolif. 57 (2024) e13586.

    40. [40]

      P. Xin, S. Han, J. Huang, et al., Chin. Chem. Lett. 34 (2023) 108125.

    41. [41]

      F. Hassanzadeh-Afruzi, M. Azizi, I. Zare, et al., Chin. Chem. Lett. 35 (2024) 109564.

    42. [42]

      S. Ma, H. Hu, J. Wu, et al., Cell Prolif. 55 (2022) e13196.

    43. [43]

      S.A. Antar, N.A. Ashour, M.E. Marawan, A.A. Al-Karmalawy, Int. J. Mol. Sci. 24 (2023) 4004.  doi: 10.3390/ijms24044004

    44. [44]

      Y. Liang, Y. Liang, H. Zhang, B. Guo, Asian J. Pharm. Sci. 17 (2022) 353–384.

    45. [45]

      X. Zhou, Y. Wu, Z. Zhu, et al., Signal Transduct. Target Ther. 10 (2025) 7.

    46. [46]

      N. Xie, S. Liu, X. Yang, et al., Analyst 142 (2017) 3322–3332.

    47. [47]

      Z. Fang, L.Y. Wan, L.Y. Chu, Y.Q. Zhang, J.F. Wu, Expert. Opin. Drug Deliv. 12 (2015) 1943–1953.  doi: 10.1517/17425247.2015.1071352

    48. [48]

      B. Chen, L. Mei, Y. Wang, G. Guo, Drug Discov. Today 26 (2021) 1018–1029.

    49. [49]

      J. Zhu, M. Zhang, Y. Gao, et al., Signal Transduct. Target Ther. 5 (2020) 120.

    50. [50]

      G. Zhang, L. Huang, M. Feng, et al., Nanoscale 15 (2023) 7877–7893.  doi: 10.1039/d2nr07174f

    51. [51]

      X. Xie, W. Ma, Y. Zhan, et al., Curr. Drug Metab. 24 (2023) 315–326.  doi: 10.2174/1389200224666230601091346

    52. [52]

      X. Deng, Y. Wu, Y. Tang, et al., J. Control. Release 368 (2024) 518–532.

    53. [53]

      T. Liu, Y. Lu, R. Zhan, W. Qian, G. Luo, Adv. Drug Deliv. Rev. 193 (2023) 114670.

    54. [54]

      A. de Groot, Dermatitis 32 (2021) 197–213.  doi: 10.1097/der.0000000000000737

    55. [55]

      M. Oray, K. Abu Samra, N. Ebrahimiadib, H. Meese, C.S. Foster, Expert. Opin. Drug Saf. 15 (2016) 457–465.  doi: 10.1517/14740338.2016.1140743

    56. [56]

      L. Xie, X. Dai, Y. Li, et al., Pharmaceutics 16 (2024) 1411.  doi: 10.3390/pharmaceutics16111411

    57. [57]

      T. He, Y. Xiao, Z. Guo, et al., Pharmaceutics 15 (2023) 794.  doi: 10.3390/pharmaceutics15030794

    58. [58]

      J. Yan, N. Zhang, Z. Zhang, et al., J. Control. Release 329 (2021) 36–49.

    59. [59]

      H. Huang, S. Gao, X. Cai, Curr. Drug Metab. 24 (2023) 367–384.  doi: 10.2174/1389200224666230413082047

    60. [60]

      Y. Li, J. Li, Y. Chang, et al., Chem. Eng. J. 496 (2024) 153723.

    61. [61]

      Y. Liu, Z. Liu, W. Cui, et al., APL Mater. 8 (2020) 100701.

    62. [62]

      T. Zhang, W. Cui, T. Tian, S. Shi, Y. Lin, ACS Appl. Mater. Interfaces 12 (2020) 47115–47126.  doi: 10.1021/acsami.0c13806

    63. [63]

      S. Shi, Y. Li, T. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 57067–57074.  doi: 10.1021/acsami.1c20657

    64. [64]

      Y. Dou, W. Cui, X. Yang, et al., Burns Trauma 10 (2022) tkac006.

    65. [65]

      Y. Yao, M. Yang, S. Shi, Curr. Drug Metab. 24 (2023) 338–352.  doi: 10.2174/1389200224666230202155414

    66. [66]

      M. Pikuła, P. Langa, P. Kosikowska, P. Trzonkowski, Med. Dosw. 69 (2015) 874–885.  doi: 10.5604/17322693.1162989

    67. [67]

      L.F.S. Gushiken, F.P. Beserra, J.K. Bastos, C.J. Jackson, C.H. Pellizzon, Life 11 (2021) 665.  doi: 10.3390/life11070665

    68. [68]

      X.B. Fu, Mil. Med. Res. 8 (2021) 2.

    69. [69]

      N.B. Menke, K.R. Ward, T.M. Witten, D.G. Bonchev, R.F. Diegelmann, Clin. Dermatol. 25 (2007) 19–25.

    70. [70]

      V. Falanga, R.R. Isseroff, A.M. Soulika, et al., Nat. Rev. Dis. Primers 8 (2022) 50.

    71. [71]

      D. Baltzis, I. Eleftheriadou, A. Veves, Adv. Ther. 31 (2014) 817–836.  doi: 10.1007/s12325-014-0140-x

    72. [72]

      S.C.S. Hu, C.C.E. Lan, J. Dermatol. Sci. 84 (2016) 121–127.

    73. [73]

      M. Chang, T.T. Nguyen, Acc. Chem. Res. 54 (2021) 1080–1093.  doi: 10.1021/acs.accounts.0c00864

    74. [74]

      H. Wang, J. Gong, W. Chen, et al., Nano Today 56 (2024) 102252.

    75. [75]

      Z. Wang, H. Lu, T. Tang, et al., Cell Prolif. 55 (2022) e13316.

    76. [76]

      S. Lin, Q. Liu, Y. Xie, Q. Zhang, Nanomaterials 14 (2024) 1693.  doi: 10.3390/nano14211693

    77. [77]

      S. Lin, Q. Zhang, S. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 11397–11408.  doi: 10.1021/acsami.0c00874

    78. [78]

      Y. Zhang, W. Ma, Y. Zhu, et al., Nano Lett. 18 (2018) 5652–5659.  doi: 10.1021/acs.nanolett.8b02166

    79. [79]

      Y. Sun, S. Li, Y. Zhang, et al., ACS Appl. Mater. Interfaces 12 (2020) 36957–36966.  doi: 10.1021/acsami.0c11249

    80. [80]

      Y. Sun, Y. Liu, B. Zhang, et al., Bioact. Mater. 6 (2021) 2281–2290.

    81. [81]

      Y. Sun, X. Chen, S. Shi, et al., Biomacromolecules 24 (2023) 1052–1060.  doi: 10.1021/acs.biomac.2c01525

    82. [82]

      S. Lin, Q. Zhang, S. Li, et al., Cell Prolif. 55 (2022) e13279.

    83. [83]

      Y. Ge, Q. Wang, Y. Yao, et al., Adv. Sci. 11 (2024) 2308701.

    84. [84]

      W. Zhang, W. Liu, L. Long, et al., J. Control. Release 354 (2023) 821–834.

    85. [85]

      Y. Liu, Y. Sun, S. Li, et al., Nano Lett. 20 (2020) 3602–3610.  doi: 10.1021/acs.nanolett.0c00529

    86. [86]

      C. Qi, Q. Sun, D. Xiao, et al., Int. J. Oral. Sci. 16 (2024) 30.  doi: 10.1049/icp.2024.3931

    87. [87]

      Q. Hu, C.J. Lyon, J.K. Fletcher, et al., Acta. Pharm. Sin. B 11 (2021) 1493–1512.

    88. [88]

      X. Xu, Y. Fu, D. Luo, et al., Cell Prolif. 57 (2024) e13695.

    89. [89]

      J. He, W. Chen, X. Chen, et al., Cell Prolif. 56 (2023) e13495.

    90. [90]

      X. Lyu, H. Wu, M. Xu, et al., ACS Appl. Mater. Interfaces 16 (2024) 33192–33204.  doi: 10.1021/acsami.4c06460

    91. [91]

      Z. Jiang, Y. Yang, Z. Yue, et al., ACS Nano 19 (2025) 14756–14769.  doi: 10.1021/acsnano.4c16427

    92. [92]

      Y. Liu, Z. Zhao, M. Li, Asian J. Pharm. Sci. 17 (2022) 523–543.

    93. [93]

      X. Lyu, H. Wu, Y. Chen, et al., Small 20 (2024) e2406629.

    94. [94]

      D. Wendisch, O. Dietrich, T. Mari, et al., Cell 184 (2021) 6243-6261.e6227.

    95. [95]

      D.A. Fraser, X. Wang, J. Lund, et al., J. Hepatol. 76 (2022) 800–811.

    96. [96]

      T.A. Wilgus, S. Ud-Din, A. Bayat, Int. J. Mol. Sci. 21 (2020) 9673.  doi: 10.3390/ijms21249673

    97. [97]

      M.A.A. Mahdy, Cell Tissue Res. 375 (2019) 575–588.  doi: 10.1007/s00441-018-2955-2

    98. [98]

      N.C. Henderson, F. Rieder, T.A. Wynn, Nature 587 (2020) 555–566.  doi: 10.1038/s41586-020-2938-9

    99. [99]

      R.C. Stone, I. Pastar, N. Ojeh, et al., Cell Tissue Res. 365 (2016) 495–506.  doi: 10.1007/s00441-016-2464-0

    100. [100]

      D. Frank, J.E. Vince, Cell Death Differ. 26 (2019) 99–114.  doi: 10.1038/s41418-018-0212-6

    101. [101]

      S.B. Kovacs, E.A. Miao, Trends Cell Biol. 27 (2017) 673–684.

    102. [102]

      C. Li, X. Zheng, M. Hu, et al., Expert. Opin. Drug Deliv. 19 (2022) 883–898.  doi: 10.1080/17425247.2022.2094364

    103. [103]

      Y. Jiang, S. Li, T. Zhang, et al., ACS Appl. Mater. Interfaces 14 (2022) 15069–15079.  doi: 10.1021/acsami.2c02877

    104. [104]

      Y. Jiang, S. Li, R. Shi, et al., Adv. Sci. 11 (2024) 2305622.

    105. [105]

      R.F. Walker, Rejuvenation Res. 14 (2011) 429–436.  doi: 10.1089/rej.2011.1162

    106. [106]

      J.P. Coppé, C.K. Patil, F. Rodier, et al., PLoS Biol. 6 (2008) 2853–2868.

    107. [107]

      Y. Ye, J. Yu, D. Wen, A.R. Kahkoska, Z. Gu, Adv. Drug Deliv. Rev. 127 (2018) 106–118.

    108. [108]

      S.Q. Zhang, Q. Fu, Y.J. Zhang, et al., Acta Pharm. Sin. 42 (2021) 1040–1054.  doi: 10.1038/s41401-020-00606-z

    109. [109]

      Y. Xie, J. He, S. Li, et al., Adv. Funct. Mater. 33 (2023) 2303580.

    110. [110]

      S. Li, Y. Liu, T. Zhang, et al., Adv. Mater. 34 (2022) 2204287.

    111. [111]

      Z. Yue, Y. Yang, L. Nie, et al., Small 21 (2025) 2408323.

    112. [112]

      J.E. Greb, A.M. Goldminz, J.T. Elder, et al., Nat. Rev. Dis. Primers 2 (2016) 16082.

    113. [113]

      X. Jiang, S. Huang, W. Cai, et al., Adv. Healthc. Mater. 12 (2023) 2203397.

    114. [114]

      N. Xu, P. Brodin, T. Wei, et al., J. Invest. Dermatol. 131 (2011) 1521–1529.  doi: 10.1038/jid.2011.55

    115. [115]

      T.C. Roberts, R. Langer, M.J.A. Wood, Nat. Rev. Drug Discov. 19 (2020) 673–694.  doi: 10.1038/s41573-020-0075-7

    116. [116]

      S.W.L. Lee, C. Paoletti, M. Campisi, et al., J. Control. Release 313 (2019) 80–95.

    117. [117]

      Y. Zheng, S. Luo, M. Xu, et al., Acta Pharm. Sin. B 14 (2024) 3876–3900.

    118. [118]

      S. Li, T. Tian, T. Zhang, Y. Lin, X. Cai, Nat. Protoc. 20 (2025) 336–362.  doi: 10.1038/s41596-024-01050-7

    119. [119]

      Y. Han, L. Xi, F. Leng, C. Xu, Y. Zheng, Int. J. Nanomedicine 19 (2024) 2625–2638.  doi: 10.2147/ijn.s441353

    120. [120]

      M. Zhang, X. Qin, Y. Gao, et al., Adv. Sci. 10 (2023) 2303706.

    121. [121]

      D. Schadendorf, D.E. Fisher, C. Garbe, et al., Nat. Rev. Dis. Primers 1 (2015) 15003.

    122. [122]

      H. Davies, G.R. Bignell, C. Cox, et al., Nature 417 (2002) 949–954.

    123. [123]

      M. Colombino, M. Capone, A. Lissia, et al., J. Clin. Oncol. 30 (2012) 2522–2529.

    124. [124]

      A. De Luca, M.R. Maiello, A. D'Alessio, M. Pergameno, N. Normanno, Expert Opin. Ther. Targets 16 (2012) S17–S27.  doi: 10.1517/14728222.2011.639361

    125. [125]

      S.R. Hingorani, M.A. Jacobetz, G.P. Robertson, M. Herlyn, D.A. Tuveson, Cancer Res. 63 (2003) 5198–5202.

    126. [126]

      D. Guzman-Villanueva, I.M. El-Sherbiny, D. Herrera-Ruiz, A.V. Vlassov, H.D.C. Smyth, J. Pharm. Sci. 101 (2012) 4046–4066.  doi: 10.1002/jps.23300

    127. [127]

      D. Xiao, Y. Li, T. Tian, et al., ACS Appl. Mater. Interfaces 13 (2021) 6109–6118.  doi: 10.1021/acsami.0c23005

    128. [128]

      M. Rastrelli, S. Tropea, C.R. Rossi, M. Alaibac, In Vivo 28 (2014) 1005–1011.

    129. [129]

      S. Carr, C. Smith, J. Wernberg, Surg. Clin. North Am. 100 (2020) 1–12.

    130. [130]

      C. Garbe, T.K. Eigentler, U. Keilholz, A. Hauschild, J.M. Kirkwood, Oncologist 16 (2011) 5–24.  doi: 10.1634/theoncologist.2010-0190

    131. [131]

      V. Nikolaou, A.J. Stratigos, Br. J. Dermatol. 170 (2014) 11–19.  doi: 10.1111/bjd.12492

    132. [132]

      E. Maverakis, L. Cornelius, G. Bowen, et al., Acta. Derm. Venereol. 95 (2015) 516–524.  doi: 10.2340/00015555-2035

    133. [133]

      K. Esfahani, L. Roudaia, N. Buhlaiga, et al., Curr. Oncol. 27 (2020) 87–97.  doi: 10.3747/co.27.5223

    134. [134]

      J. Nam, S. Son, K.S. Park, et al., Nat. Rev. Mater. 4 (2019) 398–414.  doi: 10.1038/s41578-019-0108-1

    135. [135]

      S. Tan, D. Li, X. Zhu, Biomed. Pharmacother. 124 (2020) 109821.

    136. [136]

      A. Alkilani, M.T. McCrudden, R. Donnelly, Pharmaceutics 7 (2015) 438–470.  doi: 10.3390/pharmaceutics7040438

    137. [137]

      A. Alexander, S. Dwivedi, Ajazuddin, et al., J. Control. Release 164 (2012) 26–40.

    138. [138]

      A. Kováčik, M. Kopečná, K. Vávrová, Expert. Opin. Drug Deliv. 17 (2020) 145–155.  doi: 10.1080/17425247.2020.1713087

    139. [139]

      H. Marwah, T. Garg, A.K. Goyal, G. Rath, Drug. Deliv. 23 (2016) 564–578.  doi: 10.3109/10717544.2014.935532

    140. [140]

      C.M. Schoellhammer, D. Blankschtein, R. Langer, Expert. Opin. Drug Deliv. 11 (2014) 393–407.  doi: 10.1517/17425247.2014.875528

    141. [141]

      F. Shen, L. Sun, L. Wang, et al., Nano Lett. 22 (2022) 4509–4518.  doi: 10.1021/acs.nanolett.2c01332

    142. [142]

      E. Zur, Int. J. Pharm. Compd. 16 (2012) 22–33.

    143. [143]

      Y. Yang, J. Yang, J. Zhu, et al., Bioact. Mater. 39 (2024) 191–205.

    144. [144]

      K. Saleh, A. Danu, S. Koscielny, et al., Leuk. Lymphoma 59 (2018) 2580–2587.  doi: 10.1080/10428194.2017.1403019

    145. [145]

      X. Peng, Q. Han, X. Zhou, et al., Drug Deliv. 29 (2022) 561–573.  doi: 10.1080/10717544.2022.2037788

    146. [146]

      M. Zhang, X. Zhang, T. Tian, et al., Bioact. Mater. 8 (2022) 368–380.

    147. [147]

      M. Li, S. Cai, H. Li, et al., Chin. Chem. Lett. (2025), doi:10.1016/j.cclet.2025.111392.  doi: 10.1016/j.cclet.2025.111392

    148. [148]

      X. Wan, J. Gu, X. Zhou, et al., Cell Prolif. 57 (2024) e13704.

    149. [149]

      N. Di Girolamo, Prog. Retin. Eye Res. 48 (2015) 203–225.

    150. [150]

      S. López, L. Hoz, E.P. Tenorio, et al., Int. J. Mol. Sci. 22 (2021) 5976.  doi: 10.3390/ijms22115976

    151. [151]

      A.V. Ljubimov, M. Saghizadeh, Prog. Retin. Eye Res. 49 (2015) 17–45.

    152. [152]

      K. Karamanou, G. Perrot, F. -X. Maquart, S. Brézillon, Adv. Drug Deliv. Rev. 129 (2018) 344–351.

    153. [153]

      S. Basu, A.J. Hertsenberg, M.L. Funderburgh, et al., Sci. Transl. Med. 6 (2014) 266ra172.

    154. [154]

      M. Ziaei, C. Greene, C.R. Green, Adv. Drug Deliv. Rev. 126 (2018) 162–176.

    155. [155]

      Y. Li, S. Wang, Y. Dong, et al., Adv. Healthc. Mater. 13 (2024) 2304381.

    156. [156]

      W. Ouyang, Y. Wu, X. Lin, et al., Invest. Ophthalmol. Vis. Sci. 62 (2021) 25.

    157. [157]

      Y. Han, S. Guo, Y. Li, et al., Phytomedicine 121 (2023) 155081.

    158. [158]

      D. Yan, C. Huang, W. Ouyang, J. Hu, Z. Liu, Adv. Healthc. Mater. 13 (2024) 2400198.

    159. [159]

      A. Bugshan, I. Farooq, F1000Res 9 (2020) 229.  doi: 10.12688/f1000research.22941.1

    160. [160]

      J. Che, T. Zhao, W. Liu, et al., Mol. Med. Rep. 23 (2020) 158.

    161. [161]

      P. Wu, J. Han, Y. Gong, et al., Pharmaceutics 14 (2022) 1990.  doi: 10.3390/pharmaceutics14101990

    162. [162]

      J. Sun, X. Chen, Y. Lin, X. Cai, Cell Prolif. 57 (2024) e13624.

    163. [163]

      X.Q. Li, Y.L. Jia, Y.W. Zhang, H.Y. Chen, J.J. Xu, Chem. Sci. 14 (2023) 7699–7708.  doi: 10.1039/d3sc01162c

    164. [164]

      X. Zhou, R. Liu, S. Qin, R. Yu, Y. Fu, Curr. Drug Metab. 17 (2016) 755–762.  doi: 10.2174/1389200217666160714095722

    165. [165]

      Q. Shen, P. Xiong, D. Yang, L. Chen, Arch. Oral Biol. 134 (2022) 105336.

    166. [166]

      A. Menon, N. Abd-Aziz, K. Khalid, C.L. Poh, R. Naidu, Int. J. Mol. Sci. 23 (2022) 11502.  doi: 10.3390/ijms231911502

    167. [167]

      S. Xu, X. Qin, J. Liang, et al., Cell Prolif. 57 (2024) e13637.

    168. [168]

      Q. Shen, H. Zhu, Q. Lei, et al., Mol. Med. Rep. 23 (2020) 172.  doi: 10.7312/shen18826-009

    169. [169]

      C.Y. Yang, C.R. Liu, I.Y. Chang, et al., Cancers 12 (2020) 1726.  doi: 10.3390/cancers12071726

    170. [170]

      Y. Liu, S. Li, S. Lin, et al., Chin. Chem. Lett. 34 (2023) 107987.

    171. [171]

      E. Pérez-Herrero, A. Fernández-Medarde, Eur. J. Pharm. Biopharm. 93 (2015) 52–79.

    172. [172]

      Q. Wang, J. Cheng, F. Liu, et al., Adv. Sci. 11 (2024) 2306622.

    173. [173]

      Y. Yang, X. Zhang, S. Wu, et al., J. Control. Release 342 (2022) 66–80.

    174. [174]

      Y. Wei, X. Xia, H. Li, H. Gao, Expert. Opin. Drug Deliv. 20 (2023) 1713–1730.  doi: 10.1080/17425247.2023.2245332

    175. [175]

      J. Liu, H. Cabral, P. Mi, Adv. Drug Deliv. Rev. 207 (2024) 115239.

    176. [176]

      Q. Huang, Y. Chen, W. Zhang, et al., J. Control. Release 366 (2024) 519–534.

    177. [177]

      Y. Gao, X. Chen, T. Tian, et al., Adv. Mater. 34 (2022) 2201731.

    178. [178]

      X. Chen, Z. Xu, Y. Gao, et al., Adv. Mater. 36 (2024) 2406118.

    179. [179]

      J. Li, Y. Lai, M. Li, et al., Chem. Eng. J. 435 (2022) 134855.

    180. [180]

      J. Gu, J. Liang, T. Tian, Y. Lin, JACS Au 5 (2025) 486–520.  doi: 10.1021/jacsau.4c01170

  • 加载中
    1. [1]

      Ruijianghan ShiYujie ZhuWeitong LuYuhan ShaoYang ChenMi ZhouYunfeng LinSirong Shi . Tetrahedral framework nucleic acids enhance osteogenic differentiation and prevent apoptosis for dental follicle stem cell therapy in diabetic bone repair. Chinese Chemical Letters, 2025, 36(5): 110241-. doi: 10.1016/j.cclet.2024.110241

    2. [2]

      Yujie ZhuRuijianghan ShiWeitong LuYang ChenYunfeng LinSirong Shi . Tetrahedral framework nucleic acids prevent epithelial-mesenchymal transition-mediated diabetic fibrosis by targeting the Wnt/β-catenin signaling pathway. Chinese Chemical Letters, 2025, 36(5): 110140-. doi: 10.1016/j.cclet.2024.110140

    3. [3]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    4. [4]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    5. [5]

      Dexuan XiaoTianyu ChenTianxu ZhangSirong ShiMei ZhangXin QinYunkun LiuLongjiang LiYunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602

    6. [6]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    7. [7]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    8. [8]

      Jialin GuoMingrui GuYahui ChenTao XiongYiyang ZhangSimin ChenMingle LiXiaoqiang ChenXiaojun Peng . Nucleic acid delivery by lipid nanoparticles for organ targeting. Chinese Chemical Letters, 2025, 36(11): 110849-. doi: 10.1016/j.cclet.2025.110849

    9. [9]

      Xinyi LuoKe WangYingying XueXiaobao CaoJianhua ZhouJiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924

    10. [10]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    11. [11]

      Yu YanJiawei SongDongdong LiuZihan LiuJialing ChengZhiyang ChenYanfang YangWeizhe JiangHongliang WangJun YeYuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736

    12. [12]

      Zeyang YaoXinru YouXudong WangYunze KangLiying WangZiji Zhang . Stem cell-based hydrogel for the repair and regeneration of cartilage. Chinese Chemical Letters, 2025, 36(8): 110607-. doi: 10.1016/j.cclet.2024.110607

    13. [13]

      Yang XuLe MaYang WangChunmeng Shi . Engineering strategies of biomaterial-assisted exosomes for skin wound repair: Latest advances and challenges. Chinese Chemical Letters, 2025, 36(1): 109766-. doi: 10.1016/j.cclet.2024.109766

    14. [14]

      Huige ZhangWei ChenYuyan HuangMingfang WuHongli ChenCuiling RenXiaoyan LiuHaixia Zhang . Construction of template-free amplification system coupled with capillary electrophoresis for the simultaneous detection of three tumor-associated DNA repair enzymes. Chinese Chemical Letters, 2025, 36(9): 110721-. doi: 10.1016/j.cclet.2024.110721

    15. [15]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    16. [16]

      Tianxu ZhangDexuan XiaoMi ZhouYunfeng LinTao ZhangXiaoxiao Cai . Protective effect of osteogenic growth peptide functionalized tetrahedral DNA nanostructure on bone marrow and bone formation ability in chemotherapy-induced myelosuppressive mice. Chinese Chemical Letters, 2025, 36(8): 110594-. doi: 10.1016/j.cclet.2024.110594

    17. [17]

      Shu-Yi GuTian FengFang-Yin GangSi-Yu YuWan ChanZhao-Cheng MaYao-Hua GuBi-Feng Yuan . Persistent organic pollutant perfluorooctanoic acid induces alterations in epigenetic modifications of DNA and RNA. Chinese Chemical Letters, 2025, 36(12): 110957-. doi: 10.1016/j.cclet.2025.110957

    18. [18]

      Jielin WangHan YeBozhuang ZhouZhen PanYucai LiZhenyuan WeiBin ChaiYizhou GaoXiaojian YeJiangming Yu . Biomimetic nanofibrillar/hyaluronic acid hydrogels remodel the neuromodulatory microenvironment for enhanced bone regeneration. Chinese Chemical Letters, 2025, 36(5): 110133-. doi: 10.1016/j.cclet.2024.110133

    19. [19]

      Lijun LiChenliang GuoYuelin FangZijian ChengYaowei LiZhangyu WangDian CaiYuqi XuWenqi LiuShouwei MaXinxin Zhang . Deformable hyaluronic acid niosomes overcome multi-barriers for improved ergothioneine transdermal delivery against UV-induced skin damage. Chinese Chemical Letters, 2025, 36(11): 110839-. doi: 10.1016/j.cclet.2025.110839

    20. [20]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return