Citation: Ke-Lin Zhu, Zhi-Ao Li, Jiaqi Liang, Yong He, Han-Yuan Gong. Atropisomeric carbon-rich macrocycles: Synthesis, structural evolution, and properties[J]. Chinese Chemical Letters, ;2026, 37(2): 111629. doi: 10.1016/j.cclet.2025.111629 shu

Atropisomeric carbon-rich macrocycles: Synthesis, structural evolution, and properties

    * Corresponding authors.
    E-mail addresses: heyong@bnu.edu.cn (Y. He), hanyuangong@bnu.edu.cn (H.-Y. Gong).
  • Received Date: 9 May 2025
    Revised Date: 4 July 2025
    Accepted Date: 22 July 2025
    Available Online: 24 July 2025

Figures(25)

  • Carbon-rich cycloarene macrocycles can adopt multiple atropisomeric forms due to steric hindrance restricting σ-bond rotation. These distinct conformations exhibit variations in cavity structure, electronic properties, and functional site distribution, leading to diverse molecular recognition and self-assembly behaviors. In recent years, research on carbon-rich cycloarene macrocyclic compounds has emerged as a cutting-edge and interdisciplinary focus in the fields of carbon-rich functional molecules and macrocyclic chemistry. This review provides a comprehensive overview of the development of atropisomers in carbon-rich cycloarene macrocycles, spanning their design and synthesis, optoelectronic properties, and supramolecular chemistry.
  • 加载中
    1. [1]

      M. Iyoda, J. Yamakawa, M.J. Rahman, Angew. Chem. Int. Ed. 50 (2011) 10522–10553.  doi: 10.1002/anie.201006198

    2. [2]

      Y. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 55 (2016) 5136–5158.  doi: 10.1002/anie.201508384

    3. [3]

      K. Kaiser, L.M. Scriven, F. Schulz, et al., Science 365 (2019) 1299–1301.  doi: 10.1126/science.aay1914

    4. [4]

      Z. Sun, K. Ikemoto, T.M. Fukunaga, et al., Science 363 (2019) 151–155.  doi: 10.1126/science.aau5441

    5. [5]

      H. Chen, S. Gui, Y. Zhang, Z. Liu, Q. Miao, CCS Chem. 3 (2021) 613–619.  doi: 10.31635/ccschem.020.202000189

    6. [6]

      K.Y. Cheung, K. Watanabe, Y. Segawa, K. Itami, Nat. Chem. 13 (2021) 255–259.  doi: 10.1038/s41557-020-00627-5

    7. [7]

      T.H. Shi, M.X. Wang, CCS Chem. 3 (2021) 916–931.  doi: 10.31635/ccschem.020.202000287

    8. [8]

      C. Zong, M.J. Wu, J.Z. Qin, A.J. Link, J. Am. Chem. Soc. 139 (2017) 10403–10409.  doi: 10.1021/jacs.7b04830

    9. [9]

      P.J. Canfield, I.M. Blake, Z.L. Cai, et al., Nat. Chem. 10 (2018) 615–624.  doi: 10.1038/s41557-018-0043-6

    10. [10]

      K. Zhu, G. Baggi, S.J. Loeb, Nat. Chem. 10 (2018) 625–630.  doi: 10.1038/s41557-018-0040-9

    11. [11]

      X.H. Zhou, X. Zhang, Y.R. Song, et al., Angew. Chem. Int. Ed. 64 (2025) e202415190.

    12. [12]

      T.R. Luan, C. Sun, Y.L. Tian, et al., Nat. Commun. 16 (2025) 2370.

    13. [13]

      Y.E. Zhang, Y. Jiang, Y. Zhang, et al., Chin. Chem. Lett. 36 (2025) 111201.  doi: 10.1016/j.cclet.2025.111201

    14. [14]

      O. Shalev, S.E. Biali, Org. Lett. 20 (2018) 3390–3393.  doi: 10.1021/acs.orglett.8b01314

    15. [15]

      N. Li, J.J. Liu, J.W. Sun, et al., Green Chem. 22 (2020) 5325–5332.

    16. [16]

      N.A. Grosso-Giordano, C. Schroeder, L. Xu, et al., Angew. Chem. Int. Ed. 60 (2021) 10239–10246.  doi: 10.1002/anie.202100166

    17. [17]

      H.J.S. Banks, J.W.A. Frese, M.R.J. Elsegood, C. Redshaw, Chem. Commun. 60 (2024) 304–307.  doi: 10.1039/d3cc04899c

    18. [18]

      S. Mosca, Y. Yu, J. Rebek Jr., Nat. Protoc. 11 (2016) 1371–1387.  doi: 10.1038/nprot.2016.078

    19. [19]

      N.W. Wu, I.D. Petsalakis, G. Theodorakopoulos, Y. Yu, J. Rebek Jr., Angew. Chem. Int. Ed. 57 (2018) 15091–15095.  doi: 10.1002/anie.201808265

    20. [20]

      M. Petroselli, V. Angamuthu, F.U. Rahman, et al., J. Am. Chem. Soc. 142 (2020) 2396–2403.  doi: 10.1021/jacs.9b11595

    21. [21]

      T.R. Li, G. Piccini, K. Tiefenbacher, J. Am. Chem. Soc. 145 (2023) 4294–4303.  doi: 10.1021/jacs.2c13641

    22. [22]

      Y. Peng, S. Tong, Y. Zhang, M.X. Wang, Angew. Chem. Int. Ed. 62 (2023) e202302646.

    23. [23]

      J. Yao, W. Wu, W. Liang, et al., Angew. Chem. Int. Ed. 56 (2017) 6869–6873.  doi: 10.1002/anie.201702542

    24. [24]

      H. Liang, B. Hua, F. Xu, et al., J. Am. Chem. Soc. 142 (2020) 19772–19778.  doi: 10.1021/jacs.0c10570

    25. [25]

      C. Xiao, W. Wu, W. Liang, et al., Angew. Chem. Int. Ed. 59 (2020) 8094–8098.  doi: 10.1002/anie.201916285

    26. [26]

      S. Ohtani, S. Akine, K. Kato, et al., J. Am. Chem. Soc. 146 (2024) 4695–4703.  doi: 10.1021/jacs.3c12093

    27. [27]

      T.H. Shi, S. Akine, S. Ohtani, K. Kato, T. Ogoshi, Angew. Chem. Int. Ed. 63 (2024) e202318268.

    28. [28]

      M.Y. Zhao, Q.H. Guo, M.X. Wang, Org. Chem. Front. 5 (2018) 760–764.  doi: 10.1039/c7qo00900c

    29. [29]

      S. Tong, J.T. Li, D.D. Liang, et al., J. Am. Chem. Soc. 142 (2020) 14432–14436.  doi: 10.1021/jacs.0c05369

    30. [30]

      Y. Gao, J. Guo, Y. Lai, et al., Angew. Chem. Int. Ed. 63 (2024) e202315691.

    31. [31]

      X.N. Han, Y. Han, C.F. Chen, J. Am. Chem. Soc. 142 (2020) 8262–8269.  doi: 10.1021/jacs.0c00624

    32. [32]

      X. Wang, F. Jia, L.P. Yang, H. Zhou, W. Jiang, Chem. Soc. Rev. 49 (2020) 4176–4188.  doi: 10.1039/d0cs00341g

    33. [33]

      X.N. Han, Y. Han, C.F. Chen, Nat. Commun. 12 (2021) 6378.

    34. [34]

      Y.Y. Fan, D. Chen, Z.A. Huang, et al., Nat. Commun. 9 (2018) 3037.

    35. [35]

      S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe, Nat. Commun. 2 (2011) 492.

    36. [36]

      S. Hitosugi, T. Yamasaki, H. Isobe, J. Am. Chem. Soc. 134 (2012) 12442–12445.  doi: 10.1021/ja305723j

    37. [37]

      T. Matsuno, S. Kamata, S. Hitosugi, H. Isobe, Chem. Sci. 4 (2013) 3179–3183.  doi: 10.1039/c3sc50645b

    38. [38]

      K. Kogashi, T. Matsuno, S. Sato, H. Isobe, Angew. Chem. Int. Ed. 58 (2019) 7385–7389.  doi: 10.1002/anie.201902893

    39. [39]

      H. Isobe, S. Hitosugi, T. Yamasaki, R. Iizuka, Chem. Sci. 4 (2013) 1293–1297.  doi: 10.1039/c3sc22181d

    40. [40]

      T. Matsuno, M. Someya, S. Sato, S. Maeda, H. Isobe, Angew. Chem. Int. Ed. 59 (2020) 14570–14576.  doi: 10.1002/anie.202005538

    41. [41]

      T. Matsuno, S. Sato, R. Iizuka, H. Isobe, Chem. Sci. 6 (2015) 909–916.

    42. [42]

      T. Matsuno, S. Sato, A. Yokoyama, S. Kamata, H. Isobe, Angew. Chem. Int. Ed. 55 (2016) 15339–15343.  doi: 10.1002/anie.201609444

    43. [43]

      T. Matsuno, M. Fujita, K. Fukunaga, S. Sato, H. Isobe, Nat. Commun. 9 (2018) 3779.

    44. [44]

      T. Matsuno, K. Fukunaga, S. Sato, H. Isobe, Angew. Chem. Int. Ed. 58 (2019) 12170–12174.  doi: 10.1002/anie.201907040

    45. [45]

      T. Matsuno, S. Kamata, S. Sato, et al., Angew. Chem. Int. Ed. 56 (2017) 15020–15024.  doi: 10.1002/anie.201709442

    46. [46]

      S. Sato, T. Yamasaki, H. Isobe, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8374–8379.  doi: 10.1073/pnas.1406518111

    47. [47]

      H. Isobe, K. Nakamura, S. Hitosugi, et al., Chem. Sci. 6 (2015) 2746–2753.

    48. [48]

      T. Matsuno, Y. Nakai, S. Sato, Y. Maniwa, H. Isobe, Nat. Commun. 9 (2018) 1907.

    49. [49]

      S. Terasaki, Y. Kotani, R. Katsuno, et al., Angew. Chem. Int. Ed. 63 (2024) e202406502.

    50. [50]

      T. Matsuno, S. Terasaki, K. Kogashi, R. Katsuno, H. Isobe, Nat. Commun. 12 (2021) 5062.

    51. [51]

      Y. Kotani, R. Katsuno, K. Sambe, et al., Angew. Chem. Int. Ed. 64 (2025) e202425308.

    52. [52]

      H. Omachi, Y. Segawa, K. Itami, Org. Lett. 13 (2011) 2480–2483.  doi: 10.1021/ol200730m

    53. [53]

      J. Wang, G. Zhuang, Q. Huang, et al., Chem. Commun. 55 (2019) 9456–9459.  doi: 10.1039/c9cc04700j

    54. [54]

      J. Wang, H. Shi, S. Wang, et al., Chem. Eur. J. 28 (2022) e202103828.

    55. [55]

      J. Wang, G. Zhuang, M. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 1619–1626.  doi: 10.1002/anie.201909401

    56. [56]

      D. Wassy, M. Hermann, J.S. Wossner, et al., Chem. Sci. 12 (2021) 10150–10158.  doi: 10.1039/d1sc02718b

    57. [57]

      M. Hermann, D. Wassy, J. Kohn, et al., Angew. Chem. Int. Ed. 60 (2021) 10680–10689.  doi: 10.1002/anie.202016968

    58. [58]

      Y. Yu, Y. Hu, C. Ning, et al., Angew. Chem. Int. Ed. 63 (2024) e202407034.

    59. [59]

      H. Han, R. Fu, R. Wang, et al., J. Am. Chem. Soc. 144 (2022) 20351–20362.  doi: 10.1021/jacs.2c08144

    60. [60]

      R. Fu, Q.Y. Zhao, H. Han, et al., Angew. Chem. Int. Ed. 62 (2023) e202315990.

    61. [61]

      R. Wang, L.B. Jing, J.Y. Deng, et al., CCS Chem. (2025), doi:10.31635/ccschem.025.202505572.  doi: 10.31635/ccschem.025.202505572

    62. [62]

      X. Zhang, H. Shi, G. Zhuang, et al., Angew. Chem. Int. Ed. 60 (2021) 17368–17372.  doi: 10.1002/anie.202104669

    63. [63]

      X. Zhang, H. Liu, G. Zhuang, S. Yang, P. Du, Nat. Commun. 13 (2022) 3543.

    64. [64]

      Y. Zhang, D. Yang, S.H. Pun, H. Chen, Q. Miao, Precis. Chem. 1 (2023) 107–111.

    65. [65]

      G. Li, L.L. Mao, J.N. Gao, et al., Angew. Chem. Int. Ed. 64 (2025) e202419435.

    66. [66]

      Q. Huang, G. Zhuang, M. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 18938–18943.  doi: 10.1021/jacs.9b10358

    67. [67]

      T.M. Fukunaga, T. Kato, K. Ikemoto, H. Isobe, Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2120160119.

    68. [68]

      Y.J. Shen, K.L. Zhu, J.Q. Liang, X. Sun, H.Y. Gong, J. Mater. Chem. C 11 (2023) 4267–4287.  doi: 10.1039/d2tc05492b

    69. [69]

      Y. Segawa, T. Watanabe, K. Yamanoue, et al., Nat. Synth. 1 (2022) 535–541.  doi: 10.1038/s44160-022-00075-8

    70. [70]

      L. Ye, C. Hu, D. Yang, et al., J. Am. Chem. Soc. 147 (2025) 17795–17803.  doi: 10.1021/jacs.5c01323

    71. [71]

      R. Herges, M. Deichmann, T. Wakita, Y. Okamoto, Angew. Chem. Int. Ed. 42 (2003) 1170–1172.

    72. [72]

      L.H. Wang, N. Hayase, H. Sugiyama, et al., Angew. Chem. Int. Ed. 59 (2020) 17951–17957.  doi: 10.1002/anie.202006959

    73. [73]

      S. Castro-Fernandez, R. Yang, A.P. Garcia, et al., Chem. Eur. J. 23 (2017) 11747–11751.  doi: 10.1002/chem.201702986

    74. [74]

      A. Ozcelik, D. Aranda, S. Gil-Guerrero, et al., Chem. Eur. J. 26 (2020) 17342–17349.  doi: 10.1002/chem.202002561

    75. [75]

      K. Zhu, K. Kamochi, T. Kodama, M. Tobisu, T. Amaya, Chem. Sci. 11 (2020) 9604–9610.  doi: 10.1039/d0sc02452j

    76. [76]

      Y. Fan, J. He, L. Liu, et al., Angew. Chem. Int. Ed. 62 (2023) e202304623.

    77. [77]

      J. He, Y. Fan, Z. Lian, et al., Adv. Optical Mater. 12 (2023) 2302221.

    78. [78]

      J. He, M.H. Yu, Z. Lian, et al., Chem. Sci. 14 (2023) 4426–4433.  doi: 10.1039/d2sc06825g

    79. [79]

      S. Guo, L. Liu, F. Su, et al., JACS Au 4 (2024) 402–410.  doi: 10.1021/jacsau.3c00720

    80. [80]

      L. Tong, R.R. Gattass, J.B. Ashcom, et al., Nature 426 (2003) 816–819.

    81. [81]

      G.R. Schaller, F. Topic, K. Rissanen, et al., Nat. Chem. 6 (2014) 608–613.  doi: 10.1038/nchem.1955

    82. [82]

      S. Miguez-Lago, A.L. Llamas-Saiz, M. Magdalena Cid, J.L. Alonso-Gomez, Chem. Eur. J. 21 (2015) 18085–18088.  doi: 10.1002/chem.201503994

    83. [83]

      Y. Segawa, M. Kuwayama, Y. Hijikata, et al., Science 365 (2019) 272–276.  doi: 10.1126/science.aav5021

    84. [84]

      X. Jiang, J.D. Laffoon, D. Chen, et al., J. Am. Chem. Soc. 142 (2020) 6493–6498.  doi: 10.1021/jacs.0c01430

    85. [85]

      J. Zhang, H. Chen, X. Qin, et al., Org. Lett. 24 (2022) 9463–9467.

    86. [86]

      W. Fan, T.M. Fukunaga, S. Wu, et al., Nat. Synth. 2 (2023) 880–887.  doi: 10.1038/s44160-023-00317-3

    87. [87]

      L. Zhan, H. Xiao, J.N. Gao, H. Cong, Org. Chem. Front. 10 (2023) 5395–5401.  doi: 10.1039/d3qo01351k

    88. [88]

      W. Fan, T. Matsuno, Y. Han, et al., J. Am. Chem. Soc. 143 (2021) 15924–15929.  doi: 10.1021/jacs.1c08468

    89. [89]

      Q. Zhou, X. Hou, J. Wang, et al., Angew. Chem. Int. Ed. 62 (2023) e202302266.

    90. [90]

      A. Bu, Y. Zhao, H. Xiao, et al., Angew. Chem. Int. Ed. 61 (2022) e202209449.

    91. [91]

      A. Bu, J.N. Gao, Y. Chen, et al., Angew. Chem. Int. Ed. 63 (2024) e202401838.

    92. [92]

      L. Pu, Chem. Rev. 98 (1998) 2405–2494.

    93. [93]

      Y. Chen, S. Yekta, A.K. Yudin, Chem. Rev. 103 (2003) 3155–3212.

    94. [94]

      L. Pu, Acc. Chem. Res. 50 (2017) 1032–1040.  doi: 10.1021/acs.accounts.7b00036

    95. [95]

      L. Pu, Angew. Chem. Int. Ed. 59 (2020) 21814–21828.  doi: 10.1002/anie.202003969

    96. [96]

      M. Kondo, K. Nakamura, C.G. Krishnan, et al., ACS Catal. 11 (2021) 1863–1867.  doi: 10.1021/acscatal.1c00057

    97. [97]

      D. Lorbach, A. Keerthi, T.M. Figueira-Duarte, et al., Angew. Chem. Int. Ed. 55 (2016) 418–421.  doi: 10.1002/anie.201508180

    98. [98]

      R. Kurosaki, H. Morimoto, K. Matsuo, et al., Chem. Eur. J. 29 (2023) e202203848.

    99. [99]

      G. Naulet, L. Sturm, A. Robert, et al., Chem. Sci. 9 (2018) 8930–8936.  doi: 10.1039/c8sc02877j

    100. [100]

      T. Matsuno, Y. Yang, Y. Nanjo, H. Isobe, S. Sato, Chem. Lett. 50 (2021) 110–112.  doi: 10.1246/cl.200717

    101. [101]

      Y.D. Yang, H.Y. Gong, Chem. Commun. 55 (2019) 3701–3704.  doi: 10.1039/c8cc09911a

    102. [102]

      J. Liang, S. Lu, Y. Yang, et al., Nat. Commun. 14 (2023) 8166.

    103. [103]

      X. Sun, J.K. Bai, Y.D. Yang, et al., Nat. Commun. 15 (2024) 6559.

    104. [104]

      J. Liang, L.J. Peng, K.L. Zhu, et al., Proc. Natl. Acad. Sci. U. S. A. 122 (2025) e2500357122.

    105. [105]

      Y.D. Yang, X.L. Chen, J.L. Sessler, H.Y. Gong, J. Am. Chem. Soc. 143 (2021) 2315–2324.  doi: 10.1021/jacs.0c11838

    106. [106]

      Y.D. Yang, X. Ji, Z.H. Lu, et al., Nat. Commun. 11 (2020) 77.  doi: 10.3319/tao.2019.07.14.01

    107. [107]

      Y.D. Yang, X.L. Chen, J. Liang, et al., J. Am. Chem. Soc. 145 (2023) 14010–14018.  doi: 10.1021/jacs.3c03727

    108. [108]

      C.E. Colwell, T.W. Price, T. Stauch, R. Jasti, Chem. Sci. 11 (2020) 3923–3930.  doi: 10.1039/d0sc00629g

    109. [109]

      S. Wu, Y. Ni, Y. Han, et al., J. Am. Chem. Soc. 144 (2022) 23158–23167.  doi: 10.1021/jacs.2c10859

  • 加载中
    1. [1]

      Kun ZhangXin-Yue LouYan WangWeiwei HuanYing-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464

    2. [2]

      Ya-Ru Qu Kai-Li Tian Han-Jun Huang Jia-Jun Tu Ai-Hao Chen Hai-Jun Sun Maxim V. Bermeshev Shao-Jie Wang Wen-Bin Li Xiang-Kui Ren . Fluorescence enhancement of perylene diimide: Design strategy and application. Chinese Journal of Structural Chemistry, 2025, 44(12): 100756-100756. doi: 10.1016/j.cjsc.2025.100756

    3. [3]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    4. [4]

      Kai ZhuLei YangYang YangYanqi WuFengzhi Zhang . Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes. Chinese Chemical Letters, 2025, 36(7): 110678-. doi: 10.1016/j.cclet.2024.110678

    5. [5]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    6. [6]

      Wen-Wen XuYue-Xiu QinXiao-Yong YuLin-Nan JiangHeng-Yi ZhangYong ChenYu Liu . Multipath cascade light harvesting for multicolor luminescence based on macrocyclic sulfonatocalix[4]arene. Chinese Chemical Letters, 2025, 36(11): 111068-. doi: 10.1016/j.cclet.2025.111068

    7. [7]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    8. [8]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    9. [9]

      Xia LiYandie LiuZhenglin DuQiangsheng ZhangQing ChenJialin XieKelong Zhu . Bowl-in-bowl encapsulation of corannulene by herteroatom-bridged nanobelts. Chinese Chemical Letters, 2025, 36(5): 110249-. doi: 10.1016/j.cclet.2024.110249

    10. [10]

      Pei-Pei LiuJia-Bin XingYue-Yang LiuKe FengHui WangDan-Wei ZhangWei ZhouGang ZhaoJiaheng ZhangZhan-Ting Li . Sulfonatoproxylated cucurbit[7]urils as highly water-soluble and biocompatible excipients for solubilizing poorly soluble drugs and improving the bioavailability of indomethacin. Chinese Chemical Letters, 2025, 36(9): 110831-. doi: 10.1016/j.cclet.2025.110831

    11. [11]

      Han-Bin LiuXiaoyu ChengZhou GuoJuan YangFuwen TanDonghui LanJian-Ping TanBing YiWeixin ZhaiQing-Hui Guo . CrownBind-IA: A machine learning model predicting binding constants between crown ethers and alkali metal ions. Chinese Chemical Letters, 2025, 36(12): 111149-. doi: 10.1016/j.cclet.2025.111149

    12. [12]

      Xin ZhangTongxia JinChangyin YangDezheng XuHaidong JiaLin Xu . Azobenzene-containing photoresponsive metal-organic cages. Chinese Chemical Letters, 2025, 36(12): 111135-. doi: 10.1016/j.cclet.2025.111135

    13. [13]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    14. [14]

      Shengyong LiuHui LiWei ZhangYan ZhangYan DongWei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465

    15. [15]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    16. [16]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    17. [17]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    18. [18]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    19. [19]

      Huipeng LiXue YangMinjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651

    20. [20]

      Zeyuan ZhangZixuan LiChenjing LiuYali HouKe GaoShijin JianGuoping LiGang HeMingming Zhang . Porphyrin metallacage-based host-guest complexation for highly efficient photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111322-. doi: 10.1016/j.cclet.2025.111322

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return