-
[1]
A.B. Arunachalam, Vaccines 12 (2024) 396.
doi: 10.3390/vaccines12040396
-
[2]
M.A. Saleemi, Y. Zhang, G. Zhang, Pathogens 13 (2024) 441.
doi: 10.3390/pathogens13060441
-
[3]
C. Aggarwal, V. Ramasamy, A. Garg, R. Shukla, N. Khanna, Front. Immunol. 14 (2023) 1128784.
doi: 10.3389/fimmu.2023.1128784
-
[4]
A. Biram, N. Davidzohn, Z. Shulman, Immunol. Rev. 288 (2019) 37–48.
doi: 10.1111/imr.12737
-
[5]
H. Miwa, O.Q. Antao, K.M. Kelly-Scumpia, et al., Adv. Sci. 10 (2023) e2302248.
doi: 10.1002/advs.202302248
-
[6]
V. Mani, S.K. Bromley, T. Äijö, et al., Science 366 (2019) eaav5728.
doi: 10.1126/science.aav5728
-
[7]
P. Spiliopoulou, P. Kaur, T. Hammett, G.D. Conza, M. Lahn. Cancer Drug Resist. 7 (2024) 2.
-
[8]
G.G. Manriquez, I. Tuero, Hum. Vaccin. Immunother. 17 (2021) 3539–3550.
doi: 10.1080/21645515.2021.1934354
-
[9]
M. Yang, J. Zhou, L. Lu, et al., Exploration 4 (2024) 20230171.
doi: 10.1002/EXP.20230171
-
[10]
H. Zhu, C. Yang, A. Yan, et al., View 4 (2023) 20220067.
doi: 10.1002/VIW.20220067
-
[11]
Z. Huang, Q. Sun, H. Shi, et al., ChemPhysMater 2 (2023) 259–266.
doi: 10.1016/j.chphma.2023.03.005
-
[12]
D. Laera, H. HogenEsch, D.T. O'Hagan, Pharmaceutics 15 (2023) 1884.
doi: 10.3390/pharmaceutics15071884
-
[13]
E.J. Ko, S.M. Kang, Hum. Vaccin. Immunother. 14 (2018) 3041–3045.
doi: 10.1080/21645515.2018.1495301
-
[14]
Y. Li, Y. Duan, Y. Li, et al., Exploration 5 (2025) 20230117.
-
[15]
Y. Xu, J. Chen, J. Ding, et al., Polym. Sci. Tech. 1 (2025) 171–220.
doi: 10.1021/polymscitech.5c00010
-
[16]
Y. Cai, Y. Jiang, Y. Chen, et al., Chin. Chem. Lett. 36 (2025) 110437.
doi: 10.1016/j.cclet.2024.110437
-
[17]
B. Nguyen, N.H. Tolia, NPJ Vaccines 6 (2021) 70.
doi: 10.1038/s41541-021-00330-7
-
[18]
C. Xie, X. You, H. Zhang, et al., Adv. Sci. 10 (2023) e2300418.
doi: 10.1002/advs.202300418
-
[19]
H. Zhang, X. You, X. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 118 (2021) e2005191118.
doi: 10.1073/pnas.2005191118
-
[20]
M.H. Younis, Z. Tang, W. Cai, et al., Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14 (2022) e1807.
doi: 10.1002/wnan.1807
-
[21]
Y. Guo, Z. Li, B. Guo, et al., Nano Biomed. Eng. 16 (2024) 135–151.
doi: 10.26599/nbe.2024.9290061
-
[22]
J. Deng, G. Shi, Z. Ye, et al., Chin. Chem. Lett. 36 (2025) 110496.
doi: 10.1016/j.cclet.2024.110496
-
[23]
D. Liu, W. Yang, B. Zhang. Nano Biomed. Eng. 17 (2025) 36–55.
doi: 10.26599/nbe.2024.9290073
-
[24]
A. Thakur, F. Rose, S.R. Ansari, et al., Mol. Pharm. 16 (2019) 4725–4737.
doi: 10.1021/acs.molpharmaceut.9b00908
-
[25]
L. Yang, P. Cai, L. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 12129–12137.
doi: 10.1021/jacs.1c03960
-
[26]
H. Wang, M. -Q. Pan, Y. -F. Wang, et al., Chin. Chem. Lett. 35 (2024) 109581.
doi: 10.1016/j.cclet.2024.109581
-
[27]
C.B. Rodell, S.P. Arlauckas, M.F. Cuccarese, et al., Nat. Biomed. Eng. 2 (2018) 578–588.
doi: 10.1038/s41551-018-0236-8
-
[28]
S.W.A. Shah, M. Shoaib, M. Ghias, et al., Surface engineered gold nanorods: intelligent delivery system for cancer therapy, in: M.R. Shah, M. Imran, S. Ullah (Eds.), Metal Nanoparticles for Drug Delivery and Diagnostic Applications, Elsevier, Amsterdam, 2020, pp. 85–98.
-
[29]
X. Xin, X. Ni, K. Shi, et al., Front. Bioeng. Biotechnol. 10 (2022) 915067.
-
[30]
G. Erdos, S.C. Balmert, C.D. Carey, et al., J. Invest. Dermatol. 140 (2020) 2528–2531.e2.
doi: 10.1016/j.jid.2020.03.966
-
[31]
K.E. Lindsay, S.M. Bhosle, C. Zurla, et al., Nat. Biomed. Eng. 3 (2019) 371–380.
doi: 10.1038/s41551-019-0378-3
-
[32]
S.V. Hartimath, B. Ramasamy, T.Y. Xuan, et al., Pharmaceutics 14 (2022) 150.
doi: 10.3390/pharmaceutics14010150
-
[33]
T. Ertveldt, S. Meulewaeter, Y. De Vlaeminck, et al., Theranostics 13 (2023) 5483–5500.
doi: 10.7150/thno.85106
-
[34]
D. Huang, T. Wu, S. Lan, et al., Biomaterials 289 (2022) 121808.
doi: 10.1016/j.biomaterials.2022.121808
-
[35]
B.H. Lee, R. Gonzalez-Rodriguez, A. Valimukhametova, et al., ACS Appl. Nano Mater. 6 (2023) 17512–17520.
doi: 10.1021/acsanm.3c02650
-
[36]
W. Huang, S. Shi, Y. Jiang, et al., ACS Nano 17 (2023) 15590–15604.
doi: 10.1021/acsnano.3c02309
-
[37]
Z.S. Stillman, G.E. Decker, M.R. Dworzak, E.D. Bloch, C.A. Fromen, J. Nanobiotechnol. 21 (2023) 39.
doi: 10.1186/s12951-023-01782-w
-
[38]
A. Thakur, C. Rodríguez-Rodríguez, K. Saatchi, et al., Front. Immunol. 9 (2018) 2825.
doi: 10.3389/fimmu.2018.02825
-
[39]
I.S. Alam, A.T. Mayer, I. Sagiv-Barfi, et al., J. Clin. Invest. 128 (2018) 2569–2580.
doi: 10.1172/jci98509
-
[40]
J.T. Martin, B.L. Hartwell, S.C. Kumarapperuma, et al., Biomaterials 275 (2021) 120868.
doi: 10.1016/j.biomaterials.2021.120868
-
[41]
P.P. Lopes, G. Todorov, T.T. Pham, et al., J. Virol. 92 (2018) e02156-17.
-
[42]
W. Poon, B.R. Kingston, B. Ouyang, W. Ngo, W.C.W. Chan, Nat. Nanotechnol. 15 (2020) 819–829.
doi: 10.1038/s41565-020-0759-5
-
[43]
H.K. Dewangan, S. Singh, R. Mishra, R.K. Dubey, Int. J. Appl. Pharm. 12 (2020) 24–33.
doi: 10.22159/ijap.2020v12i4.36856
-
[44]
M. Prasad, L. Buragohain, M. Ghosh, R. Kumar, Nanotechnology in Cancer Diagnosis and Therapy, Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, Springer Nature, Berlin, 2022, pp. 1–24.
-
[45]
E. Cheng, Y. Li, W. Yuan, et al., Chin. Chem. Lett. 35 (2024) 109386.
doi: 10.1016/j.cclet.2023.109386
-
[46]
L. Zichao, L. Ping, D. Jizhe, et al., J. Control. Rel. 170 (2013) 259–267.
doi: 10.1016/j.jconrel.2013.05.027
-
[47]
C. Liu, X. Liu, X. Xiang, et al., Nat. Nanotechnol. 17 (2022) 531–540.
doi: 10.1038/s41565-022-01098-0
-
[48]
H. Jiang, Q. Wang, L. Li, et al., Adv. Sci. 5 (2018) 1700426.
doi: 10.1002/advs.201700426
-
[49]
Z. Eva, C. Caterina, P. Maria, et al., J. Control. Rel. 258 (2017) 182–195.
-
[50]
L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.L. Jiang, Mater. Today Chem. 27 (2019) 43–68.
doi: 10.1016/j.mattod.2018.10.038
-
[51]
Y. Pan, J. Han, G. Wang, et al., Chem. Eng. J. 507 (2025) 160128.
doi: 10.1016/j.cej.2025.160128
-
[52]
X. Xiong, J. Zhao, R. Su, et al., Nano Today 39 (2021) 101225.
doi: 10.1016/j.nantod.2021.101225
-
[53]
W.A. Weber, J. Czernin, C.J. Anderson, et al., J. Nucl. Med. 61 (2020) 263s–272s.
doi: 10.2967/jnumed.120.254532
-
[54]
C. Zhang, B. Nan, J. Xu, et al., Nat. Biomed. Eng. 9 (2025) 671–685.
-
[55]
T. Tamura, A. Fujisawa, M. Tsuchiya, Nat. Chem. Biol. 16 (2020) 1361–1367.
doi: 10.1038/s41589-020-00651-z
-
[56]
F. Paquet, M.R. Bailey, R.W. Leggett, et al., Ann. ICRP 46 (2017) 1–486.
doi: 10.1177/0146645317734963
-
[57]
L. Wang, Y. Zhao, B. Zheng, et al., Sci. Adv. 9 (2023) eadg8600.
doi: 10.1126/sciadv.adg8600
-
[58]
M.H. Pablico-Lansigan, S.F. Situ, A.C.S. Samia, Nanoscale 5 (2013) 4040–4055.
doi: 10.1039/c3nr00544e
-
[59]
Y. Wang, S. Lin, H. Jiang, et al., CCS Chem. 4 (2022) 1238–1250.
doi: 10.31635/ccschem.021.202000670
-
[60]
Q. Yin, W. Luo, V. Mallajosyula, et al., Nat. Mater. 22 (2023) 380–390.
-
[61]
R. Liang, J. Xie, J. Li, et al., Biomaterials 149 (2017) 41–50.
doi: 10.1016/j.biomaterials.2017.09.029
-
[62]
Z. Fan, H. Liu, Y. Xue, et al., Bioact. Mater. 6 (2021) 312–325.
-
[63]
M. Wang, B. Zhou, L. Wang, et al., J. Mater. Chem. B 8 (2020) 8261–8270.
doi: 10.1039/d0tb01453b
-
[64]
J.H. Han, Y.Y. Lee, H.E. Shin, et al., Biomaterials 289 (2022) 121762.
-
[65]
Q. Chen, L. Zhang, L. Li, et al., J. Nanobiotechnol. 19 (2021) 449.
-
[66]
C. Bai, J. He, H. Niu, et al., Tuberculosis 110 (2018) 104–111.
-
[67]
F. Ren, F. Wang, A. Baghdasaryan, et al., Nat. Biomed. Eng. 8 (2024) 726–39.
-
[68]
L.N. Gales, S. Brotea-Mosoiu, O.G. Trifanescu, A.M. Lazar, M. Gherghe, Diagnostics 12 (2022) 2163.
doi: 10.3390/diagnostics12092163
-
[69]
M. Nayrac, M. Dubé, G. Sannier, et al., Cell Rep. 39 (2022) 111013.
-
[70]
X. Han, M.G. Alameh, K. Butowska, et al., Nat. Nanotechnol. 18 (2023) 1105–1114.
-
[71]
R. Cau, C. Mantini, L. Monti, et al., Insights Imaging 13 (2022) 44.
-
[72]
M.G. Friedrich, F. Marcotte, Circ. Cardiovasc. Imaging 6 (2013) 833–839.
-
[73]
T. Savary, M. Fieux, M. Douplat, et al., JAMA Netw. Open 6 (2023) e239158.
doi: 10.1001/jamanetworkopen.2023.9158
-
[74]
M. Sartelli, F.A. Moore, L. Ansaloni, et al., World J. Emerg. Surg. 10 (2015) 3.
-
[75]
G. Gunes, P. Crivellaro, D. Muradali, Indian J. Radiol. 32 (2022) 197–204.
-
[76]
C. Giacuzzo, C.M. Eandi, A. Kawasaki, Acta Ophthalmol. 100 (2022) e611–e612.
-
[77]
Y. Wang, W. Li, B. Lin, et al., Biomater. Sci. 11 (2023) 5177–5185.
doi: 10.1039/d3bm00700f
-
[78]
M. Olivo, R. Bhuvaneswari, S.S. Lucky, N. Dendukuri, P. Soo-Ping Thong, Pharmaceuticals 3 (2010) 1507–1529.
doi: 10.3390/ph3051507
-
[79]
L.A. Dawson, M.B. Sharpe, Lancet Oncol. 7 (2006) 848–858.
-
[80]
M.J. Gorbet, A. Ranjan, Pharmacol. Ther. 207 (2020) 107456.
-
[81]
Y. Dai, X. Li, Y. Xue, et al., Acta Biomater. 166 (2023) 496–511.
-
[82]
Q. Xiang, C. Yang, Y. Luo, et al., Small 18 (2022) e2107809.
-
[83]
Z.B. Wang, J. Xu, Vaccines 8 (2020) 128.
-
[84]
Z. Win, J. Weiner Rd, A. Listanco, et al., Front. Immunol. 11 (2020) 613496.
-
[85]
H. HogenEsch, Front. Immunol. 3 (2013) 406.
-
[86]
A. Raponi, J.M. Brewer, P. Garside, D. Laera, Semin. Immunol. 56 (2021) 101544.
-
[87]
Z. Liang, H. Zhu, X. Wang, et al., Front. Immunol. 11 (2020) 589833.
-
[88]
M.B. Laurens, Hum. Vaccin. Immunother. 16 (2019) 480–489.
-
[89]
A.M. Didierlaurent, B. Laupèze, A. Di Pasquale, et al., Expert Rev. Vaccines 16 (2016) 55–63.
-
[90]
C. Pifferi, R. Fuentes, A. Fernández-Tejada, Nat. Rev. Chem. 5 (2021) 197–216.
doi: 10.1038/s41570-020-00244-3
-
[91]
I. Rosenkrands, C. Vingsbo-Lundberg, T.J. Bundgaard, et al., Vaccine 29 (2011) 6283–6291.
-
[92]
D.S. Tretiakova, E.L. Vodovozova, Biochem. Mosc. Suppl. Ser. A: Memb. Cell Biol. 16 (2022) 1–20.
doi: 10.1134/s1990747822020076
-
[93]
F. Ma, L. Yang, Z. Sun, et al., Sci. Adv. 6 (2020) eabb4429.
-
[94]
T. Sparwasser, R.M. Vabulas, B. Villmow, et al., Eur. J. Immunol. 30 (2000) 3591–3597.
-
[95]
A. Comberlato, K. Paloja, M.M.C. Bastings, J. Mat. Chem. B 7 (2019) 6321–6346.
doi: 10.1039/c9tb01222b
-
[96]
M.A. Dobrovolskaia, Molecules 24 (2019) 4620.
doi: 10.3390/molecules24244620
-
[97]
E. Buntinx, L. Brochado, C. Borja-Tabora, et al., Vaccine 41 (2023) 1875–1884.
-
[98]
J. Jo, D. Mills, A. Dentinger, et al., Sensors 23 (2023) 2789.
doi: 10.3390/s23052789
-
[99]
G.T. Jennings, M.F. Bachmann, Biol. Chem. 389 (2008) 521–536.
doi: 10.1515/bc.2008.064
-
[100]
M.O. Mohsen, A.C. Gomes, G. Cabral-Miranda, et al., J. Control. Rel. 251 (2017) 92–100.
-
[101]
F. Xue, J. Cornelissen, Q. Yuan, et al., Chin. Chem. Lett. 34 (2023) 107448.
-
[102]
S. Diebold, Adv. Drug Deliv. Rev. 60 (2008) 813–823.
-
[103]
M. Kheirvari, H. Liu, E. Tumban, Viruses 15 (2023) 1109.
doi: 10.3390/v15051109
-
[104]
C. Qian, X. Liu, Q. Xu, et al., Vaccines 8 (2020) 139.
-
[105]
S. Shukla, J.T. Myers, S.E. Woods, et al., Biomaterials 121 (2017) 15–27.
-
[106]
S.H. Lee, K.B. Chu, M.J. Kim, et al., Pharmaceutics 15 (2023) 782.
doi: 10.3390/pharmaceutics15030782
-
[107]
V. Manolova, A. Flace, M. Bauer, et al., Eur. J. Immunol. 38 (2008) 1404–1413.
doi: 10.1002/eji.200737984
-
[108]
X. Zhang, Y. Chen, Y. Pan, et al., Chin. Chem. Lett. 35 (2024) 108378.
-
[109]
K.M. Frietze, D.S. Peabody, B. Chackerian, Curr. Opin. Virol. 18 (2016) 44–49.
-
[110]
F. Zabel, T. Kündig, M. Bachmann, Curr. Opin. Virol. 3 (2013) 357–362.
-
[111]
K. Chen, X. Wu, Q. Wang, et al., Chin. Chem. Lett. 34 (2023) 107446.
-
[112]
Y.H. Chung, D. Church, E.C. Koellhoffer, et al., Nat. Rev. Mater. 7 (2022) 372–388.