Advances in radical Smiles rearrangement
-
* Corresponding authors.
E-mail addresses: jie_wu@fudan.edu.cn (J. Wu), huangjp@tzc.edu.cn (J. Huang).
1 These authors contributed equally to this work.
Citation:
Nianhua Luo, Jiayi Jiang, Muhammad Suleman, Zhaowen Liu, Shuping Huang, Wei Xiao, Jie Wu, Jiapian Huang. Advances in radical Smiles rearrangement[J]. Chinese Chemical Letters,
;2026, 37(2): 111556.
doi:
10.1016/j.cclet.2025.111556
L.M. Harwood, Polar Rearrangements, Oxford Chemistry Primers, Oxford University Press, Oxford, UK, 1992.
W.E. Truce, E.M. Kreider, W.W. Brand. Org. React. 18 (1970) 99–215.
J.J. Li, Smiles rearrangement. Name Reactions: A Collection On Detailed Reaction Mechanisms, 3rd Ed, Springer, Berlin, Heidelberg, 2006, pp. 549–554.
T.J. Snape, Chem. Soc. Rev. 37 (2008) 2452–2458.
doi: 10.1039/b808960d
A.A. Levy, H.C. Rains, S. Smiles, J. Chem. Soc. (1931) 3264–3269.
R. Loven, W.N. Speckamp, Tetrahedron Lett. 13 (1972) 1567–1570.
doi: 10.1016/S0040-4039(01)84687-6
J.J. Koehler, W.N. Speckamp, Tetrahedron Lett. 18 (1977) 631–634.
doi: 10.1016/S0040-4039(01)92711-X
W.B. Motherwell, A.M.K. Pennell, J. Chem. Soc. Chem. Commun. (1991) 877–879.
Y. Zhang, J.J. Chen, H.M. Huang, Angew. Chem. Int. Ed. 61 (2022) e202205671.
doi: 10.1002/anie.202205671
A.J. Perkowski, C.L. Cruz, D.A. Nicewicz, J. Am. Chem. Soc. 137 (2015) 15684–15687.
doi: 10.1021/jacs.5b11800
T. McCallum, Green Synth. Catal. 4 (2023) 10–19.
J.W. Tucker, C.R.J. Stephenson, Org. Lett. 13 (2011) 5468–5471.
doi: 10.1021/ol202178t
E. Brachet, L. Marzo, M. Selkti, B. König, P. Belmont, Chem. Sci. 7 (2016) 5002–5006.
doi: 10.1039/C6SC01095D
J. Douglas, H. Albright, M. Sevrin, K. Cole, C.R.J. Stephenson, Angew. Chem. Int. Ed. 54 (2015) 14898–14902.
doi: 10.1002/anie.201507369
I. Allart-Simon, S. Gérard, J. Sapi, Molecules 21 (2016) 878–890.
doi: 10.3390/molecules21070878
I.V. Alabugin, B. Gold, J. Org. Chem. 78 (2013) 7777–7784.
doi: 10.1021/jo401091w
N.P. Tsvetkov, E. Gonzalez-Rodriguez, A. Hughes, et al., Angew. Chem. Int. Ed. 57 (2018) 3651–3655.
doi: 10.1002/anie.201712783
G. Stork, N.H. Baine, J. Am. Chem. Soc. 104 (1982) 2321–2323.
doi: 10.1021/ja00372a042
H.S. Ibrahim, W.M. Eldehna, H.A. Abdel-Aziz, M.M. Elaasser, M.M. Abdel-Aziz, Eur. J. Med. Chem. 85 (2014) 480–486.
E.N. Scott, G. Meinhardt, C. Jacques, D. Laurent, A.L. Thomas, Expert Opin. Invest. Drugs 16 (2007) 367–379.
doi: 10.1517/13543784.16.3.367
E. Brachet, L. Marzo, M. Selkti, B. Konig, P. Belmont. Chem. Sci. 7 (2016) 5002–5006.
doi: 10.1039/C6SC01095D
M.D. Abreu, P. Belmont, E. Brachet, J. Org. Chem. 86 (2021) 3758–3767.
doi: 10.1021/acs.joc.0c02540
Z.S. Wang, Y.B. Chen, H.W. Zhang, et al., J. Am. Chem. Soc. 142 (2020) 3636–3644.
doi: 10.1021/jacs.9b13975
J. Yan, H.W. Cheo, W.K. Teo, et al., J. Am. Chem. Soc. 142 (2020) 11357–11362.
doi: 10.1021/jacs.0c02052
O. Ito, M. Matsuda, J. Am. Chem. Soc. 101 (1979) 1815–1819.
doi: 10.1021/ja00501a031
X. Su, H. Huang, W. Hong, et al., Chem. Commun. 53 (2017) 13324–13327.
doi: 10.1039/C7CC08362A
S. Wei, S. Le, Z. Lei, et al., Org. Biomol. Chem. 20 (2022) 2064–2068.
doi: 10.1039/d2ob00186a
L. Zhou, X. Liu, H. Lu, et al., Org. Chem. Front. 8 (2021) 5092–5097.
doi: 10.1039/d1qo00703c
S. Li, Y. Wang, Z. Wu, et al., Org. Lett. 23 (2021) 7209–7214.
doi: 10.1021/acs.orglett.1c02519
S. Pujals, J. Fernández-Carneado, M.J. Kogan, et al., J. Am. Chem. Soc. 128 (2006) 8479–8483.
doi: 10.1021/ja060036c
J. Friedrich, S. Dorrich, A. Berkefeld, P. Kraft, R. Tacke, Organometallics 33 (2014) 796–803.
doi: 10.1021/om401181h
S.E. Denmark, R.F. Sweis, Acc. Chem. Res. 35 (2002) 835–846.
doi: 10.1021/ar020001r
G. Simons, M.E. Zandler, E.R. Talaty, J. Am. Chem. Soc. 98 (1976) 7869–7870.
doi: 10.1021/ja00440a093
T.A. Blumenkopf, L.E. Overman, Chem. Rev. 86 (1986) 857–873.
doi: 10.1021/cr00075a009
F. Chen, Y. Shao, M. Li, et al., Nat. Commun. 12 (2021) 3304.
doi: 10.1038/s41467-021-23326-2
J.A. Joule, K. Mills, Heterocyclic Chemistry, 5th edn, Wiley, 2010.
G. Hollopeter, H.M. Jantzen, D. Vincent, et al., Nature 409 (2001) 202–207.
doi: 10.1038/35051599
S.Z. Zard, Chem. Soc. Rev. 37 (2008) 1603–1618.
doi: 10.1039/b613443m
T.M. Monos, R.C. McAtee, C.R.J. Stephenson, Science 361 (2018) 1369–1373.
doi: 10.1126/science.aat2117
E.A. Noten, R.C. McAtee, C.R.J. Stephenson, Chem. Sci. 13 (2022) 6942–6949.
doi: 10.1039/d2sc01228f
E.A. Noten, C.H. Ng, R.M. Wolesensky, C.R.J. Stephenson, Nat. Chem. 16 (2024) 599–606.
doi: 10.1038/s41557-023-01404-w
C. Hervieu, M.S. Kirillova, Y. Hu, et al., Nat. Chem. 16 (2024) 607–614.
doi: 10.1038/s41557-023-01414-8
Z. Cao, Y. Sun, Y. Chen, C. Zhu, Angew. Chem. Int. Ed. 63 (2024) e202408177.
doi: 10.1002/anie.202408177
N. Radhoff, A. Studer, Nat. Commun. 13 (2022) 3083.
doi: 10.1038/s41467-022-30817-3
H. Zhang, M. Wang, X. Wu, C. Zhu, Angew. Chem. Int. Ed. 60 (2021) 3714–3719.
doi: 10.1002/anie.202013089
J. Yu, H. Zhang, X. Wu, C. Zhu, CCS Chem. 4 (2022) 1190–1198.
doi: 10.31635/ccschem.021.202100944
Independent Commodity Intelligence Services. (2022).
R. Matsubara, A.C. Gutierrez, T.F. Jamison, J. Am. Chem. Soc. 133 (2011) 19020–19023.
doi: 10.1021/ja209235d
J. Smidt, W. Hafner, R. Jira, et al., Angew. Chem. Int. Ed. 1 (1962) 80–88.
doi: 10.1002/anie.196200801
N. Chatani, T. Asaumi, T. Ikeda, et al., J. Am. Chem. Soc. 122 (2000) 12882–12883.
doi: 10.1021/ja002561w
J. Yu, X. Zhang, X. Wu, et al., Chem 9 (2023) 472–482.
D.J. Babcock, A.J. Wolfram, J.L. Barney, et al., Chem. Sci. 15 (2024) 4031–4040.
doi: 10.1039/d3sc06476j
A. Shiozuka, D. Wu, K. Kawashima, et al., ACS Catal. 14 (2024) 5972–5977.
doi: 10.1021/acscatal.4c00523
X. Tao, S. Ni, L. Kong, Y. Wang, Y. Pan, Chem. Sci. 13 (2022) 1946–1950.
doi: 10.1039/d1sc06760e
D.M. Whalley, H.A. Duong, M.F. Greaney, Chem. Eur. J. 25 (2019) 1927–1930.
doi: 10.1002/chem.201805712
X. Wu, X. Zhang, X. Ji, G.J. Deng, H. Huang, Org. Lett. 25 (2023) 5162–5167.
doi: 10.1021/acs.orglett.3c01933
R.Q. Jiao, Y.N. Ding, M. Li, et al., Org. Lett. 25 (2023) 6099–6104.
doi: 10.1021/acs.orglett.3c01988
W.Y. Ma, M. Leone, E. Derat, et al., Angew. Chem. Int. Ed. 63 (2024) e202408154.
doi: 10.1002/anie.202408154
S.W. Tian, Z.T. Luo, B.Q. Xiong, et al., Green Chem. 26 (2024) 6774–6778.
doi: 10.1039/d4gc00186a
H. Zhou, D. Lunic, N. Sanosa, et al., Angew. Chem. Int. Ed. 64 (2025) e202418869.
doi: 10.1002/anie.202418869
J.H. Zhang, H.J. Miao, H. Xin, et al., Chem. Commun. 60 (2024) 5334–5337.
doi: 10.1039/d4cc01324g
K. Mondal, M. Baidya, Adv. Synth. Catal. 366 (2024) 148–153.
doi: 10.1002/adsc.202301180
S.P. Zhang, J.X. Lan, M.L. Yang, et al., Org. Lett. 26 (2024) 9990–9995.
doi: 10.1021/acs.orglett.4c03830
Z.L. Lei, Z.C. Ding, S.H. Li, et al., Chem. Commun. 60 (2024) 7614–7617.
doi: 10.1039/d4cc02543a
K. Liu, L.C. Sui, Q. Jin, D.Y. Li, P.N. Liu, Org. Chem. Front. 4 (2017) 1606–1610.
doi: 10.1039/C7QO00209B
X. Chen Q. Wang, Z. Zhang, et al., Org. Lett. 24 (2022) 4338–4343.
doi: 10.1021/acs.orglett.2c01427
J.L. Wang, M.L. Liu, J.Y. Zou, W.H. Sun, X.Y. Liu, Org. Lett. 24 (2022) 309–313.
doi: 10.1021/acs.orglett.1c03973
J. Liu, B. Zhang, J. Hu, et al., Eur. J. Org. Chem. 26 (2023) e202201378.
doi: 10.1002/ejoc.202201378
C. He, K. Zhang, D.N. Wang, et al., Org. Lett. 24 (2022) 2767–2771.
doi: 10.1021/acs.orglett.2c00875
B. Wang, Z. Hu, L. Huang, et al., Chem. Commun. 59 (2023) 7247–7250.
doi: 10.1039/d3cc01994b
J. Lan, K. Lin, X. Zhang, T. Zhu, Green Chem. 24 (2022) 6138–6144.
doi: 10.1039/d2gc00960a
X. Wang, J. Liu, Z. Yu, et al., Org. Lett. 20 (2018) 6516–6519.
doi: 10.1021/acs.orglett.8b02840
I. Marek, Y. Minko, M. Pasco, et al., J. Am. Chem. Soc. 136 (2014) 2682–2694.
doi: 10.1021/ja410424g
J. Feng, M. Holmes, M.J. Krische, Chem. Rev. 117 (2017) 12564–12580.
doi: 10.1021/acs.chemrev.7b00385
C. Hervieu, M.S. Kirillova, T. Suárez, et al., Nat. Chem. 13 (2021) 327–334.
doi: 10.1038/s41557-021-00668-4
F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 52 (2009) 6752–6756.
doi: 10.1021/jm901241e
F. Lovering, MedChemCommun 4 (2013) 515–519.
doi: 10.1039/c2md20347b
T. Ling, F. Rivas, Tetrahedron 43 (2016) 6729–6777.
R.L. Sheng, K. Okada, S. Sekiguchi, J. Org. Chem. 43 (1978) 441–447.
doi: 10.1021/jo00397a014
A.C. Knipe, N. Sridhar, J. Chem. Soc., Chem. Commun. 1979 (1979) 791–792.
J. Huang, F. Liu, L.H. Zeng, et al., Nat. Commun. 13 (2022) 7081.
doi: 10.1038/s41467-022-34836-y
Y. Hu, C. Hervieu, E. Merino, C. Nevado, Angew. Chem. Int. Ed. 63 (2024) e202319158.
doi: 10.1002/anie.202319158
R. Abrams, J. Clayden, Angew. Chem. Int. Ed. 59 (2020) 11600–11606.
doi: 10.1002/anie.202003632
E. Derat, G. Masson, A. Claraz, Angew. Chem. Int. Ed. 63 (2024) e202406017.
doi: 10.1002/anie.202406017
C. Faderl, S. Budde, G. Kachkovskyi, D. Rackl, O. Reiser, J. Org. Chem. 83 (2018) 12192–12206.
doi: 10.1021/acs.joc.8b01538
D.M. Whalley, H.A. Duong, M.F. Greaney, Chem. Commun. 56 (2020) 11493–11496.
doi: 10.1039/d0cc05049k
D.M. Whalley, J. Seayad, M.F. Greaney, Angew. Chem. Int. Ed. 60 (2021) 22219–22223.
doi: 10.1002/anie.202108240
H. Fu, T.K. Hyster, Acc. Chem. Res. 57 (2024) 1446–1457.
doi: 10.1021/acs.accounts.4c00129
W. Harrison, X. Huang, H. Zhao, Acc. Chem. Res. 55 (2022) 1087–1096.
doi: 10.1021/acs.accounts.1c00719
Q. Zhou, J. Jiang, N. Luo, J. Huang, Acta Chim. Sinica 83 (2025) 274–286.
doi: 10.6023/a25010015
W. Fu, K. Murcek, J. Chen, et al., J. Am. Chem. Soc. 147 (2025) 12197–12205.
doi: 10.1021/jacs.5c01179
W.A. Coetzee, Pharmacol Ther. 140 (2013) 167–175.
doi: 10.1016/j.pharmthera.2013.06.007
Z. Shi, Y. Li, N. Li, et al., Angew. Chem. Int. Ed. 61 (2022) e202206058.
doi: 10.1002/anie.202206058
J.C. Gonzalez-Gomez, N.P. Ramirez, T. Lana-Villarreal, P. Bonete, Org. Biomol. Chem. 15 (2017) 9680–9684.
doi: 10.1039/C7OB02579C
A.R. Tripathy, G.S. Yedase, V.R. Yatham, RSC Adv. 11 (2021) 25207–25210.
doi: 10.1039/d1ra04130d
D. Shen, L. Li, T. Ren, et al., J. Org. Chem. 89 (2024) 2691–2702.
doi: 10.1021/acs.joc.3c02762
J. Li, Z. Liu, S. Wu, Y. Chen, Org. Lett. 21 (2019) 2077–2080.
doi: 10.1021/acs.orglett.9b00353
Z.H. Xia, L. Dai, Z.H. Gao, S. Ye, Chem. Commun. 56 (2020) 1525–1528.
doi: 10.1039/c9cc09272b
X. Chang, Q. Zhang, C. Guo, Org. Lett. 21 (2019) 10–13.
doi: 10.1021/acs.orglett.8b03178
C.A. Lawson, A.P. Dominey, G.D. Williams, J.A. Murphy, Chem. Commun. 56 (2020) 11445–11448.
doi: 10.1039/d0cc04666c
Shanru Feng , Ling Wen , Li Zhang , Qinyu Jiang , Bozhao Zhang , Guohao Wu , Yue Wu , Jiabin Chen , Youcai Han , Chuhao Liu , Yu-Wu Zhong , Jiannian Yao . Magnetic field controlled electrocatalysis from a multidimensional catalytic perspective: Mechanisms, applications, and prospects for energy conversion. Chinese Journal of Structural Chemistry, 2025, 44(11): 100662-100662. doi: 10.1016/j.cjsc.2025.100662
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Cui Luo , Peng-Hui Li , Wei-Ming Liao , Qia-Chun Lin , Xiao-Xiang Zhou , Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621
Kezhen Qi , Zhidong Wei , Haibin Wang , Hongyan Liang , Dandan Ma , Jian-Wen Shi , Yifeng Li , Xuepeng Xiang , Yan Chen , Bo Yu , Chunchun Wang , Zhuo Xing , Claudio Imparato , Aurelio Bifulco , Daniil A. Lukyanov , Elena V. Alekseeva , Oleg V. Levin , M.I. Chebanenko , V.I. Popkov , Tan Zhang , Jinping Li , Guang Liu , Wei Li , Linlin Song , Rongzheng Ren , Zhenhua Wang , Jianmin Ma . Gas-involved photo- and electro-catalysis roadmap towards 2030. Chinese Chemical Letters, 2026, 37(1): 111661-. doi: 10.1016/j.cclet.2025.111661
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Jing Guo , Jianzhong Ma , Junli Liu , Guanjie Huang , Xiaoting Zhou , Francesco Parrino , Riccardo Ceccato , Leonardo Palmisano , Boon-Junn Ng , Lutfi Kurnianditia Putri , Huaxing Li , Rongjie Li , Gang Liu , Yang Wang , Nikolay Kornienko , Shan-Shan Zhu , Zhenwei Zhang , Xiaoming Liu , Nur Atika Nikma Dahlan , Siang-Piao Chai , Jianmin Ma . Two-dimensional nanomaterials for environmental catalysis roadmap towards 2030. Chinese Chemical Letters, 2025, 36(9): 110988-. doi: 10.1016/j.cclet.2025.110988
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Sumiya Akter Dristy , Md Ahasan Habib , Mehedi Hasan Joni , Md Najibullah , Rutuja Mandavkar , Shusen Lin , Jihoon Lee . Binder-free bimetallic vanadium-nickel-boride-phosphide spherical structure for highly efficient and stable industrial-level water splitting. Chinese Journal of Structural Chemistry, 2025, 44(12): 100747-100747. doi: 10.1016/j.cjsc.2025.100747
Hui-Xian Jiang , Zhi-Tao Liu , Pei Xu , Xu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224
Pei Xu , Tian-Zi Hao , Zhi-Tao Liu , Yi-Qin Liu , Hui-Xian Jiang , Dong Guo , Xu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Tingting Zhang , Jing Zhang . Photocatalyzed hydrogen transfer enabled three-component radical cascade reactions: Direct access to thioesters from primary alcohols, elemental sulfur and alkenes. Chinese Chemical Letters, 2026, 37(1): 111131-. doi: 10.1016/j.cclet.2025.111131
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299