Kinetically controlled Np(Ⅵ)/Pu(Ⅳ) selective reduction by n-butyraldehyde
-
* Corresponding authors.
E-mail addresses: wuqy@ihep.ac.cn (Q. Wu), shiwq@sjtu.edu.cn (W. Shi).
Citation:
Xiaobo Li, Qunyan Wu, Congzhi Wang, Jianhui Lan, Meng Zhang, Weiqun Shi. Kinetically controlled Np(Ⅵ)/Pu(Ⅳ) selective reduction by n-butyraldehyde[J]. Chinese Chemical Letters,
;2026, 37(2): 111503.
doi:
10.1016/j.cclet.2025.111503
Y. Liu, X.P. Shao, W.T. Bu, et al., Chin. Chem. Lett. 33 (2022) 3384–3394.
doi: 10.1016/j.cclet.2022.03.016
T.Y. Xiu, S.M. Zhang, P. Ren, et al., Chin. Chem. Lett. 34 (2023) 108440.
doi: 10.1016/j.cclet.2023.108440
W.X. Xiao, D.Q. Pan, Z.W. Niu, et al., Chin. Chem. Lett. 33 (2022) 3413–3421.
doi: 10.1016/j.cclet.2022.03.017
L.K. Liu, S.B. Xie, H.B. Lv, et al., Chin. Chem. Lett. 33 (2022) 3439–3443.
doi: 10.1016/j.cclet.2022.04.001
O. Artun, Appl. Radiat. Isotopes 166 (2020) 109337.
doi: 10.1016/j.apradiso.2020.109337
X. Zhang, L. Zhang, T. Bo, et al., Chin. Chem. Lett. 33 (2022) 3527–3530.
doi: 10.1016/j.cclet.2022.03.026
X.H. Kong, X.L. Liao, Z.K. Huang, et al., Chin. Chem. Lett. 35 (2024) 109642.
doi: 10.1016/j.cclet.2024.109642
R.E. Isaacson, B.F. Judson, Ind. Eng. Chem. Process Des. Dev. 3 (1964) 296–301.
doi: 10.1021/i260012a003
M. Benedict, T.H. Pigford, H.W. Levi, Nuclear Chemical Engineering, 2nd ed., McGraw-Hill Education, New York, 1981.
K.W. Kim, K.C. Song, E.H. Lee, et al., J. Radioanal. Nucl. Chem. 246 (2000) 215–219.
doi: 10.1023/A:1006731920212
X. Dong, Z.P. Wang, Q. Yan, et al., Chin. Chem. Lett. 33 (2022) 3531–3533.
doi: 10.1016/j.cclet.2022.02.057
S.L. Yarbro, S.B. Schreiber, E.M. Ortiz, et al., J. Radioanal. Nucl. Chem. 235 (1998) 21–25.
doi: 10.1007/BF02385931
V.S. Koltunov, S.M. Baranov, Radiochemistry 42 (2000) 236–241.
A.Y. Zhang, J.X. Hu, X.Y. Zhang, et al., J. Radioanal. Nucl. Chem. 253 (2002) 107–113.
doi: 10.1023/A:1015872703102
Y.X. Chen, H.B. Tang, J.P. Liu, et al., J. Radioanal. Nucl. Chem. 289 (2011) 41–47.
doi: 10.1007/s10967-011-1030-1
V.I. Marchenko, K.N. Dvoeglazov, O.A. Savilova, et al., Radiochemistry 54 (2012) 459–464.
doi: 10.1134/S1066362212050074
T.H. Yan, W.F. Zhen, G.A. Ye, et al., J. Radioanal. Nucl. Chem. 279 (2009) 293–299.
doi: 10.1007/s11029-009-9081-x
T.H. Yan, W.F. Zheng, C. Zuo, et al., Radiochim. Acta 98 (2010) 35–38.
P. Sivakumar, S. Meenakshi, R.V.S. Rao, J. Radioanal. Nucl. Chem. 292 (2012) 603–608.
doi: 10.1007/s10967-011-1454-7
V.S. Koltunov, R.J. Taylor, S.M. Baranov, et al., Radiochim. Acta 88 (2000) 65–70.
doi: 10.1524/ract.2000.88.2.065
V.S. Koltunov, S.M. Baranov, V.G. Pastushchak, Radiochemistry 43 (2001) 346–349.
doi: 10.1023/A:1012845516509
V.S. Koltunov, E.A. Mezhov, S.M. Baranov, Radiochemistry 43 (2001) 342–345.
doi: 10.1023/A:1012893432439
V.S. Koltunov, R.J. Taylor, S.M. Baranov, et al., J. Nucl. Sci. Technol. 39 (2002) 878–881.
doi: 10.1080/00223131.2002.10875609
V.S. Koltunov, S.M. Baranov, Inorg. Chim. Acta 140 (1987) 31–34.
doi: 10.1016/S0020-1693(00)81042-7
X.Y. Zhang, Z.L. Huang, S.T. Xiao, et al., Atomic Energy Science Technology 33 (1999) 8–11.
V. Koltunov, J. Nucl. Sci. Technol. 39 (2002) 347–350.
doi: 10.1080/00223131.2002.10875480
V.S. Koltunov, K.M. Frolov, Y.V. Isaev, Radiochemistry 44 (2002) 121–126.
doi: 10.1023/A:1019606909734
W.Q. Shi, H.B. Tang, Y.X. Ye, et al., J. Nucl. Radiochem. 24 (2002) 134–137.
Y. Ban, T. Asakura, Y. Morita, J. Radioanal. Nucl. Chem. 279 (2009) 423–429.
doi: 10.1007/s10967-007-7262-4
H. Yang, H. Zhang, L. Li, et al., Nuclear Techniques 39 (2016) 37–44.
Z.Y. Liu, H. Zhang, R.T. Wang, et al., Nuclear Techniques 40 (2017) 28–34.
doi: 10.3390/met7010028
G. Uchiyama, S. Fujine, S. Hotoku, et al., Nucl. Technol. 102 (1993) 341–352.
doi: 10.13182/NT93-A17033
G. Uchiyama, S. Hotoku, S. Fujine, et al., Nucl. Technol. 122 (1998) 222–227.
doi: 10.13182/NT98-A2864
G. Uchiyama, H. Mineo, S. Hotoku, et al., Prog. Nucl. Energy 37 (2000) 151–156.
doi: 10.1016/S0149-1970(00)00040-8
V.I. Marchenko, V.S. Koltunov, O.A. Savilova, et al., Radiochemistry 43 (2001) 276–283.
doi: 10.1023/A:1012812609241
Y. Ban, T. Asakura, Y. Morita, Radiochim. Acta 92 (2004) 883–887.
doi: 10.1524/ract.92.12.883.55113
Z.P. Cheng, Q.Y. Wu, Y.H. Liu, et al., RSC Adv. 6 (2016) 109045–109053.
doi: 10.1039/C6RA13339H
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 124 (2020) 3720–3729.
doi: 10.1021/acs.jpca.0c01504
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 125 (2021) 6180–6188.
doi: 10.1021/acs.jpca.1c04198
Z.P. Cheng, X.B. Li, Q.Y. Wu, et al., Radiochim. Acta 110 (2022) 471–480.
doi: 10.1515/ract-2021-1120
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., Phys. Chem. Chem. Phys. 24 (2022) 17782–17791.
doi: 10.1039/d2cp01730j
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 127 (2023) 4259–4268.
doi: 10.1021/acs.jpca.3c00062
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., Chin. Chem. Lett. 35 (2024) 109359.
doi: 10.1016/j.cclet.2023.109359
X. Huang, X.B. Li, Q.Y. Wu, et al., Phys. Chem. Chem. Phys. 26 (2024) 27395–27405.
doi: 10.1039/d4cp03097d
X.B. Li, Q.Y. Wu, C.Z. Wang, et al., J. Phys. Chem. A 127 (2023) 7479–7486.
doi: 10.1021/acs.jpca.3c03830
C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
doi: 10.1103/PhysRevB.37.785
A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
doi: 10.1063/1.464913
Y.T. Bi, Z. Bao, L. Li, et al., ChemistrySelect 3 (2018) 4804–4810.
doi: 10.1002/slct.201800328
J.P. Wang, W.Y. Xie, W.R. Jiang, et al., Adv. Theory Simul. 2 (2019) 1900138.
doi: 10.1002/adts.201900138
Y.X. Wang, S.X. Hu, L.W. Cheng, et al., CCS Chem. 2 (2020) 425–431.
doi: 10.31635/ccschem.020.202000152
P. Zhang, Y.X. Wang, P. Zhang, et al., Inorg. Chem. 59 (2020) 11953–11961.
doi: 10.1021/acs.inorgchem.0c00535
X. -K. Zhao, C. -S. Cao, J. -C. Liu, et al., Chem. Sci. 13 (2022) 8518–8525.
doi: 10.1039/d2sc02017c
X.P. Lei, Q.Y. Wu, C.Z. Wang, et al., Inorg. Chem. 62 (2023) 2705–2714.
doi: 10.1021/acs.inorgchem.2c03823
L.L. Su, Q.Y. Wu, C.Z. Wang, et al., Chin. Chem. Lett. 35 (2024) 109402.
doi: 10.1016/j.cclet.2023.109402
M. Cossi, N. Rega, G. Scalmani, et al., J. Comput. Chem. 24 (2003) 669–681.
doi: 10.1002/jcc.10189
V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995–2001.
doi: 10.1021/jp9716997
M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 16 Software Program, Gaussian Inc., Wallingford, CT, 2016.
W. Küchle, M. Dolg, H. Stoll, et al., J. Chem. Phys. 100 (1994) 7535–7542.
doi: 10.1063/1.466847
X.Y. Cao, M. Dolg, H. Stoll, J. Chem. Phys. 118 (2003) 487–496.
doi: 10.1063/1.1521431
X.Y. Cao, M. Dolg, J. Mol. Struc. (THEOCHEM) 673 (2004) 203–209.
doi: 10.1016/j.theochem.2003.12.015
E. Fromager, V. Vallet, B. Schimmelpfennig, et al., J. Phys. Chem. A 109 (2005) 4957–4960.
doi: 10.1021/jp051056o
J.K. Gibson, W.A. de Jong, P.D. Dau, et al., J. Phys. Chem. A 121 (2017) 9156–9162.
doi: 10.1021/acs.jpca.7b09721
J. Autschbach, J. Chem. Theory Comput. 13 (2017) 710–718.
doi: 10.1021/acs.jctc.6b01014
E. Van Lenthe, E.J. Baerends, J. Comput. Chem. 24 (2003) 1142–1156.
doi: 10.1002/jcc.10255
C. Fonseca Guerra, J.G. Snijders, G. te Velde, et al., Theor. Chem. Acc. 99 (1998) 391–403.
G. te Velde, F.M. Bickelhaupt, E.J. Baerends, et al., J. Comput. Chem. 22 (2001) 931–967.
doi: 10.1002/jcc.1056
E.J. Baerends, T. Ziegler, A.J. Atkins, et al., ADF2022, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2022 URL
A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 (1993) 799–805.
A. Klamt, J. Phys. Chem. 99 (1995) 2224–2235.
doi: 10.1021/j100007a062
A. Klamt, V. Jonas, J. Chem. Phys. 105 (1996) 9972–9981.
doi: 10.1063/1.472829
J. Pipek, P.G. Mezey, J. Chem. Phys. 90 (1989) 4916–4926.
doi: 10.1063/1.456588
T. Lu, F.W. Chen, J. Comput. Chem. 33 (2012) 580–592.
doi: 10.1002/jcc.22885
T. Lu, J. Chem. Phys. 161 (2024) 082503.
doi: 10.1063/5.0216272
T. Lu, Q.X. Chen, J. Comput. Chem. 43 (2022) 539–555.
doi: 10.1002/jcc.26812
D. Kirk Veirs, C.A. Smith, J.M. Berg, et al., J. Alloys Compd. 213-214 (1994) 328–332.
doi: 10.1016/0925-8388(94)90924-5
P.G. Allen, D.K. Veirs, S.D. Conradson, et al., Inorg. Chem. 35 (1996) 2841–2845.
doi: 10.1021/ic9511231
S.D. Conradson, K.D. Abney, B.D. Begg, et al., Inorg. Chem. 43 (2004) 116–131.
doi: 10.1021/ic0346477
A.M. Lines, S.R. Adami, S.I. Sinkov, et al., Anal. Chem. 89 (2017) 9354–9359.
doi: 10.1021/acs.analchem.7b02161
C. Madic, G.M. Begun, D.E. Hobart, et al., Inorg. Chem. 23 (1984) 1914–1921.
doi: 10.1021/ic00181a025
P.J. Hay, R.L. Martin, G. Schreckenbach, J. Phys. Chem. A. 104 (2000) 6259–6270.
doi: 10.1021/jp000519h
P. Lindqvist-Reis, C. Apostolidis, O. Walter, et al., Dalton Trans. 42 (2013) 15275–15279.
doi: 10.1039/c3dt51650d
L. Zhang, S.Y. Liu, Z.G. Zhao, et al., Chem. Sci. 9 (2018) 6085–6090.
doi: 10.1039/c8sc01882k
L.Y. Wang, Y.B. Zhang, J. Yao, et al., Catal. Lett. 152 (2022) 1131–1139.
doi: 10.1007/s10562-021-03706-5
J.R. Bryant, J.M. Mayer, J. Am. Chem. Soc. 125 (2003) 10351–10361.
doi: 10.1021/ja035276w
J.M. Mayer, Acc. Chem. Res. 44 (2011) 36–46.
doi: 10.1021/ar100093z
K.R. Gorantla, B.S. Mallik, J. Phys. Chem. A 126 (2022) 3301–3310.
doi: 10.1021/acs.jpca.2c01043
J.G. Muller, R.P. Hickerson, R.J. Perez, et al., J. Am. Chem. Soc. 119 (1997) 1501–1506.
doi: 10.1021/ja963701y
R.S. Miller, J.M. Sealy, M. Shabangi, et al., J. Am. Chem. Soc. 122 (2000) 7718–7722.
doi: 10.1021/ja001260j
Y.M. Lee, S. Kim, K. Ohkubo, et al., J. Am. Chem. Soc. 141 (2019) 2614–2622.
doi: 10.1021/jacs.8b12935
Y. Wakatsuki, N. Koga, H. Werner, et al., J. Am. Chem. Soc. 119 (1997) 360–366.
doi: 10.1021/ja962732q
R.Z. Sun, M.Y. Yu, G.Q. Luo, et al., Chem. Eng. J. 407 (2021) 127113.
doi: 10.1016/j.cej.2020.127113
J.L. Qu, J.W. Xiao, H.T. Chen, et al., Chin. J. Catal. 42 (2021) 288–296.
doi: 10.1016/S1872-2067(20)63643-9
F.Z. Zhang, Q.P. Kong, H.H. Chen, et al., Chem. Eng. J. 434 (2022) 134674.
doi: 10.1016/j.cej.2022.134674
G.L. Yu, Y.Q. Liu, X.Q. Zou, et al., J. Mater. Chem. A 6 (2018) 11797–11803.
doi: 10.1039/c8ta03509a
T.T. Nguyen, M.J. Koh, X. Shen, et al., Science 352 (2016) 569–575.
doi: 10.1126/science.aaf4622
X. Shen, T.T. Nguyen, M.J. Koh, et al., Nature 541 (2017) 380–385.
doi: 10.1038/nature20800
H. Kokusen, K. Suzaki, K. Ohashi, et al., Anal. Sci. 4 (1988) 617–622.
doi: 10.2116/analsci.4.617
K.E. Mayhew, T.M. McCoy, D.L. Jones, et al., Solvent Extr. Ion Exch. 29 (2011) 755–781.
doi: 10.1080/07366299.2011.595628
Y.Y. Liang, L. Mei, Q.Y. Jin, et al., Chin. Chem. Lett. 33 (2022) 3539–3542.
doi: 10.1016/j.cclet.2022.03.092
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Qiaorui Wang , Dingyun Liang , Zhongwen Zhang , Yalan Yang , Yunran Zhang , Yirong Wang , Lei Liu , Wenfeng Jiang , Muneerah Alomar , Li-Long Zhang . Single-atom catalysts for electrocatalytic nitrogen reduction to ammonia: A review. Chinese Journal of Structural Chemistry, 2025, 44(6): 100599-100599. doi: 10.1016/j.cjsc.2025.100599
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Chaozheng He , Menghui Xi , Chenxu Zhao , Ran Wang , Ling Fu , Jinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671
Mianfeng Li , Haozhi Wang , Zijun Yang , Zexiang Yin , Yuan Liu , Yingmei Bian , Yang Wang , Xuerong Zheng , Yida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Yubang Liu , Jiaxin Lin , Huayu Liang , Yinwu Li , Zhuofeng Ke . Computational insights into three-centre four-electron bridging hydride bond in boryl type PBP-M dihydride complexes✰ ✩. Chinese Chemical Letters, 2025, 36(5): 110291-. doi: 10.1016/j.cclet.2024.110291
Jin Li , Xin Chen , Aling Chen , Zhi-Qiang Wang , Dengsong Zhang . Theoretical insight into the active sites for chlorobenzene oxidation: From phosphate to M3 clusters. Chinese Chemical Letters, 2025, 36(8): 110527-. doi: 10.1016/j.cclet.2024.110527
Yanhui Lu , Chengang Pei , Wenqiang Li , Qing Liu , Huan Pang , Xu Yu . Tailoring active sites of cerium and nitrogen Co-doped rhenium disulfide for enhanced hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 111646-. doi: 10.1016/j.cclet.2025.111646