Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens
-
* Corresponding author.
E-mail address: konishi.g.aa@m.titech.ac.jp (G.-i. Konishi).
Citation:
Takuya Tanaka, Rikuto Noda, Yuki Sawatari, Riki Iwai, Ben Zhong Tang, Gen-ichi Konishi. Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens[J]. Chinese Chemical Letters,
;2025, 36(12): 111495.
doi:
10.1016/j.cclet.2025.111495
A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366–375.
doi: 10.1021/acs.accounts.6b00517
X. Yang, D. Zhang, Y. Ye, Y. Zhao, Coord. Chem. Rev. 453 (2022) 214336.
doi: 10.1016/j.ccr.2021.214336
Y. Zhang, Z. Li, W. Hu, Z. Liu, Anal. Chem. 91 (2019) 10302–10309.
doi: 10.1021/acs.analchem.9b02678
C. Ma, W. Sun, L. Xu, et al., J. Mater. Chem. B 8 (2020) 9642.
doi: 10.1039/d0tb01146k
P. Ning, P. Dong, Q. Geng, et al., J. Mater. Chem. B 5 (2017) 2743.
doi: 10.1039/C7TB00136C
H. Xiao, P. Li, B. Tang, Chem. Eur. J. 27 (2021) 6880–6898.
doi: 10.1002/chem.202004888
A. Goujon, A. Colom, K. Straková, et al., J. Am. Chem. Soc. 141 (2019) 3380–3384.
doi: 10.1021/jacs.8b13189
H.V. Humeniuk, A. Rosspeintner, G. Licari, et al., Angew. Chem. Int. Ed. 57 (2018) 10559–10563.
doi: 10.1002/anie.201804662
T. Tanaka, A. Matsumoto, A.S. Klymchenko, et al., Adv. Sci. 11 (2024) 2309721.
doi: 10.1002/advs.202309721
X. Peng, Z. Yang, J. Wang, et al., J. Am. Chem. Soc. 133 (2011) 6626–6635.
doi: 10.1021/ja1104014
Z. Yang, J. Cao, Y. He, et al., Chem. Soc. Rev. 43 (2014) 4563–4601.
doi: 10.1039/C4CS00051J
A. Vyšniauskas, M. Qurashi, N. Gallop, et al., Chem. Sci. 6 (2015) 5773.
doi: 10.1039/C5SC02248G
B. Shen, L. Liu, Y. Huang, et al., Aggregate 5 (2024) e421.
doi: 10.1002/agt2.421
T. Yamakado, S. Saito, J. Am. Chem. Soc. 144 (2022) 2804–2815.
doi: 10.1021/jacs.1c12955
H. -. B. Cheng, X. Cao, S. Zhang, et al., Adv. Mater. 35 (2023) 2207546.
doi: 10.1002/adma.202207546
M. Biancalana, S. Koide, Biochim. Biophys. Acta 1804 (2010) 1405–1412.
doi: 10.1016/j.bbapap.2010.04.001
R. Khurana, C. Coleman, C. Ionescu-Zanetti, et al., J. Struct. Biol. 151 (2005) 229–238.
doi: 10.1016/j.jsb.2005.06.006
V.I. Stsiapura, A.A. Maskevich, V.A. Kuzmitsky, et al., J. Phys. Chem. B 112 (2008) 15893–15902.
doi: 10.1021/jp805822c
N. Amdursky, Y. Erez, D. Huppert, Acc. Chem. Res. 45 (2012) 1548–1557.
doi: 10.1021/ar300053p
A. Vyšniauskas, B. Cornell, P.S. Sherin, et al., ACS Sens. 6 (2021) 2158–2167.
doi: 10.1021/acssensors.0c02275
I. Kähärä, N. Durandin, P. Ilina, et al., Photochem. Photobiol. Sci. 21 (2022) 1677–1687.
doi: 10.1007/s43630-022-00250-y
B. Shen, K.H. Jung, S. Ye, et al., Aggregate 4 (2023) e301.
doi: 10.1002/agt2.301
J. Mohanty, K. Jagtap, A.K. Ray, W.M. Nau, H. Pal, Chem. Phys. Chem. 11 (2010) 3333–3338.
doi: 10.1002/cphc.201000532
T.Y.D. Tang, C.R.C. Hak, A.J. Thompson, et al., Nat. Chem. 6 (2014) 527–533.
doi: 10.1038/nchem.1921
S. Sasaki, D.P.C. Drummen, G. Konishi, J. Mater. Chem. C 4 (2016) 2731–2743.
doi: 10.1039/C5TC03933A
C. Wang, W. Chi, Q, Qiao, et al., Chem. Soc. Rev. 50 (2021) 12656–12678.
doi: 10.1039/d1cs00239b
W. Rettig, Angew. Chem. Int. Ed. 25 (1986) 971–988.
doi: 10.1002/anie.198609711
C. Wang, Q. Qiao, W. Chi, et al., Angew. Chem. Int. Ed. 59 (2020) 10160–10172.
doi: 10.1002/anie.201916357
K. Hanaoka, S. Iwaki, K. Yagi, et al., J. Am. Chem. Soc. 144 (2022) 19778–19790.
doi: 10.1021/jacs.2c06397
J. Mei, N.L.C. Leung, R.T.K. Kwok, et al., Chem. Rev. 115 (2025) 11718–11940.
P. Chen, P.P. Lv, C.S. Guo, et al., Chin. Chem. Lett. 34 (2023) 108041.
doi: 10.1016/j.cclet.2022.108041
H.L. Zhao, N. Li, C.X. Ma, et al., Chin. Chem. Lett. 34 (2023) 107699.
doi: 10.1016/j.cclet.2022.07.042
X. Tian, D. Wu, W.H. Wei, et al., Chin. Chem. Lett. 35 (2024) 108912.
doi: 10.1016/j.cclet.2023.108912
Z.Y. Zhang, T. Ji, H.L. Dong, et al., Chin. Chem. Lett. 35 (2024) 109542.
doi: 10.1016/j.cclet.2024.109542
J.M. Qin, X. Li, W. Lang, et al., Chin. Chem. Lett. 35 (2024) 108925.
doi: 10.1016/j.cclet.2023.108925
L.L. Miao, X.J. Zhu, G.X. Liu, et al., Chin. Chem. Lett. 34 (2023) 107921.
doi: 10.1016/j.cclet.2022.107921
L.L. Lian, R.R. Zhang, S. Guo, et al., Chin. Chem. Lett. 34 (2023) 108516.
doi: 10.1016/j.cclet.2023.108516
Y.X. Pan, Y.T. Guo, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 108237.
doi: 10.1016/j.cclet.2023.108237
Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361–5388.
doi: 10.1039/c1cs15113d
Q. Peng, Z. Shuai, Aggregate 2 (2021) e91.
doi: 10.1002/agt2.91
J. Mei, Y. Hong, J.W.Y. Lam, et al., Adv. Mater. 26 (2014) 5429–5479.
doi: 10.1002/adma.201401356
G, Konishi, Y. Sawatari, R. Iwai, et al., Molecules 29 (2024) 5220.
doi: 10.3390/molecules29215220
R. Iwai, H. Yoshida, Y. Arakawa, et al., Aggregate 6 (2025) e660.
doi: 10.1002/agt2.660
S. Suzuki, S. Sasaki, A.S. Sairi, et al., Angew. Chem. Int. Ed. 59 (2020) 9856–9867.
doi: 10.1002/anie.202000940
R. Crespo-Otero, Q. Li, L. Blancafort, Chem. Asian. J. 14 (2019) 700–714.
doi: 10.1002/asia.201801649
Y.M. Rhee, V.S. Pande, J. Phys. Chem. B 112 (2008) 6221–6227.
doi: 10.1021/jp076301d
J. Perkins, E. Edwards, R. Kleiv, N. Weinberg, Mol. Phys. 109 (2011) 1901–1909.
doi: 10.1080/00268976.2011.598136
H. Wang, Q. Li, P. Alam, et al., ACS Nano 17 (2023) 14347–14405.
doi: 10.1021/acsnano.3c03925
J. Liu, Y. Zhang, J. Mei, et al., Chem. Eur. J. 21 (2015) 907–914.
doi: 10.1007/978-3-662-46578-3_108
S. Lu, X. Guo, F. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1947–1952.
doi: 10.1016/j.cclet.2021.01.007
H. He, J. Zhong, W. Zhuang, et al., New J. Chem. 45 (2021) 12138.
doi: 10.1039/D1NJ01712H
Z. Zheng, Y. Yang, P. Wang, et al., Adv. Funct. Mater. 33 (2023) 2303627.
doi: 10.1002/adfm.202303627
W. Chen, C. Gao, X. Liu, et al., Anal. Chem. 90 (2018) 8736–8741.
doi: 10.1021/acs.analchem.8b02940
R. Fu, L. Yo, J. Zhang, et al., Chin. Chem. Lett. 33 (2022) 1993–1996.
doi: 10.1016/j.cclet.2021.10.018
X. Ma, W. Chi, X. Han, et al., Chin. Chem. Lett. 32 (2021) 1790-179.
doi: 10.1016/j.cclet.2020.12.031
C. Qin, Y. Li, Q. Li, C. Yan, L, Cao, Chin. Chem. Lett. 32 (2021) 3531–3534.
doi: 10.1016/j.cclet.2021.05.006
Y. Hong, L. Meng, S. Chen, et al., J. Am. Chem. Soc. 134 (2012) 1680–1689.
doi: 10.1021/ja208720a
W. He, Y. Yang, Y. Qian, et al., Aggregate 5 (2024) e412.
doi: 10.1002/agt2.412
N.K.S. Teo, B. Fan, A. Ardana, S.H. Thang, Aggregate 5 (2024) e414.
doi: 10.1002/agt2.414
S. Sasaki, S. Suzuki, W.M.C. Sameera, et al., J. Am. Chem. Soc. 138 (2016) 8194–8206.
doi: 10.1021/jacs.6b03749
S. Sasaki, K. Igawa, G. Konishi, J. Mater. Chem. C 3 (2015) 5940–5950.
doi: 10.1039/C5TC00946D
S. Sasaki, Y. Sugita, M. Tokita, et al., Macromolecules 50 (2017) 3544–3556.
doi: 10.1021/acs.macromol.7b00213
A.S. Sairi, G. Konishi, Asian J. Org. Chem. 8 (2019) 404–410.
doi: 10.1002/ajoc.201900056
S. Sasaki, G. Konishi, RSC Adv. 7 (2017) 17403–17416.
doi: 10.1039/C7RA01212H
R. Iwai, S. Suzuki, S. Sasaki, et al., Angew. Chem. Int. Ed. 59 (2020) 10566–10573.
doi: 10.1002/anie.202000943
J. Liu, H. Zhang, L. Hu, et al., J. Am. Chem. Soc. 144 (2022) 7901–7910.
doi: 10.1021/jacs.2c02381
S. Ye, H. Zhang, J. Fei, C.H. Wolstenholme, X. Zhang, Angew. Chem. Int. Ed. 60 (2021) 1339–1346.
doi: 10.1002/anie.202011108
T. Förster, G.Z. Hoffmann, Phys. Chem. 75 (1971) 63–76.
doi: 10.1524/zpch.1971.75.1_2.063
V.I. Stasiapura, A.A. Maskevich, J. Phys. Chem. A 111 (2007) 4829–4835.
doi: 10.1021/jp070590o
N. Amdursky, Y. Erez, D. Huppert, Acc. Chem. Res. 45 (2012) 1548–1557.
doi: 10.1021/ar300053p
K.J. Laidler, J. Chem. Educ. 61 (1984) 494.
doi: 10.1021/ed061p494
H.M. Frey, B.M. Pope, R.F. Skinner, Trans. Faraday Soc. 63 (1967) 1166–1170.
doi: 10.1039/TF9676301166
H.A. Kramers, Physica 7 (1940) 284–304.
doi: 10.1016/S0031-8914(40)90098-2
F. Neese, Comput. Mol. Sci. 2 (2012) 73–78.
doi: 10.1002/wcms.81
F. Neese, Comput. Mol. Sci. 12 (2022) e1606.
doi: 10.1002/wcms.1606
Y. Lei, L. Yu, B. Zhou, et al., J. Phys. Chem. A 118 (2014) 9021–9031.
doi: 10.1021/jp5020109
M. Quick, A.L. Dobrakov, I.N. Ioffe, et al., J. Phys. Chem. Lett. 7 (2016) 4047–4052.
doi: 10.1021/acs.jpclett.6b01923
H, Kuramochi, T. Tsutsumi, K. Saita, et al., Nat. Chem. 16 (2024) 22–27.
doi: 10.1038/s41557-023-01397-6
J. Guan, R. Wei, A. Prlj, et al., Angew. Chem. Int. Ed. 59 (2020) 14903–14909.
doi: 10.1002/anie.202004318
M.A. Haidekker, E.A. Theodorakis, J. Mater. Chem. C 4 (2016) 2707.
doi: 10.1039/C5TC03504J
M.A. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, J. Am. Chem. Soc. 128 (2006) 398–399.
doi: 10.1021/ja056370a
M.A. Haidekker, T. Ling, M. Anglo, et al., Chem. Biol. 8 (2001) 123–131.
doi: 10.1016/S1074-5521(00)90061-9
M.A. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, Bioorg. Chem. 33 (2005) 415–425.
doi: 10.1016/j.bioorg.2005.07.005
M.A. Haidekker, E.A. Theodorakis, Org. Biomol. Chem. 5 (2007) 1669–1678.
doi: 10.1039/B618415D
Y. Shimomura, K. Igawa, S. Sasaki, et al., Chem. Eur. J. 28 (2022) e202201884.
doi: 10.1002/chem.202201884
Y. Shimomura, G. Konishi, Chem. Eur. J. 29 (2023) e202301191.
doi: 10.1002/chem.202301191
S. Sasaki, S. Suzuki, K. Igawa, K. Morokuma, G. Konishi, J. Org. Chem. 82 (2017) 6865–6873.
doi: 10.1021/acs.joc.7b00996
Y. Fujimoto, N. Yamamoto, K. Furukawa, H. Sekiya, Chem. Lett. 45 (2016) 637–639.
doi: 10.1246/cl.160143
B.K. An, J., Gierschner, S.Y. Park, Acc. Chem. Res. 45 (2012) 544–554.
doi: 10.1021/ar2001952
Z. Liu, Z. Jiang, M. Yan, X. Wang, Front. Chem. 7 (2019) 712.
doi: 10.3389/fchem.2019.00712
T. Kowada, H. Maeda, K. Kikuchi, Chem. Soc. Rev. 44 (2015) 4953.
doi: 10.1039/C5CS00030K
L.L. Li, K. Li, M.Y. Li, et al., Anal. Chem. 90 (2018) 5873–5878.
doi: 10.1021/acs.analchem.8b00590
W. Chi, J. Chen, W. Liu, et al., J. Am. Chem. Soc. 142 (2020) 6777–6785.
doi: 10.1021/jacs.0c01473
X. Liu, A. Humeniuk, W.J. Glover, J. Chem. Theory Comput. 18 (2022) 6826–6839.
doi: 10.1021/acs.jctc.2c00662
A. Humeniuk, W.J. Glover, J. Chem. Theory Comput. 20 (2024) 2111–2126.
doi: 10.1021/acs.jctc.3c01018
Xianghan Zhang , Yuan Qin , Huaicong Zhang , Yutian Cao , Haixing Zhu , Yingdi Tang , Zimeng Ma , Zehua Li , Jialin Zhou , Qunyan Dong , Peng Yang , Yuqiong Xia , Zhongliang Wang . An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging. Chinese Chemical Letters, 2025, 36(9): 110715-. doi: 10.1016/j.cclet.2024.110715
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
Tong-Tong Zhou , Guan-Yu Ding , Xue Li , Li-Li Wen , Xiao-Xu Pang , Ying-Chen Duan , Ju-Yang He , Guo-Gang Shan , Zhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Min Liu , Bin Feng , Feiyi Chu , Duoyang Fan , Fan Zheng , Fei Chen , Wenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
Di Zhang , Xu He , Xiaoying Kang , Xue Meng , Ji Qi , Zhifang Wu , Ningbo Li . A photo-accelerated nanoplatform for image-guided synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(12): 110942-. doi: 10.1016/j.cclet.2025.110942
Qunpeng Duan , Qiaona Zhang , Jiayuan Zhang , Shihao Lin , Tangxin Xiao , Leyong Wang . Artificial light-harvesting systems based on supramolecular polymers ✩. Chinese Chemical Letters, 2025, 36(12): 111421-. doi: 10.1016/j.cclet.2025.111421
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Xiaolong Zhang , Mingshan Jin , Shaoli Liu , Bingfei Yan , Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049
Qian Pang , Fangjun Huo , Yongkang Yue , Caixia Yin . ONOO− and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Hongxia Yan , Weixu Feng , Junyan Yao , Wei Tian , Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059
Ruoqian Zhang , Chaoqun Mu , Yali Hou , Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027
Pan Li , Huguo Shen , Cong Hua , Jinjie Fang , Xiangying Chi , Quan Jiang , Zichen Feng , Ye Kang , Bin Zheng . Synthesis and Characterization of an Aggregation-Induced Emission-Active Organic Cage Molecule: A Proposed Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(11): 337-345. doi: 10.12461/PKU.DXHX202502083