Recent progress in the visible-light-promoted synthesis of phenanthridines
-
* Corresponding authors.
E-mail addresses: mixia@hactcm.edu.cn (X. Mi), cuixl@zzu.edu.cn (X. Cui).
Citation:
Xia Mi, Chaoyang Wang, Jingyu Zhang, Remi Chauvin, Xiuling Cui. Recent progress in the visible-light-promoted synthesis of phenanthridines[J]. Chinese Chemical Letters,
;2025, 36(11): 111485.
doi:
10.1016/j.cclet.2025.111485
B.D. Krane, M.O. Fagbule, M.J. Shamma, Nat. Prod. 47 (1984) 1–5.
doi: 10.1021/np50031a001
F. Viladomat, M. Sellés, C. Cordina, J. Bastida, Planta Med. 63 (1997) 583–586.
doi: 10.1055/s-2006-957781
T. Nakanishi, M. Suzuki, J. Nat. Prod. 61 (1998) 1263–1265.
doi: 10.1021/np980193s
T. Ishikawa, Med. Res. Rev. 21 (2001) 61–82.
doi: 10.1002/1098-1128(200101)21:1<61::AID-MED2>3.0.CO;2-F
I. Kock, D. Heber, M. Weide, U. Wolschendorf, B. Clement, J. Med. Chem. 48 (2005) 2772–2780.
doi: 10.1021/jm0490888
M. Rivaud, A. Mendoza, M. Sauvain, A. Valentin, V. Jullian, Bioorg. Med. Chem. 20 (2012) 4856-4853.
doi: 10.1016/j.bmc.2012.05.061
I. Azad, R. Ahmad, T. Khan, et al., Future Med. Chem. 12 (2020) 709–717.
doi: 10.4155/fmc-2019-0016
S.Q. Quin, L.C. Li, J.R. Song, H.Y. Li, D.P. Li, Molecules 24 (2019) 437–450.
doi: 10.3390/molecules24030437
T. Gerfaud, L. Neuville, J. Zhu, Angew. Chem. Int. Ed. 48 (2009) 572–577.
doi: 10.1002/anie.200804683
W.G. Shou, Y.Y. Yang, Y.G. Wang, J. Org. Chem. 71 (2006) 9241–9243.
doi: 10.1021/jo061648i
S.P. Marsden, A.E. McGonagle, B. McKeever-Abbas, Org. Lett. 10 (2008) 2589–2591.
doi: 10.1021/ol800921n
M. Tobisu, K. Koh, T. Furukawa, N. Chatani, Angew. Chem. Int. Ed. 51 (2012) 11363–11366.
doi: 10.1002/anie.201206115
B. Zhang, C.G. Daniliuc, A. Studer, Org. Lett. 16 (2014) 250–253.
doi: 10.1021/ol403256e
D. Leifert, C.G. Daniliuc, A. Studer, Org. Lett. 15 (2013) 6286–6289.
doi: 10.1021/ol403147v
I. Deb, N. Yoshikai, Org. Lett. 15 (2013) 4254–4257.
doi: 10.1021/ol4020392
T.H. Zhu, S.Y. Wang, Y.Q. Tao, T.Q. Wei, S.J. Ji, Org. Lett. 16 (2014) 1260–1263.
doi: 10.1021/ol500286x
Z. Li, F. Fan, J. Yang, Z.Q. Liu, Org. Lett. 16 (2014) 3396–3399.
doi: 10.1021/ol501461u
B. Zhang, C. Mueck-Lichtenfeld, C.G. Daniliuc, A. Studer, Angew. Chem. Int. Ed. 52 (2013) 10792–10795.
doi: 10.1002/anie.201306082
Z. Xia, J. Huang, Y. He, et al., Org. Lett. 16 (2014) 2546–2549.
doi: 10.1021/ol500923t
L. Zhang, G.Y. Ang, S. Chiba, Org. Lett. 12 (2010) 3682–3685.
doi: 10.1021/ol101490n
M. Blanchot, D.A. Candito, F. Larnaud, M. Lautens, Org. Lett. 13 (2011) 1486–1489.
doi: 10.1021/ol200174g
J. Peng, T. Chen, C. Chen, B. Li, J. Org. Chem. 76 (2011) 9507–9513.
doi: 10.1021/jo2017108
W.Y. Wang, X. Feng, B.L. Hu, C.L. Deng, X.G. Zhang, J. Org. Chem. 78 (2013) 6025–6030.
doi: 10.1021/jo4007255
J. Pawlas, M.A. Begtrup, Org. Lett. 4 (2002) 2687–2690.
doi: 10.1021/ol026197c
R.T. McBurney, A.M.Z. Slawin, L.A. Smart, Y. Yu, J.C. Walton, Chem. Commun. 47 (2011) 7974–7976.
doi: 10.1039/c1cc12720a
F. Portela-Cubillo, E.M. Scanlan, J.S. Scott, J.C. Walton, Chem. Commun. 35 (2008) 4189–4191.
doi: 10.1039/b808625g
M.L. Read, L.L. Gundersen, J. Org. Chem. 78 (2013) 1311–1316.
doi: 10.1021/jo3027033
S. Khalide, M. Bilal, N. Rasool, M. Imran, Chin. Chem. Lett. 35 (2024) 109498.
doi: 10.1016/j.cclet.2024.109498
J.C. Hou, W. Cai, H.T. Ji, L.J. Ou, W.M. He, Chin. Chem. Lett. 36 (2025) 110469.
doi: 10.1016/j.cclet.2024.110469
Y. Zhi, C. Gu, H. Ji, et al., Chin. Chem. Lett. 36 (2025) 110234.
doi: 10.1016/j.cclet.2024.110234
H. Wang, B. Xu, Chin. J. Org. Chem. 35 (2015) 588–594.
doi: 10.6023/cjoc201411035
X.Y. Sun, S.Y. Yu, Chin. J. Org. Chem. 36 (2016) 239–245.
doi: 10.6023/cjoc201512006
J.C. Hsieh, H.L. Sub, Synthesis 52 (2020) 819–833.
doi: 10.1055/s-0039-1691561
S. Chen, L. Vaccaro, Y. Gu, Chin. Chem. Lett. 35 (2024) 109152.
doi: 10.1016/j.cclet.2023.109152
X. Wang, L. Yuan, X. Xu, S. Ji, Green Synth. Catal. 4 (2023) 181–185.
Y. Zhang, W. Zhou, M. Gao, et al., Chin. Chem. Lett. 35 (2024) 108836.
doi: 10.1016/j.cclet.2023.108836
D. Nanni, P. Pareschi, C. Rizzoli, P. Sgarabotto, A. Tundo, Tetrahedron 51 (1995) 9045–9062.
doi: 10.1016/0040-4020(95)00348-C
B. Zhang, A. Studer, Chem. Soc. Rev. 44 (2015) 3505–3521.
doi: 10.1039/C5CS00083A
H. Jiang, Y. Cheng, R. Wang, et al., Angew. Chem. Int. Ed. 52 (2013) 13289–13292.
doi: 10.1002/anie.201308376
X. Sun, S. Yu, Org. Lett. 16 (2014) 2938–2941.
doi: 10.1021/ol501081h
W. Wang, Y. Guo, K. Sun, et al., J. Org. Chem. 83 (2018) 14588–14599.
doi: 10.1021/acs.joc.8b02405
S. Rohe, T. McCallum, A.O. Morris, L. Barriault, J. Org. Chem. 83 (2018) 10015–10024.
doi: 10.1021/acs.joc.8b01380
S. Feng, T. Li, C. Du, et al., Chem. Commun. 53 (2017) 4585–4588.
doi: 10.1039/C7CC01813D
Z.F. Zhu, M.M. Zhang, F. Liu, Org. Biomol. Chem. 17 (2019) 1531–1534.
doi: 10.1039/c8ob02786b
Oleg G. Kulinkovich, Chem. Rev. 103 (2003) 2597–2632.
doi: 10.1021/cr010012i
H. Zhao, X. Fan, J. Yu, C. Zhu, J. Am. Chem. Soc. 137 (2015) 3490–3493.
doi: 10.1021/jacs.5b00939
S. Ren, C. Feng, T.P. Loh, Org. Biomol. Chem. 13 (2015) 5105–5109.
doi: 10.1039/C5OB00632E
Y. Li, Z. Ye, T.M. Bellman, T. Chi, M. Dai, Org. Lett. 17 (2015) 2186–2189.
doi: 10.1021/acs.orglett.5b00782
X.P. He, Y.J. Shu, J.J. Dai, et al., Org. Biomol. Chem. 13 (2015) 7159–7163.
doi: 10.1039/C5OB00808E
M.H. Shen, X.L. Lu, H.D. Xu, RSC Adv. 5 (2015) 98757–98761.
doi: 10.1039/C5RA20729K
Y.F. Wang, S. Chiba, J. Am. Chem. Soc. 131 (2009) 12570–12572.
doi: 10.1021/ja905110c
D.D. Bume, C.R. Pitts, T. Lectka, Eur. J. Org. Chem. 25 (2016) 26–30.
doi: 10.1002/ejoc.201501405
G.Z. Elek, V. Borovkov, M. Lopp, D.G. Kananovich, Org. Lett. 19 (2017) 3544–3547.
doi: 10.1021/acs.orglett.7b01519
S. Zhai, S. Qiu, S. Yang, et al., Chin. Chem. Lett. 34 (2023) 107657.
doi: 10.1016/j.cclet.2022.06.080
Q. Zhang, Q. Zhao, X. Wu, et al., Chin. Chem. Lett. 36 (2025) 110167.
doi: 10.1016/j.cclet.2024.110167
L. Wang, Q. Ding, X. Li, Y. Peng, Asian J. Org. Chem. 8 (2019) 385–390.
doi: 10.1002/ajoc.201800733
K. Wadekar, S. Aswale, V.R. Yatham, RSC Adv. 10 (2020) 16510–16514.
doi: 10.1039/d0ra03211e
M.C. Fu, R. Shang, B. Zhao, B. Wang, Y. Fu, Science 363 (2019) 1429–1434.
doi: 10.1126/science.aav3200
P. López-Mendoza, L.D. Miranda, Org. Biomol. Chem. 18 (2020) 3487–3491.
doi: 10.1039/d0ob00136h
W. Shi, F. Ma, P. Li, L. Wang, T. Miao, J. Org. Chem. 85 (2020) 13808–13817.
doi: 10.1021/acs.joc.0c01916
X. Wang, Z. Wang, Z. Li, K. Sun, Chin. Chem. Lett. 34 (2023) 108045.
doi: 10.1016/j.cclet.2022.108045
R. Wang, H. Jiang, Y. Cheng, et al., Synthesis 46 (2014) 2711–2726.
doi: 10.1055/s-0034-1379217
X. Tang, S. Song, C. Liu, R. Zhu, B. Zhang, RSC Adv. 5 (2015) 76363–76367.
doi: 10.1039/C5RA16645D
J. Fang, W.G. Shen, G.Z. Ao, F. Liu, Org. Chem. Front. 4 (2017) 2049–2053.
doi: 10.1039/C7QO00473G
J. Li, C.A.D. Caiuby, M.W. Paixão, C.J. Li, Eur. J. Org. Chem. (2018) 2498–2503.
doi: 10.1002/ejoc.201701487
K. Aradi, L. Kiss, Synthesis 55 (2023) 1834–1843.
doi: 10.1055/a-2020-9090
S. Wang, W.L. Jia, L. Wang, Q. Liu, Eur. J. Org. Chem. 2015 (2015) 6817–6821.
doi: 10.1002/ejoc.201500988
Z. Zhang, X. Tang, W.R. Dolbier, Org. Lett. 17 (2015) 4401–4403.
doi: 10.1021/acs.orglett.5b02061
J. Rong, L. Deng, P. Tan, et al., Angew. Chem. Int. Ed. 55 (2016) 2743–2747.
doi: 10.1002/anie.201510533
W.B. Qin, W. Xiong, X. Li, et al., J. Org. Chem. 85 (2020) 10479–10487.
doi: 10.1021/acs.joc.0c00816
Y. Wang, J. Wang, G.X. Li, G. He, G. Chen, Org. Lett. 19 (2017) 1442–1445.
doi: 10.1021/acs.orglett.7b00375
T. Xiao, L. Li, G. Lin, et al., Green Chem. 16 (2014) 2418–2421.
doi: 10.1039/C3GC42517G
L. Wang, J. Sun, X. Meng, et al., Chem. Commun. 50 (2014) 4643–4645.
doi: 10.1039/C4CC01487A
X. Li, D. Liang, W. Huang, et al., Tetrahedron 73 (2017) 7094–7099.
doi: 10.1016/j.tet.2017.10.074
J. Ren, C. Pi, X. Cui, Green Chem. 24 (2022) 3017–3022.
doi: 10.1039/d1gc04825b
J.Y. Chen, H.Y. Wu, H.Y. Song, et al., J. Org. Chem. 88 (2023) 8360–8368.
doi: 10.1021/acs.joc.3c00380
X.K. He, J. Lu, H.B. Ye, L. Li, J. Xuan, Molecules 26 (2021) 6843–6853.
doi: 10.3390/molecules26226843
L. Bao, Z.X. Wang, X.Y. Chen, Org. Lett. 24 (2022) 8223–8227.
doi: 10.1021/acs.orglett.2c03339
L. Bao, Z.X. Wang, X.Y. Chen, Org. Lett. 25 (2023) 565–568.
doi: 10.1021/acs.orglett.3c00049
C.X. Li, D.S. Tu, R. Yao, H. Yan, C.S. Lu, Org. Lett. 18 (2016) 4928–4931.
doi: 10.1021/acs.orglett.6b02413
Y. Liu, X.L. Chen, X.Y. Li, et al., J. Am. Chem. Soc. 143 (2021) 964–972.
doi: 10.1021/jacs.0c11138
M. Singh, A.K. Yadav, L.D.S. Yadav, R.K.P. Singh, Synlett 29 (2018) 176–180.
doi: 10.1055/s-0036-1590921
Y. Li, T. Miao, P. Li, L. Wang, Org. Lett. 20 (2018) 1735–1739.
doi: 10.1021/acs.orglett.8b00171
X. Wu, P. Chen, M. Gan, et al., Org. Lett. 25 (2023) 9186–9190.
doi: 10.1021/acs.orglett.3c03744
R. Li, H. Jiang, W.Y. Liu, P.M. Gu, X.Q. Li, Chin. Chem. Lett. 25 (2014) 583–585.
doi: 10.1016/j.cclet.2014.01.020
A. Davoodnia, M. Bakavoli, M. Soleimany, H. Behmadi, Chin. Chem. Lett. 19 (2008) 685–688.
doi: 10.1016/j.cclet.2008.04.022
N. Zhou, Q. Xu, Z. Xia, et al., Chem. Commun. 58 (2022) 2335–2338.
doi: 10.1039/d1cc06825c
C. Zhang, J. Pi, S. Chen, P. Liu, P. Sun, Org. Chem. Front. 5 (2018) 793–796.
doi: 10.1039/c7qo00926g
J.Q. Shang, S.S. Wang, H. Fu, et al., Org. Chem. Front. 5 (2018) 1945–1949.
doi: 10.1039/c8qo00336j
J.Q. Shang, X.X. Wang, Y. Xin, et al., Org. Biomol. Chem. 17 (2019) 9447.
doi: 10.1039/c9ob02023c
W.J. Xia, Y. Xin, Z.W. Zhao, et al., Org. Chem. Front. 7 (2020) 1997–2002.
doi: 10.1039/d0qo00535e
K. Sun, Q.Y. Lv, Y.W. Lin, B. Yu, W.M. He, Org. Chem. Front. 8 (2021) 445–465.
doi: 10.1039/d0qo01058h
X. Li, X. Fang, S. Zhuang, P. Liu, P. Sun, Org. Lett. 19 (2017) 3580–3583.
doi: 10.1021/acs.orglett.7b01553
Y. Yu, Z. Cai, W. Yuan, P. Liu, P. Sun, J. Org. Chem. 82 (2017) 8148–8156.
doi: 10.1021/acs.joc.7b01447
D.I. Saavedra, B.D. Rencher, D.H. Kwon, et al., J. Org. Chem. 83 (2018) 1654–1660.
doi: 10.1021/acs.joc.7b03080
X. Liu, Z. Wu, Z. Zhang, P. Liu, P. Sun, Org. Biomol. Chem. 16 (2018) 414–423.
doi: 10.1039/c7ob02804k
M. Zhu, Y. Tian, J. Sha, W. Fu, ChemistrySelect 7 (2022) e202203986.
doi: 10.1002/slct.202203986
M. Chen, J.Q. Chen, Z. Chen, J. Wu, Org. Chem. Front. 10 (2023) 3995–4001.
doi: 10.1039/d3qo00780d
S.S. Zhu, J.K. Liu, L.Z. Qin, et al., J. Org. Chem. 88 (2023) 2057–2068.
doi: 10.1021/acs.joc.2c02336
Y.J. Ma, Z.H. Yuan, P. Gao, et al., J. Org. Chem. 88 (2023) 9927–9940.
doi: 10.1021/acs.joc.3c00695
Y.S. Ran, B. Jiang, Y.T. Shen, et al., Org. Lett. 25 (2023) 7412–7416.
doi: 10.1021/acs.orglett.3c02938
C. Liu, G. Yan, Z. Wu, et al., Adv. Synth. Catal. 365 (2023) 4513–4519.
doi: 10.1002/adsc.202300927
N. Zhou, M. Wu, K. Kuang, S. Wu, M. Zhang, Adv. Synth. Catal. 362 (2020) 5391–5397.
doi: 10.1002/adsc.202000999
X. Sun, S. Yu, Chem. Commun. 52 (2016) 10898–10901.
doi: 10.1039/C6CC05756J
J.C. Yang, J.Y. Zhang, J.J. Zhang, X.H. Duan, L.N. Guo, J. Org. Chem. 83 (2018) 1598–1605.
doi: 10.1021/acs.joc.7b02861
L. Devi, A. Pokhriyal, S. Shekhar, et al., Asian J. Org. Chem. 10 (2021) 3328–3333.
doi: 10.1002/ajoc.202100518
H.T. Qin, S.W. Wu, J.L. Liu, F. Liu, Chem. Commun. 53 (2017) 1696–1699.
doi: 10.1039/C6CC10035J
L.L. Mao, D.G. Zheng, X.H. Zhu, A.X. Zhou, S.D. Yang, Org. Chem. Front. 5 (2018) 232–236.
doi: 10.1039/c7qo00790f
L.L. Mao, L.X. Quan, X.H. Zhu, et al., Synlett 30 (2019) 955–960.
doi: 10.1055/s-0037-1611758
T.K. Sahu, A. Vishwakarma, V. Kumar, R. Khan, T. Khan, Asian J. Org. Chem. 13 (2024) e202400022.
doi: 10.1002/ajoc.202400022
Y. Li, Y. Zhu, S.D. Yang, Org. Chem. Front. 5 (2018) 822–826.
doi: 10.1039/c7qo01004d
Z. Qu, T. Tian, G.J. Deng, H. Huang, Chin. Chem. Lett. 34 (2023) 107565.
doi: 10.1016/j.cclet.2022.05.079
H. Li, Y. Li, W. Yuan, et al., Green Synth. Catal. 5 (2024) 159–164.
doi: 10.61935/acetr.2.1.2024.p159
D.Q. Dong, J.C. Song, S.H. Yang, et al., Chin. Chem. Lett. 33 (2022) 1199–1206.
doi: 10.1016/j.cclet.2021.08.067
W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083–3094.
doi: 10.1016/j.cclet.2020.07.035
H. Jiang, X. An, K. Tong, et al., Angew. Chem. Int. Ed. 54 (2015) 4055–4059.
doi: 10.1002/anie.201411342
X.D. An, S. Yu, Org. Lett. 17 (2015) 2692–2695.
doi: 10.1021/acs.orglett.5b01096
P. Natarajan, N. Kumar, M. Sharma, Org. Chem. Front. 3 (2016) 1265–1270.
doi: 10.1039/C6QO00275G
P. Natarajan, D. Chuskit, Priya, Green Chem. 21 (2019) 4406–4411.
doi: 10.1039/c9gc01557d
J. Li, S. Wang, J. Zhao, P. Li, Org. Lett. 24 (2022) 5977–5981.
doi: 10.1021/acs.orglett.2c02249
Hongping Zhao , Weiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894
Huaixiang Yang , Miao-Miao Li , Aijun Zhang , Jiefei Guo , Yongqi Yu , Wei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Zhixiang Li , Zhirong Yang , Chang Yao , Bin Wu , Gang Qian , Xuezhi Duan , Xinggui Zhou , Jing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Min Yan , Zihao Ye , Ping Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540
Pei-Pei Jia , Yi-Xiong Hu , Zhen-Chen Lou , Xuelei Ji , Xing-Dong Xu , Haitao Sun , Tongxia Jin , Feng Zheng , Lin Xu . Construction of BODIPY-based triangular metallacycles with tunable photosensitization efficiency. Chinese Chemical Letters, 2025, 36(11): 110835-. doi: 10.1016/j.cclet.2025.110835
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Chonglong He , Yulong Wang , Quan-Xin Li , Zichen Yan , Keyuan Zhang , Shao-Fei Ni , Xin-Hua Duan , Le Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
Cong-Bin Ji , Ding-Xiong Xie , Mei Chen , Ye-Ying Lan , Bao-Hua Zhang , Ji-Ying Yang , Zheng-Hui Kang , Shu-Jie Chen , Yu-Wei Zhang , Yun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Kebo Xie , Qian Zhang , Fei Ye , Jungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028
Liliang Chu , Xiaoyan Zhang , Jianing Li , Xuelei Deng , Miao Wu , Ya Cheng , Weiping Zhu , Xuhong Qian , Yunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896
Ji-Jia Zhou , Li-Gao Liu , Zhen-Tao Zhang , Hao-Xuan Dong , Xin Lu , Zhou Xu , Xin-Qi Zhu , Bo Zhou , Long-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688