Cyclodextrins as versatile supramolecular building block in nanoscale drug delivery systems for precise tumor chemotherapy
-
E-mail address: pliu@lzu.edu.cn (P. Liu).
Citation:
Peng Liu. Cyclodextrins as versatile supramolecular building block in nanoscale drug delivery systems for precise tumor chemotherapy[J]. Chinese Chemical Letters,
;2025, 36(11): 111406.
doi:
10.1016/j.cclet.2025.111406
S. Fujii, Polym. J. 55 (2023) 921–933.
doi: 10.1038/s41428-023-00793-6
P. Liu, Langmuir 40 (2024) 1143–1149.
doi: 10.1021/acs.langmuir.3c02032
Z.Y. Shen, N. Ma, F. Wang, et al., Chin. Chem. Lett. 33 (2022) 4563–4566.
doi: 10.1016/j.cclet.2022.01.069
A.F. Sepulveda, M. Kumpgdee-Vollrath, M.K.K.D. Franco, F. Yokaichiya, D.R. de Araujo, J. Colloid Interface Sci. 630B (2023) 328–340.
Y.C. Li, Y.S. Lai, X.H. Xu, et al., Nanomedicine: NBM 12 (2016) 355–364.
doi: 10.1016/j.nano.2015.09.015
B. Hazarika, V.P. Singh, Chin. Chem. Lett. 34 (2023) 108220.
doi: 10.1016/j.cclet.2023.108220
J.C. Ji, J. Zhou, X. Li, et al., Acta Biomater. 195 (2025) 436–450.
doi: 10.1016/j.actbio.2025.02.009
A. Harada, Y. Takashima, H. Yamaguchi, Chem. Soc. Rev. 38 (2009) 875–882.
doi: 10.1039/b705458k
Y.M. Zhang, Y.H. Liu, Y. Liu, Adv. Mater. 32 (2020) 1806158.
doi: 10.1002/adma.201806158
G.T. Liu, Q.J. Yuan, G. Hollett, et al., Polym. Chem. 9 (2018) 3436–3449.
doi: 10.1039/c8py00730f
A.P. Sherje, B.R. Dravyakar, D. Kadam, M. Jadhav, Carbohydr. Polym. 173 (2017) 37–49.
doi: 10.1016/j.carbpol.2017.05.086
B.R. Tian, S.Y. Hua, J.Y. Liu, Carbohydr. Polym. 232 (2020) 115805.
doi: 10.1016/j.carbpol.2019.115805
B.R. Tian, Y.M. Liu, J.Y. Liu, Carbohydr. Polym. 242 (2020) 116401.
doi: 10.1016/j.carbpol.2020.116401
L.S. Devi, C. Casadidio, M.R. Gigliobianco, P. Di Martino, R. Censi, Int. J. Pharm. 654 (2024) 123976.
doi: 10.1016/j.ijpharm.2024.123976
M. Shahriari, P. Kesharwani, T.P. Johnston, A. Sahebkar, Int. J. Pharm. 631 (2023) 122474.
doi: 10.1016/j.ijpharm.2022.122474
Z.X. Liu, W.J. Lin, Y. Liu, Acc. Chem. Res. 55 (2022) 3417–3429.
doi: 10.1021/acs.accounts.2c00462
J. Ghitman, S.I. Voicu, Carbohydr. Polym. Technol. Appl. 5 (2023) 100266.
Z.L. Dan, H.Q. Cao, X.Y. He, et al., Int. J. Pharm. 483 (2015) 63–68.
doi: 10.1016/j.ijpharm.2015.01.035
J.X. Zhang, P.X. Ma, Adv. Drug Deliv. Rev. 65 (2013) 1215–1233.
doi: 10.1016/j.addr.2013.05.001
G.H. Fang, X.W. Yang, S.M. Chen, et al., Coordin. Chem. Rev. 454 (2022) 214352.
doi: 10.1016/j.ccr.2021.214352
F. Topuz, T. Uyar, Carbohydr. Polym. 297 (2022) 120033.
doi: 10.1016/j.carbpol.2022.120033
A. Villiers, Compt. Rend. Fr. Acad. Sci. 112 (1891) 536–538.
F. Schardinger, Centralbl. Bakteriol, Parasitenkd. Infektionskrankh. Hyg. Abt. Ⅱ 29 (1911) 188–197.
F. Cramer, Die Cyclodextrine Aus stärke, Dissertation, Heidelberg University, Heidelberg, 1949.
F. Cramer, Die einzelnen einschlußverbindungen, Eischlussverbindungen, Chapter Ⅱ, Springer-Verlag, Berlin, 1954.
G. Crini, Chem. Rev. 114 (2014) 10940–10975.
doi: 10.1021/cr500081p
P. Jansook, N. Ogawa, T. Loftsson, Int. J. Pharm. 535 (2018) 272–284.
doi: 10.1016/j.ijpharm.2017.11.018
A. Raza, T. Rasheed, F. Nabeel, U. Hayat, M. Bilal, H.M.N. Iqbal, Molecules 24 (2019) 1117.
doi: 10.3390/molecules24061117
G. Kali, S. Haddadzadegan, A. Bernkop-Schnurch, Carbohydr. Polym. 324 (2024) 121500.
doi: 10.1016/j.carbpol.2023.121500
G.J. Chen, Y.Y. Wang, R.S. Xie, S.Q. Gong, Adv. Drug Deliv. Rev. 130 (2018) 58–72.
doi: 10.1016/j.addr.2018.07.008
X.S. Fan, H.W. Cheng, X.Y. Wang, et al., Adv. Healthc. Mater. 7 (2018) 1701143.
doi: 10.1002/adhm.201701143
X. Song, Y.T. Wen, J.L. Zhu, et al., Biomacromolecules 17 (2016) 3957–3963.
doi: 10.1021/acs.biomac.6b01344
H.W. Cheng, X.S. Fan, X.Y. Wang, et al., Biomacromolecules 19 (2018) 1926–1938.
doi: 10.1021/acs.biomac.7b01693
H. Liu, J. Chen, X.F. Li, et al., Colloid Surf. B: Biointerfaces 180 (2019) 429–440.
doi: 10.1177/1464419318778253
H.K. Yang, N.H. Wang, R.M. Yang, L.M. Zhang, X.Q. Jiang, Pharmaceutics 14 (2022) 52.
L.Y. Qiu, R.J. Wang, C. Zheng, T. Jin, L.Q. Jin, Nanomedicine 5 (2010) 193–208.
doi: 10.2217/nnm.09.108
B. Kost, M. Brzezinski, M. Cieslak, et al., Eur. Polym. J. 120 (2019) 109271.
doi: 10.1016/j.eurpolymj.2019.109271
X.F. Li, H. Liu, J.B. Li, et al., Colloid Surf. B: Biointerfaces 183 (2019) 110425.
doi: 10.1016/j.colsurfb.2019.110425
X. Song, J.L. Zhu, Y.T. Wen, et al., J. Colloid Interface Sci. 490 (2017) 372–379.
doi: 10.1016/j.jcis.2016.11.056
X.X. Shi, X.Q. Ma, M.L. Hou, et al., J. Mater. Chem. B 5 (2017) 6847–6859.
doi: 10.1039/C7TB01477E
W.Q. Li, C.F. Xu, S.X. Li, et al., Mater. Sci. Eng. C 105 (2019) 110047.
doi: 10.1016/j.msec.2019.110047
J.J. Wang, Y. Qian, C. Qian, J.Y. Yao, X.L. Bi, React. Funct. Polym. 150 (2020) 104542.
doi: 10.1016/j.reactfunctpolym.2020.104542
T. Jia, S. Huang, C.J. Yang, M.F. Wang, Mol. Pharmaceutics 14 (2017) 2529–2537.
doi: 10.1021/acs.molpharmaceut.6b00708
Y. Hou, Y.Y. Liu, S.S. Sun, J.H. Liang, Macromol. Chem. Phys. 218 (2017) 1700068.
doi: 10.1002/macp.201700068
Y.E. Gao, S. Bai, X.Q. Ma, et al., Colloid Surf. B: Biointerfaces 183 (2019) 110428.
doi: 10.1016/j.colsurfb.2019.110428
B.V.K.J. Schmidt, M. Hetzer, H. Ritter, C. Barner-Kowollik, Prog. Polym. Sci. 39 (2014) 235–249.
doi: 10.1016/j.progpolymsci.2013.09.006
K. Velmurugan, M. Mohan, B. Li, et al., Mater. Adv. 1 (2020) 2646–2662.
doi: 10.1039/d0ma00625d
C.B. Rodell, J.E. Mealy, J.A. Burdick, Bioconjugate Chem. 26 (2015) 2279–2289.
doi: 10.1021/acs.bioconjchem.5b00483
M.V. Rekharsky, Y. Inoue, Chem. Rev. 98 (1998) 1875–1917.
doi: 10.1021/cr970015o
P. Bortolus, S. Monti, J. Phys. Chem. 91 (1987) 5046–5050.
doi: 10.1021/j100303a032
T. Matsue, D.H. Evans, T. Osa, N. Kobayashi, J. Am. Chem. Soc. 107 (1985) 3411–3417.
doi: 10.1021/ja00298a003
A. Degirmenci, H. Ipek, R. Sanyal, A. Sanyal, Eur. Polym. J. 181 (2022) 111645.
doi: 10.1016/j.eurpolymj.2022.111645
Z. Zhang, J.X. Ding, X.F. Chen, et al., Polym. Chem. 4 (2013) 3265–3271.
doi: 10.1039/c3py00141e
Z. Zhang, Q. Lv, X.Y. Gao, et al., ACS Appl. Mater. Interfaces 7 (2015) 8404–8411.
doi: 10.1021/acsami.5b01213
K. Ramesh, D.S.B. Anugrah, K.T. Lim, React. Funct. Polym. 131 (2018) 12–21.
doi: 10.7251/els1822012r
K. Ramesh, C.K. Balavigneswaran, S.A.P. Siboro, V. Muthuvijayan, K.T. Lim, Polymer 214 (2021) 123243.
doi: 10.1016/j.polymer.2020.123243
J.P. He, J.Z. Chen, S.L. Lin, et al., Biomacromolecules 19 (2018) 2923–2930.
doi: 10.1021/acs.biomac.8b00488
J.H. Wang, D. Li, Y. Fan, et al., Nanoscale 11 (2019) 22343–22350.
doi: 10.1039/c9nr08309j
W.Z. Chen, X.F. Li, C.F. Liu, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 30942–30948.
doi: 10.1073/pnas.2007798117
X.J. Cui, N.R. Wang, H.S. Wang, G.Y. Li, Q. Tao, Int. J. Polym. Mater. Polym. Biomater. 68 (2019) 733–740.
doi: 10.1080/00914037.2018.1493686
Y.R. Gao, C.Y. Li, Z.S. Zhou, L.L. Gao, Q. Tao, Int. J. Biological Macromol. 105 (2017) 74–80.
doi: 10.1016/j.ijbiomac.2017.06.120
Y.R. Gao, G.Y. Li, Z.S. Zhou, L. Guo, X.Y. Liu, Colloid Surf. B: Biointerfaces 160 (2017) 364–371.
doi: 10.1016/j.colsurfb.2017.09.047
Q. Zhao, Y. Chen, M. Sun, X.J. Wu, Y. Liu, RSC Adv. 6 (2016) 50673–50679.
doi: 10.1039/C6RA07572J
X.F. Yang, X.Y. Jiang, H.Y. Yang, et al., Carbohydr. Polym. 237 (2020) 116114.
doi: 10.1016/j.carbpol.2020.116114
N. Li, Y. Chen, Y.M. Zhang, et al., Sci. Rep. 4 (2014) 4164.
doi: 10.1038/srep04164
J. Liu, B.C. Chang, Q.L. Li, et al., Adv. Sci. 6 (2019) 1801987.
doi: 10.1002/advs.201801987
J.T. Liu, Y. Li, M. Zhao, et al., J. Biomater. Sci., Polym. Ed. 31 (2020) 472–490.
doi: 10.1080/09205063.2019.1700601
T.T.N. Thi, T.V. Tran, N.Q. Tran, C.K. Nguyen, D.H. Nguyen, Mater. Sci. Eng. C 70 (2017) 947–954.
doi: 10.1016/j.msec.2016.04.085
Y.M. Wang, J. Wang, K.J. Gou, et al., ACS Appl. Mater. Interfaces 13 (2021) 35397–35409.
doi: 10.1021/acsami.1c08532
Y.R. Yao, Y.J. Jin, X. Jia, Y. Yang, Chem. Eur. J. 27 (2021) 2987–2992.
doi: 10.1002/chem.202004335
D.S. Wang, S. Wu, Langmuir 32 (2016) 632–636.
doi: 10.1021/acs.langmuir.5b04399
Q. Zhang, C.A. Shen, N.N. Zhao, F.J. Xu, Adv. Funct. Mater. 27 (2017) 1606229.
doi: 10.1002/adfm.201606229
M. Arunachalam, H.W. Gibson, Prog. Polym. Sci. 39 (2014) 1043–1073.
doi: 10.1016/j.progpolymsci.2013.11.005
R. Kashapov, Y. Razuvayeva, E. Fedorova, L. Zakharova, Soft Matter 20 (2024) 8549–8560.
doi: 10.1039/d4sm01053a
T. Girek, J. Incl. Phenom. Macrocycl. Chem. 76 (2013) 237–252.
doi: 10.1007/s10847-012-0253-2
T. Higashi, K. Motoyama, H. Arima, J. Drug Deliv. Sci. Technol. 23 (2013) 523–529.
doi: 10.1016/S1773-2247(13)50080-3
Z.J. Liu, G.R. Xu, C.N. Wang, C.Y. Li, P. Yao, Int. J. Pharm. 530 (2017) 53–62.
doi: 10.1080/00207721.2016.1152416
A.J. Poudel, F. He, L.X. Huang, L. Xiao, G. Yang, Carbohydr. Polym. 194 (2018) 69–79.
doi: 10.1016/j.carbpol.2018.04.035
T.T. Xu, J.H. Li, J. Cao, et al., Carbohydr. Polym. 174 (2017) 789–797.
doi: 10.1016/j.carbpol.2017.07.012
Q. Zhou, C.X. Li, J.H. Guo, et al., Carbohydr. Res. 511 (2022) 108464.
doi: 10.1016/j.carres.2021.108464
W. Zhu, Y.L. Li, L.X. Liu, Y.M. Chen, F. Xi, Int. J. Pharm. 437 (2012) 11–19.
doi: 10.1016/j.ijpharm.2012.08.007
Y. Wang, W.X. Qing, Supramol. Chem. 33 (2021) 202–210.
doi: 10.1080/10610278.2021.1973002
F. Li, J.L. He, M.Z. Zhang, P.H. Ni, Polym. Chem. 6 (2015) 5009–5014.
doi: 10.1039/C5PY00620A
T.T. Zhou, J.G. Li, X. Jia, X.B. Zhao, P. Liu, Langmuir 34 (2018) 416–424.
doi: 10.1021/acs.langmuir.7b03990
W. Zhang, X.Y. Zhou, T. Liu, D. Ma, W. Xue, J. Mater. Chem. B 3 (2015) 2127–2136.
doi: 10.1039/C4TB01971G
F. Du, H.J. Meng, K. Xu, et al., Colloid Surf. B: Biointerfaces 113 (2014) 230–236.
doi: 10.1016/j.colsurfb.2013.09.015
J. Varshosaz, F. Hassanzadeh, H. Sadeghi Aliabadi, et al., Colloid Polym. Sci. 292 (2014) 2647–2662.
doi: 10.1007/s00396-014-3307-8
H. Hyun, S. Lee, W. Lim, et al., J. Ind. Eng. Chem. 70 (2019) 145–151.
doi: 10.1016/j.jiec.2018.09.052
J. Li, M.X. Xin, Y.H. Huo, et al., Carbohydr. Polym. 229 (2020) 115478.
doi: 10.1016/j.carbpol.2019.115478
W.Z. Yang, Y.H. Xue, X. Cui, H.B. Tang, H.Y. Li, Colloid Surf. B: Biointerfaces 220 (2022) 112934.
doi: 10.1016/j.colsurfb.2022.112934
W.Z. Yang, Y. Zhang, J.J. Wang, H.Y. Li, H. Yang, Int. J. Biol. Macromol. 216 (2022) 789–798.
doi: 10.1016/j.ijbiomac.2022.07.182
S.M. Yuan, J. Chen, J. Sheng, Y. Hu, Z.Y. Jiang, Macromol. Biosci. 16 (2016) 341–349.
doi: 10.1002/mabi.201500302
M. Saraswathy, G.T. Knight, S. Pilla, R.S. Ashton, S.Q. Gong, Colloid Surf. B: Biointerfaces 126 (2015) 590–597.
doi: 10.1016/j.colsurfb.2014.12.042
A. Rahmani, F. Rahimi, M. Iranshahi, et al., Sci. Rep. 11 (2021) 21425.
doi: 10.1038/s41598-021-00954-8
C. Chen, R. Tao, D. Ding, et al., Eur. J. Pharm. Sci. 107 (2017) 16–23.
doi: 10.1016/j.ejps.2017.06.030
Y. Bai, C.P. Liu, D. Chen, et al., Carbohydr. Polym. 246 (2020) 116654.
doi: 10.1016/j.carbpol.2020.116654
P. Liu, R.N. Zhang, Colloid Surf A: Physicochem. Eng. Aspects 577 (2019) 291–295.
doi: 10.1016/j.colsurfa.2019.05.089
Y.T. Dai, Q.N. Li, S.R. Zhang, et al., J. Drug Deliv. Sci. Technol. 64 (2021) 102650.
doi: 10.1016/j.jddst.2021.102650
J.G. Li, P. Liu, Carbohydr. Polym. 201 (2018) 583–590.
doi: 10.1016/j.carbpol.2018.08.102
A.T. Mitha, M.R. Rekha, J. Mater. Chem. B 2 (2014) 8005–8016.
doi: 10.1039/C4TB01298D
Y.J. Ooi, Y.T. Wen, J.L. Zhu, X. Song, J. Li, Biomacromolecules 25 (2024) 2980–2989.
doi: 10.1021/acs.biomac.4c00123
R. Namgung, Y.M. Lee, J. Kim, et al., Nat. Commun. 5 (2014) 3702.
doi: 10.1038/ncomms4702
K.A. Ansari, P.R. Vivia, F. Trotta, R. Cavalli, AAPS PharmSciTech 12 (2011) 279–286.
doi: 10.1208/s12249-011-9584-3
R. Minelli, R. Cavalli, L. Ellis, et al., Eur. J. Pharm. Sci. 47 (2012) 686–694.
doi: 10.1016/j.ejps.2012.08.003
R. Anand, M. Malanga, I. Manet, et al., Photochem. Photobiol. Sci. 12 (2013) 1841–1854.
doi: 10.1039/c3pp50169h
E. Gholibegloo, T. Mortezazadeh, F. Salehian, et al., Carbohydr. Polym. 213 (2019) 70–78.
doi: 10.1016/j.carbpol.2019.02.075
S.S. Darandale, P.R. Vavia, J. Incl. Phenom. Macrocycl. Chem. 75 (2013) 315–322.
doi: 10.1007/s10847-012-0186-9
M. Gholam-Hosseinpour, Z. Karami, S. Hamedi, Z.M. Lighvan, A. Heydari, Polym. Bull. 79 (2022) 1555–1569.
doi: 10.1007/s00289-021-03569-1
C.S. Pawar, N.R. Prasad, P. Yadav, et al., Int. J. Pharm. 635 (2023) 122763.
doi: 10.1016/j.ijpharm.2023.122763
J.F. Hu, M.Y. Liang, M.Y. Ye, et al., Carbohydr. Polym. 301 (2023) 120365.
doi: 10.1016/j.carbpol.2022.120365
F. Trotta, F. Caldera, C. Dianzani, et al., ChemPlusChem 81 (2016) 439–443.
doi: 10.1002/cplu.201500531
M.L. Pei, J.Y. Pai, P.C. Du, P. Liu, Mol. Pharm. 15 (2018) 4084–4091.
doi: 10.1021/acs.molpharmaceut.8b00508
S.S. Sandoval, P. Diaz-Saldivar, I. Araya, et al., ACS Appl. Mater. Interfaces 17 (2025) 13001–13017.
doi: 10.1021/acsami.3c18038
S. Borandeh, A. Abdolmaleki, S.S. Abolmaali, A.M. Tamaddon, Carbohydr. Polym. 201 (2018) 151–161.
doi: 10.1016/j.carbpol.2018.08.064
A. Siriviriyanun, Y.J. Tsai, S.H. Voon, et al., Mater. Sci. Eng. C 89 (2018) 307–315.
doi: 10.1016/j.msec.2018.04.020
M.X. Zhao, B.J. Zhu, W.J. Yao, D.F. Chen, C.J. Wang, Chem. Biol. Drug Des. 91 (2018) 285–293.
doi: 10.1111/cbdd.13080
S.S. Liu, W. Dong, X.F. Zeng, et al., J. Chem. Technol. Biotechnol. 94 (2019) 628–633.
doi: 10.1002/jctb.5812
N. Silva, A. Riveros, N. Yutronic, et al., Nanomaterials 8 (2018) 985.
doi: 10.3390/nano8120985
M. Deinavizadeh, A.R. Kiasat, N. Hooshmand, et al., J. Phys. Chem. C 126 (2022) 18754–18766.
doi: 10.1021/acs.jpcc.2c05254
M.S. Hariharan, R. Sivaraj, S. Ponsubha, R. Jagadeesh, I.V.M.V. Enoch, J. Mater. Sci. 54 (2019) 4942–4951.
doi: 10.1007/s10853-018-3161-z
M. Pooresmaeila, H. Namazi, Mater. Chem. Phys. 218 (2018) 62–69.
doi: 10.1016/j.matchemphys.2018.07.022
M. Pooresmaeila, H. Namazi, Eur. Polym. J. 142 (2021) 110126.
doi: 10.1016/j.eurpolymj.2020.110126
A. Solanki, S. Sanghvi, R. Devkar, S. Thakore, RSC Adv. 6 (2016) 98693–98707.
doi: 10.1039/C6RA18030B
C.L. Wang, L.Z. Huang, S.M. Song, et al., Appl. Surf. Sci. 357 (2015) 2077–2086.
doi: 10.1016/j.apsusc.2015.09.189
M. Hasani, S. Ghanbarzadeh, H. Hajiabadi, et al., Int. J. Polym. Mater. Polym. Biomater. 73 (2024) 117–130.
doi: 10.1080/00914037.2022.2129634
E.C.S. Santos, A. Watanabe, M.D. Vargas, et al., New J. Chem. 42 (2018) 671–680.
doi: 10.1039/C7NJ02860A
C.B. Rodell, N.N. Dusaj, C.B. Highley, J.A. Burdick, Adv. Mater. 28 (2016) 8419–8424.
doi: 10.1002/adma.201602268
J.J. Yin, S.P. Shumyak, C. Burgess, et al., Int. J. Nanomed. 10 (2015) 4717–4730.
H. Mousazadeh, E. Bonabi, N. Zarghami, Carbohydr. Polym. 276 (2022) 118747.
doi: 10.1016/j.carbpol.2021.118747
H. Wu, J. Peng, S. Wang, et al., Mater. Technol. 30 (2015) B242–B249.
doi: 10.1179/17535557B15Y.000000004
Q. Wang, C.M. Zou, L.Y. Wang, et al., Acta Biomater 94 (2019) 469–481.
doi: 10.1016/j.actbio.2019.05.061
Q. Song, X. Wang, Y.Q. Wang, et al., Mol. Pharmaceutics 13 (2016) 190–201.
doi: 10.1021/acs.molpharmaceut.5b00631
Y.Y. Zhang, D. Yang, H.Z. Chen, et al., Biomaterials 163 (2018) 14–24.
doi: 10.1117/12.2299221
D. Osella, A. Carretta, C. Nervi, M. Ravera, R. Gobetto, Organometallics 19 (2000) 2791–2797.
doi: 10.1021/om0001366
H.G. Fu, Y. Chen, Q.L. Yu, Y. Liu, ACS Med. Chem. Lett. 11 (2020) 1191–1195.
doi: 10.1021/acsmedchemlett.0c00040
X.Y. Lu, G.Y. Du, Z.H. Zhang, et al., Eur. J. Inorg. Chem. 2022 (2022) e202101061.
T.T. Hu, C. Shen, X.Y. Wang, F.B. Wu, Z.Y. He, Chin. Chem. Lett. 35 (2024) 109562.
doi: 10.1016/j.cclet.2024.109562
M. Ceborska, Eur. J. Pharm. Biopharm. 120 (2017) 133–145.
doi: 10.1016/j.ejpb.2017.09.005
X.C. Tang, Y.T. Wen, Z.X. Zhang, et al., Carbohydr. Polym. 352 (2025) 123202.
doi: 10.1016/j.carbpol.2024.123202
H.K. Chen, C.Y. Xing, H.Q. Lei, et al., J. Control. Rel. 368 (2024) 637–649.
doi: 10.1016/j.jconrel.2024.03.015
A.Q. Dong, S.W. Huang, Z.Y. Qian, et al., J. Mater. Chem. B 11 (2023) 10883–10895.
doi: 10.1039/d3tb01769a
K. Wang, S.L. Qi, X.Y. Yu, Angew. Chem. Int. Ed. 61 (2022) e202203786.
doi: 10.1002/anie.202203786
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
Jing Feng , Yanhong Liu , Liming Gong , Chenfei Liu , Congcong Xiao , Liqing Chen , Mingji Jin , Zhonggao Gao , Wei Huang , Yubo Li . Recent progress on drug delivery systems of regulating intratumoral bacteria for tumor therapy. Chinese Chemical Letters, 2025, 36(11): 110907-. doi: 10.1016/j.cclet.2025.110907
Huijuan Zhang , Chenglin Liang , Xinyi Ding , Meng Zhang , Siyu Lu , Lin Hou . Manganese-based nano-delivery system for sensitized anti-tumor immunotherapy via combined autophagy inhibition. Chinese Chemical Letters, 2025, 36(7): 110525-. doi: 10.1016/j.cclet.2024.110525
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
Wenbin Zhou , Yafei Gao , Xinyu Feng , Yanqing Zhang , Cong Yang , Lanxi He , Fenghe Zhang , Xiaoguang Li , Qing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
Jianmin Jiao , Jiehao Yu , Xueqi Tian , Xiao-Yu Hu . TPE-embedded functional macrocycles: From structural design to photophysical property and application. Chinese Chemical Letters, 2025, 36(6): 111026-. doi: 10.1016/j.cclet.2025.111026
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
Lu Cheng , Jinghua Quan , Hongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685
Shan Jiang , Lingchen Meng , Wenyue Ma , Qingkai Qi , Wei Zhang , Bin Xu , Leijing Liu , Wenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998
Kexiang Zhao , Zongrui Wang , Qi-Yuan Wan , Jing-Cai Zeng , Li Ding , Jie-Yu Wang , Jian Pei . Janus-type BN-embedded perylene diimides via a "shuffling" strategy: Regioselective functionalizable building block towards high-performance n-type organic semiconductors. Chinese Chemical Letters, 2025, 36(6): 110339-. doi: 10.1016/j.cclet.2024.110339
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
Jiawei Zhu , Yucheng Xiong , Xiaoxue Bai , Chenlong Xie , Baichen Xiong , Yao Chen , Haopeng Sun . Small molecule-drug conjugates: Mechanistic insights and strategic design for enhanced cancer therapy. Chinese Chemical Letters, 2025, 36(10): 110799-. doi: 10.1016/j.cclet.2024.110799
Haotian Shi , Yuchao Luo , Song Zhang , Meijun Zhao , Chaoyong Liu , Qing Pei , Helei Wang , Qiong Dai , Zhigang Xie , Bin Xu , Wenjing Tian . Dual-responsive nanogels with high drug loading for enhanced tumor targeting and treatment. Chinese Chemical Letters, 2025, 36(10): 110775-. doi: 10.1016/j.cclet.2024.110775
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755