-
[1]
W. Jin, J. Feng, W. Xing, W. Tang, ACS EST Water 3 (2023) 1385–1394.
doi: 10.1021/acsestwater.3c00059
-
[2]
H.C. Yap, Y.L. Pang, S. Lim, et al., Int. J. Environ. Sci. Technol. 16 (2018) 601–628.
-
[3]
M. Bajpai, S.S. Katoch, A. Kadier, A. Singh, Environ. Sci. Pollut. R. 29 (2022) 15252–15281.
doi: 10.1007/s11356-021-18348-8
-
[4]
D. Wen, W.T. Li, J.R. Lv, Z.M. Qiang, M.K. Li, J. Hazard. Mater. 391 (2020) 121855.
doi: 10.1016/j.jhazmat.2019.121855
-
[5]
W. Qin, Z. Liu, Z. Lin, et al., Chem. Eng. J. 446 (2022) 137066.
doi: 10.1016/j.cej.2022.137066
-
[6]
W. Li, S. Lu, Z. Qiu, et al., Environ. Technol. 32 (2011) 1063–1071.
doi: 10.1080/09593330.2010.525750
-
[7]
A. Amador, J. Chem. Educ. 56 (1979) 453.
doi: 10.1021/ed056p453
-
[8]
P. Xie, Y. Zou, S. Jiang, et al., Chemosphere 233 (2019) 282–291.
doi: 10.1016/j.chemosphere.2019.05.201
-
[9]
G. Liu, C. Feng, P. Shao, Environ. Sci. Technol. 56 (2022) 6223–6231.
doi: 10.1021/acs.est.1c06793
-
[10]
C. Geng, Z. Liang, F. Cui, et al., Chem. Eng. J. 383 (2020) 123145.
doi: 10.1016/j.cej.2019.123145
-
[11]
L. Yang, Z. Zhang, Water Res. 161 (2019) 439–447.
doi: 10.1016/j.watres.2019.06.021
-
[12]
Q. Wang, N. Huang, W. Wang, et al., J. Clean. Prod. 401 (2023) 136732.
doi: 10.1016/j.jclepro.2023.136732
-
[13]
M. Gonzalez, E. Oliveros, M. Wörner, A. Braun, J. Photochem. Photobiol. C: Photochem. Rev. 5 (2004) 225–246.
doi: 10.1016/j.jphotochemrev.2004.10.002
-
[14]
J.L. Weeks, G.M.A. Meaburn, S. Gordon, Radiat Res. 19 (1963) 559–567.
doi: 10.2307/3571475
-
[15]
Y.J. Nong, Y.L. Zhang, U. Hubner, et al., J. Hazard. Mater. 446 (2023) 130660.
doi: 10.1016/j.jhazmat.2022.130660
-
[16]
K. Zoschke, H. Boernick, E. Worch, Water Res. 52 (2014) 131–145.
doi: 10.1016/j.watres.2013.12.034
-
[17]
Y. Gu, T. Liu, H. Wang, H. Han, W. Dong, Sci. Total. Environ. 607 (2017) 541–548.
-
[18]
Y. Wang, P. Zhang, J. Environ. Sci. 26 (2014) 2207–2214.
doi: 10.1016/j.jes.2014.09.003
-
[19]
E.A. Sosnin, S.M. Avdeev, V.F. Tarasenko, V.S. Skakun, D.V. Schitz, Instrum. Exp. Tech. 58 (2015) 309–318.
doi: 10.1134/S0020441215030124
-
[20]
E.M. Payne, B. Liu, L. Mullen, K.G. Linden, Environ. Sci. Technol. Lett. 9 (2022) 779–785.
doi: 10.1021/acs.estlett.2c00472
-
[21]
S. Baadj, Z. Harrache, A. Belasri, Plasma. Phys. Rep. 39 (2013) 1043–1054.
doi: 10.1134/S1063780X13120015
-
[22]
W.J. Masschelein, Ultraviolet light in water and wastewater sanitation, in: R.G. Rice (Ed.), Available Lamp (Or Burner) Technologies, LEWIS Publishers, 2013, pp. 9–54.
-
[23]
U. Kogelschatz, J. Opt. Tech. 79 (2012) 484–493.
doi: 10.1364/JOT.79.000484
-
[24]
S. Beleznai, G. Mihajlik, A. Agod, et al., J. Phys. D: Appl. Phys. 39 (2006) 3777–3787.
doi: 10.1088/0022-3727/39/17/012
-
[25]
S. Beleznai, G. Mihajlik, I. Maros, L. Balázs, P. Richter, J. Phys. D: Appl. Phys. 41 (2008) 115202.
doi: 10.1088/0022-3727/41/11/115202
-
[26]
V.F. Tarasenko, E.B. Chernov, M.V. Erofeev, et al., Appl. Phys. A 69 (1999) S327–S329.
doi: 10.1007/s003390051410
-
[27]
X.B. Zhuang, Q.Y. Han, H.J. Zhang, et al., J. Phy. D: Appl Phys. 43 (2010) 205202.
doi: 10.1088/0022-3727/43/20/205202
-
[28]
I.S. Mihaela, Advanced Oxidation Processes For Water treatment: Fundamentals and applications, Vacuum UV radiation-Driven Processes, IWA Publishing, London, 2018, p. 221.
-
[29]
J.F. Lian, Z.M. Qiang, M.K. Li, J.R. Bolten, J. Qu, Water Res. 75 (2015) 43–50.
doi: 10.1016/j.watres.2015.02.026
-
[30]
Z.Y. Xiao, N. Huang, Q. Wang, et al., Sep. Purif. Technol. 292 (2022) 121012.
doi: 10.1016/j.seppur.2022.121012
-
[31]
P. Chintalapati, M. Mohseni, et al., J. Hazard. Mater. 381 (2020) 120921.
doi: 10.1016/j.jhazmat.2019.120921
-
[32]
S.B. Alekseev, V.A. Kuvshinov, A.A. Lisenko, et al., Instrum. Exp. Tech. 49 (2006) 132–134.
doi: 10.1134/S0020441206010192
-
[33]
M. Bagheri, M. Mohseni, J. Hazard. Mater. 294 (2015) 1–8.
-
[34]
J.R. Bolton, M.I. Stefan, P.S. Shaw, K.R. Lykke, J. Photochem. Photobiol. A 222 (2011) 166–169.
doi: 10.1016/j.jphotochem.2011.05.017
-
[35]
R.O. Rahn, Photochem. Photobiol. 66 (1997) 450–455.
doi: 10.1111/j.1751-1097.1997.tb03172.x
-
[36]
J.Y. Zhang, I.W. Boyd, H. Esrom, et al., Appl. Surf. Sci. 109 (1997) 482–486.
-
[37]
R.O. Rahn, Photochem. Photobiol. 66 (1997) 885.
doi: 10.1111/j.1751-1097.1997.tb03243.x
-
[38]
L. Long, Y. Yang, S. You, L. Wei, B. Chen, J. Photochem. Photobiol. A 432 (2022) 114080.
doi: 10.1016/j.jphotochem.2022.114080
-
[39]
L. Casimiro, L. Andreoni, J. Groppi, et al., Photochem. Photobiol. Sci. 21 (2022) 825–833.
doi: 10.1007/s43630-021-00162-3
-
[40]
G.E. Imoberdorf, M. Mohseni, Water Sci. Technol. 63 (2011) 1427–1433.
doi: 10.2166/wst.2011.321
-
[41]
R.J. Bolton, G.K. Linden, J. Environ. Eng. 129 (2003) 209–215.
doi: 10.1061/(ASCE)0733-9372(2003)129:3(209)
-
[42]
W. Buchanan, F. Roddick, N. Porter, et al., Environ. Sci. Technol. 39 (2005) 4647–4654.
doi: 10.1021/es048489+
-
[43]
N.G. Wright, D.M. Hargreaves, J. Hydroinform. 3 (2001) 59–70.
doi: 10.2166/hydro.2001.0008
-
[44]
M. Bagheri, M. Mohseni, Chem. Eng. J. 256 (2014) 51–60.
doi: 10.1016/j.cej.2014.06.068
-
[45]
R.P.M. Moreira, G.Li Puma, Chem. Eng. J. 415 (2021) 128833.
doi: 10.1016/j.cej.2021.128833
-
[46]
T. Ratpukdi, J. Clean. Energy. Technol. 2 (2014) 168–170.
doi: 10.7763/JOCET.2014.V2.115
-
[47]
G. Moussavi, M. Rezaei, M. Pourakbar, Chem. Eng. J. 332 (2018) 140–149.
doi: 10.1016/j.cej.2017.09.057
-
[48]
D. Krakko, B.T. Heieren, A. Illes, et al., Process Saf. Environ. Prot. 163 (2022) 395–404.
doi: 10.1016/j.psep.2022.05.027
-
[49]
J. Chen, P.Y. Zhang, J. Liu, J. Environ. Sci. 19 (2007) 387–390.
doi: 10.1007/s10967-007-0533-2
-
[50]
H. Amanollahi, G. Moussavi, S. Giannakis, Water Res. 166 (2019) 115061.
doi: 10.1016/j.watres.2019.115061
-
[51]
L. Yang, G. Yao, S. Huang, Chem. Eng. J. 388 (2020) 124302.
doi: 10.1016/j.cej.2020.124302xml=|Journal of Environmental Health Science and Engineering||19|1|121|2021|||
-
[52]
W. Han, P. Zhang, W. Zhu, J. Yin, L. Li, Water Res. 38 (19) (2004) 4197–4203.
doi: 10.1016/j.watres.2004.07.019
-
[53]
G. Moussavi, S. Shekoohiyan, J. Hazard. Mater. 318 (2016) 329–338.
doi: 10.1016/j.jhazmat.2016.06.062
-
[54]
G. Moussavi, M. Pourakbar, S. Shekoohiyan, M. Satari, Chem. Eng. J. 331 (2018) 755–764.
doi: 10.1016/j.cej.2017.09.009
-
[55]
S. Karimian, G. Moussavi, F. Fanaei, et al., Chem. Eng. J. 400 (2020) 125896.
doi: 10.1016/j.cej.2020.125896
-
[56]
R.K. Szabo, C. Megyeri, E. Illes, et al., Chemosphere 84 (2011) 1658–1663.
doi: 10.1016/j.chemosphere.2011.05.012
-
[57]
T. Alapi, A. Dombi, J. Photochem. Photobiol. A: Chem. 188 (2007) 409–418.
doi: 10.1016/j.jphotochem.2007.01.002
-
[58]
T.T. Cao, T.F. Xu, M.N. Zhao, J. Xu, C. Cai, J. Hazard. Mater. 392 (2020) 122474.
doi: 10.1016/j.jhazmat.2020.122474
-
[59]
Z. Wu, L. Yang, Y. Tang, Z. Qiang, M. Li, Chemosphere 273 (2021) 129724.
doi: 10.1016/j.chemosphere.2021.129724
-
[60]
Y. Liu, J. Wu, N. Cheng, et al., Chemosphere 334 (2023) 138993.
doi: 10.1016/j.chemosphere.2023.138993
-
[61]
L. Yang, J. Zhou, Y. Feng, Environ. Sci. Pollut. Res. 29 (2022) 20289–20295.
doi: 10.1007/s11356-021-17063-8
-
[62]
N.P.F. Goncalves, O. del Puerto, C. Medana, P. Calza, P. Roslev, J. Environ. Chem. Eng. 9 (2021) 106275.
doi: 10.1016/j.jece.2021.106275
-
[63]
M.V.M. Ngouyap, W. Li, S. Lu, et al., Water Air. Soil Pollut. 218 (2011) 265–274.
doi: 10.1007/s11270-010-0639-y
-
[64]
J.H. Cheng, X.Y. Liang, S.W. Yang, Y. Hu, Chem. Eng. J. 239 (2014) 242–249.
doi: 10.1016/j.cej.2013.11.023
-
[65]
X. Yang, F.L. Rosario-Ortiz, Y. Lei, et al., Environ. Sci. Technol. 56 (2022) 11111–11131.
doi: 10.1021/acs.est.2c01017
-
[66]
D.B. Miklos, W.L. Wang, K.G. Linden, J.E. Drewes, U. Hübner, Chem. Eng. J. 362 (2019) 537–547.
doi: 10.1016/j.cej.2019.01.041
-
[67]
M. Kwon, S. Kim, Y. Jung, et al., Environ. Sci. Technol. 53 (2019) 3177–3186.
doi: 10.1021/acs.est.8b05686
-
[68]
M. Pourakbar, G. Moussavi, S. Shekoohiyan, Ecotoxicol. Environ. Saf. 125 (2016) 72–77.
doi: 10.1016/j.ecoenv.2015.11.040
-
[69]
D. Wen, Z. Wu, Y. Tang, M. Li, Z. Qiang, J. Hazard. Mater. 344 (2018) 1181–1187.
doi: 10.1016/j.jhazmat.2017.10.032
-
[70]
M. Gu, L. Liu, G. Yu, et al., Environ. Sci. Technol. 57 (2023) 15288–15297.
doi: 10.1021/acs.est.3c03308
-
[71]
E.B. Esfahani, M. Mohseni, et al., Environ. Chem. Eng. 10 (2022) 107050.
doi: 10.1016/j.jece.2021.107050
-
[72]
C. Duca, G. Imoberdorf, M. Mohseni, J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 52 (2017) 524–532.
doi: 10.1080/10934529.2017.1282770
-
[73]
C. Wang, Z. Zhao, X. Deng, et al., Chem. Eng. J. 426 (2021) 131921.
doi: 10.1016/j.cej.2021.131921
-
[74]
Y. Sun, D.W. Cho, N.J.D. Graham, et al., Sci. Total Environ. 664 (2019) 312–321.
doi: 10.1016/j.scitotenv.2019.02.006
-
[75]
L. Yang, F. Xue, Int. J. Environ. Sci. Technol. 21 (2024) 3889–3898.
doi: 10.1007/s13762-023-05240-w
-
[76]
Y. Chen, J. Ye, Y. Chen, et al., Chem. Eng. J. 356 (2019) 98–106.
doi: 10.1111/jmi.12840
-
[77]
M. Han, M. Jafarikojour, M. Mohseni, Sci. Total Environ. 760 (2021) 143325.
doi: 10.1016/j.scitotenv.2020.143325
-
[78]
H. Hu, Y. Chen, J. Ye, et al., Environ. Sci. Water Res. Technol. 5 (2019) 564–576.
doi: 10.1039/c8ew00738a
-
[79]
H. Li, Y.L. Yang, X. Li, et al., J. Environ. Chem. Eng. 9 (2021) 106489.
doi: 10.1016/j.jece.2021.106489
-
[80]
P.W.J. Cooper, R.G. Zika, R.G. Petasne, et al., ACS Symp. Ser. 219 (1989) 333–362.
-
[81]
N. Huang, W.T. Shao, W.L. Wang, et al., J. Environ. Manag. 315 (2022) 115107.
doi: 10.1016/j.jenvman.2022.115107
-
[82]
C. Wang, E. Rosenfeldt, Y. Li, et al., Environ. Sci. Technol. 54 (2019) 1929–1937.
doi: 10.3390/polym11121929
-
[83]
Y.L. Zhang, W.L. Wang, M.Y. Lee, et al., Sci. Total. Environ. 818 (2022) 151776.
doi: 10.1016/j.scitotenv.2021.151776
-
[84]
P. Wardman, J. Phys. Chem. Ref. Data 18 (1989) 1637–1755.
doi: 10.1063/1.555843
-
[85]
C. Li, S. Zheng, T. Li, et al., Water Res. 151 (2019) 468–477.
doi: 10.1016/j.watres.2018.12.010
-
[86]
M.S. Sambhi, J. Phys. Chem. 73 (1969) 1584–1586.
doi: 10.1021/j100725a069
-
[87]
K.D. Asmus, J.H. Fendler, J. Phys. Chem. 73 (1969) 1583–1584.
doi: 10.1021/j100725a068
-
[88]
D.O. Mártire, M.C. Gonzalez, Prog. React. Kinet. Mech. 26 (2001) 201–218.
doi: 10.3184/007967401103165253
-
[89]
K. Yu, X. Li, L. Chen, et al., Water Res. 129 (2018) 357–364.
doi: 10.1016/j.watres.2017.11.030
-
[90]
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data 17 (1988) 513–886.
doi: 10.1063/1.555805
-
[91]
X. Li, J. Ma, G. Liu, et al., Environ. Sci. Technol. 46 (2012) 7342–7349.
doi: 10.1021/es3008535
-
[92]
E.J. Hart, Science 146 (1964) 1664.
doi: 10.1126/science.146.3652.1664.d
-
[93]
R.E. Larsen, W.J. Glover, B.J. Schwartz, Science 329 (2010) 65–69.
doi: 10.1126/science.1189588
-
[94]
L. Huang, W. Dong, H. Hou, Chem. Phys. Lett. 436 (2007) 124–128.
doi: 10.1016/j.cplett.2007.01.037
-
[95]
F. Chi, P. Chen, C. Mao, J. Nanosci. Nanotechnol. 20 (2020) 7558–7568.
doi: 10.1166/jnn.2020.18615
-
[96]
K.C. Das, H.P. Misra, Mol. Cell. Biochem. 262 (2004) 19–133.
-
[97]
K.P. Madden, H. Taniguchi, Free Radic Biol. Med. 30 (2001) 1374–1380.
doi: 10.1016/S0891-5849(01)00540-8
-
[98]
J. Bonin, I. Lampre, M. Mostafavi, Radiat. Phys. Chem. 74 (2005) 288–296.
doi: 10.1016/j.radphyschem.2005.03.016
-
[99]
D.R. Hardison, W.J. Cooper, S.P. Mezyk, D.M. Bartels, Radiat. Phys. Chem. 65 (2002) 309–315.
doi: 10.1016/S0969-806X(02)00333-X
-
[100]
S.P. Mezyk, T. Helgeson, S.K. Cole, et al., J. Phys. Chem. A 110 (2016) 2176–2180.
-
[101]
E. Brun, H.A. Girard, J.C. Arnault, M. Mermoux, R.C. Sicard, Carbon 162 (2020) 510–518.
doi: 10.1016/j.carbon.2020.02.063
-
[102]
Y. Guo, Y. Zhang, G. Yu, et al., Appl. Catal. B: Environ. 280 (2021) 119418.
doi: 10.1016/j.apcatb.2020.119418
-
[103]
M. Halmann, I. Platzner, J. Chem. Soc. (1965) 5380–5385, doi: 10.1039/JR9650005380.
doi: 10.1039/JR9650005380
-
[104]
L. Kroeckel, M.A. Schmidt, Opt. Mater. Express 4 (2014) 1932–1942.
doi: 10.1364/OME.4.001932
-
[105]
D. Wang, M.A. Mueses, J.A.C. Márquez, et al., Water Res. 202 (2021) 117421-117421.
doi: 10.1016/j.watres.2021.117421
-
[106]
G. Moussavi, H. Hossaini, J.S. Jafari, et al., J. Photochem. Photobiol. 290 (2014) 86–93.
doi: 10.1016/j.jphotochem.2014.06.010
-
[107]
K. Kutschera, H. Börnick, E. Worch, Water Res. 43 (2009) 2224–2232.
doi: 10.1016/j.watres.2009.02.015
-
[108]
C. Wang, X. Guan, W. Wang, et al., Chem. Eng. J. 424 (2021) 130555.
doi: 10.1016/j.cej.2021.130555
-
[109]
H. Pan, Y. Huang, J. Li, et al., Water Res. 214 (2022) 118192.
doi: 10.1016/j.watres.2022.118192
-
[110]
J. Kim, T. Kim, H. Park, et al., J. Hazard. Mater. 463 (2023) 132864.
-
[111]
N. Quici, M.I. Litter, A.A. Braun, E. Oliveros, J. Photochem. Photobiol. A 197 (2008) 306–312.
doi: 10.1016/j.jphotochem.2008.01.008
-
[112]
S. Robl, M. Woerner, D. Maier, A.M. Braun, Photochem. Photobiol. Sci. 11 (2012) 1041–1050.
doi: 10.1039/c2pp05381k
-
[113]
T. Matsushita, S. Hirai, T. Ishikawa, Y. Matsui, N. Shirasaki, Process Saf. Environ. Prot. 94 (2015) 528–541.
doi: 10.1016/j.psep.2014.11.005
-
[114]
A. Dombi, I. Ilisz, Z. László, G. Witttmann, Ozone-Sci. Eng. 24 (2002) 49–54.
doi: 10.1080/01919510208901594
-
[115]
G. Imoberdorf, M. Mohseni, Chem. Eng. Sci. 66 (2011) 1159–1167.
doi: 10.1016/j.ces.2010.12.020
-
[116]
K. Azrague, E. Bonnefille, V. Pradines, et al., Photochem. Photobiol. Sci. 4 (2005) 406–408.
doi: 10.1039/b500162e
-
[117]
E. Arany, T. Oppenlander, K. Gajda-Schrantz, A. Dombi, Curr. Phys. Chem. 2 (2012) 286–293.
doi: 10.2174/1877946811202030286
-
[118]
K. Zoschke, N. Dietrich, H. Boernick, E. Worch, Water Res. 46 (2012) 5365–5373.
doi: 10.1016/j.watres.2012.07.012
-
[119]
X. Gu, S. Lu, Z. Qiu, et al., Chem. Eng. J. 215-216 (2013) 29–35.
doi: 10.1016/j.cej.2012.09.132
-
[120]
C. Steelink, Anal. Chem. 74 (2002) 326A–333A.
doi: 10.1021/ac022040m
-
[121]
S.J. Dong, Y.C. Ding, H.J. Feng, et al., Water Res. 235 (2023) 119876.
doi: 10.1016/j.watres.2023.119876
-
[122]
Z. Sun, C. Zhang, P. Chen, Q. Zhou, M.R. Hoffmann, Water Res. 127 (2017) 50–58.
doi: 10.1016/j.watres.2017.10.010
-
[123]
K. Londhe, C.S. Lee, Y. Zhang, et al., ACS ES&T Eng. 1 (2021) 827–841.
doi: 10.1021/acsestengg.0c00222
-
[124]
D. Wang, A.L. Junker, M. Sillanpää, et al., Engineering 23 (2023) 19–23.
doi: 10.1016/j.eng.2022.08.005