Citation: Haokun Yuan, Anjing Liao, Shunhong Chen, Yiming Tian, Yaming Liu, Jian Wu. Pyrimidine derivatives in discovery of pesticides: A review[J]. Chinese Chemical Letters, ;2026, 37(2): 111305. doi: 10.1016/j.cclet.2025.111305 shu

Pyrimidine derivatives in discovery of pesticides: A review

    * Corresponding author.
    E-mail address: jwu6@gzu.edu.cn (J. Wu).
  • Received Date: 17 January 2025
    Revised Date: 30 April 2025
    Accepted Date: 12 May 2025
    Available Online: 12 May 2025

Figures(9)

  • Pyrimidine is a widely used compound in pesticides and medicine, with over 60 commercial pesticides containing a pyrimidine structure. Examples include the insecticide flufenerim, herbicide nicosulfuron, fungicide mepanipyrim, antiviral agent ningnanmycin, and plant growth regulator ancymidol. This paper reviews the characteristics from 2014 to 2024 of highly active pyrimidine-containing compounds and their biological activities, focusing on insecticidal, herbicidal, antibacterial, antiviral, and plant growth regulation properties. The goal is to provide insights for the design and synthesis of new pyrimidine-based pesticide candidates.
  • 加载中
    1. [1]

      B.B. Zhang, Q.M. Xian, T.T. Gong, et al., Chem. Eng. J. 307(2017) 884–890.  doi: 10.1016/j.cej.2016.09.018

    2. [2]

      Y. Xu, J. Yang, L. Ren, et al., Agrochemicals 50 (2011) 474–478.

    3. [3]

      N. Dolan, D.P. Gavin, A. Eshwika, et al., Bioorg. Med. Chem. Lett. 26 (2016) 630–635.  doi: 10.1016/j.bmcl.2015.11.058

    4. [4]

      F. Xu, S. Chen, S. Guo, et al., Mod. Agrochem. 20 (2021) 1–8.  doi: 10.1155/2021/3534577

    5. [5]

      W. Wu, W. Luo, Pesticide, China Agriculture Press, Beijing, 2019.

    6. [6]

      C.L. Liu, A.Y. Guan, Y. Xie, Intermediate Derivatization and the Creation of New Pesticides, Chemical Industry Press, Beijing, 2019.

    7. [7]

      H.J. Tan, World Pesticide 44 (2022) 1–17.  doi: 10.1504/ijes.2022.10050928

    8. [8]

      S.L. Zhang, H.Y. Pei, Z.B. Sheng, et al., Mod. Agrochem. 20 (2021) 6–11.

    9. [9]

      N.J. Hawkins, C. Bass, A. Dixon, et al., Biol. Rev. 94 (2019) 135–155.  doi: 10.1111/brv.12440

    10. [10]

      Z. Chen, Z. Zhang, L. Li, et al., Agrochemicals 62 (2023) 547–554.

    11. [11]

      A. Bhatnagar, G. Pemawat, Bioorg. Chem. 153 (2024) 107780.  doi: 10.1016/j.bioorg.2024.107780

    12. [12]

      M.S. Saini, A. Kumar, J. Dwivedi, Int. J. Pharma Sci. Res. 4 (2013) 66–77.

    13. [13]

      S.E. Ilgin, Ö. Yanartaş, E. Akça, Eur. Psychiat. 67 (2024) S700–S700.  doi: 10.1192/j.eurpsy.2024.1455

    14. [14]

      M. Ghanim, G. Lebedev, S. Kontsedalov, et al., J. Agric. Food Chem. 59 (2011) 2839–2844.  doi: 10.1021/jf1025482

    15. [15]

      N.J. Wu, L. Che, J. Wang, et al., Chin. J. Org. Chem. 39 (2019) 852.  doi: 10.6023/cjoc201807044

    16. [16]

      M.D. Soll, C.Q. Meng, Patent, WO2011014660A1, 2011.

    17. [17]

      C.L. Liu, H.C. Li, H. Zhang, et al., Patent, WO2010139271A1, 2010.

    18. [18]

      B. Thomas, F. Martin, K. Adeline, et al., Patent, WO2011045224A1, 2011.

    19. [19]

      R.Y. Qu, Y.C. Liu, Q. Chen, et al., Mini-Rev. Med. Chem. 18 (2017) 781–793.  doi: 10.1007/s10973-017-6440-z

    20. [20]

      X.H. Liu, Y.H. Wen, L. Cheng, et al., J. Agric. Food Chem. 69 (2021) 6968–6980.  doi: 10.1021/acs.jafc.1c00236

    21. [21]

      U. Hideki, G.B. Salunke, Patent, JP2015189703A, 2015.

    22. [22]

      C.L. Liu, X.F. Sun, J. Zhao, et al., Patent, US2016332991A1, 2016.

    23. [23]

      G. Li, A. Liu, T. Xiao, et al., J. Heterocyclic Chem. 61 (2024) 611–626.  doi: 10.1002/jhet.4789

    24. [24]

      L. Xu, M. Guang, M. Wang, et al., Patent, CN116655541A, 2023.

    25. [25]

      L. Li, C. Zhou, M. Liu, et al., J. Heterocyclic Chem. 56 (2019) 3206–3214.  doi: 10.1002/jhet.3710

    26. [26]

      N. Zhang, M.Z. Huang, A.P. Liu, et al., Chem. Pap. 74 (2020) 963–970.  doi: 10.1007/s11696-019-00932-5

    27. [27]

      W. Wu, M. Chen, Q. Fei, et al., Front. Chem. 8 (2020) 522.  doi: 10.3389/fchem.2020.00522

    28. [28]

      N. Yoshihiko, I. Hiroshi, T. Hiroki, et al., Patent, WO2012050237A1, 2012.

    29. [29]

      B. Luo, Y. Ning, B. Rao, J. Agric. Food Chem. 70 (2022) 15615–15630.  doi: 10.1021/acs.jafc.2c04820

    30. [30]

      B.S. Chai, C.L. Liu, H.C. Li, et al., Chin. Chem. Lett. 25 (2014) 137–140.  doi: 10.1016/j.cclet.2013.10.006

    31. [31]

      S. Hao, Z. Cai, Y. Cao, et al., Molecules 25 (2020) 3379.  doi: 10.3390/molecules25153379

    32. [32]

      X. Du, S. Hao, Patent, CN108314656A, 2018.

    33. [33]

      X.H. Liu, Q. Wang, Z.H. Sun, et al., Pest. Manag. Sci. 73 (2017) 953–959.  doi: 10.1002/ps.4370

    34. [34]

      M. Feng, L. Xu, Modern Agrochemicals 21 (2022) 29–33.  doi: 10.1117/12.2657230

    35. [35]

      X. Yu, W. Lan, M. Chen, et al., J. Chem. 2021 (2021) 8370407.

    36. [36]

      W. Lan, X. Tang, J. Yu, et al., Front. Chem. 10 (2022) 952679.  doi: 10.3389/fchem.2022.952679

    37. [37]

      M.H. Wang, L.Z. Xu, M.J. Feng, et al., Patent, CN114644596A, 2024.

    38. [38]

      R.F. Sun, P.Q. Chen, X.M. Song, et al., Patent, CN108912056A, 2018.

    39. [39]

      Á. Ganyecz, M. Kállay, J. Csontos, J. Phys. Chem. A 123 (2019) 4057–4067.  doi: 10.1021/acs.jpca.9b02061

    40. [40]

      B. William, D. David, E. W., L. Christian, et al., Patent, WO2011025505A1, 2011.

    41. [41]

      Y. Yang, Q. Zhang, X. Xu, et al., Patent, CN105541795B, 2016.

    42. [42]

      S. Cui, Z. Tian, G. Zhang, J. Univ. Jinan (Sci. Technol.). 28 (2014) 14–17.

    43. [43]

      J. Liu, Q. Ren, H. He, Chin. J. Appl. Chem. 34 (2017) 1279–1286.

    44. [44]

      G. Li, Z. Jiang, C. Zhou, et al., Chin. J. Pestic. Sci. 23 (2021) 845–855.

    45. [45]

      A.M.K. Eldean, A.A. Abdella, R. Hassanien, et al., Toxicol. Rep. 6 (2019) 100–104.  doi: 10.1016/j.toxrep.2018.12.004

    46. [46]

      A.Y. Guan, J.L. Yang, P.F. Zhang, et al., Patent, CN114957218A, 2022.

    47. [47]

      H.J.C. William, T.M.H. Thi, C.R. Aaron, et al., Patent, WO2009099929A1, 2009.

    48. [48]

      Q. Miao, H. Sun, Chin. Sci. B: Chin. 60 (2015) 2003–2010.  doi: 10.1360/N972015-00209

    49. [49]

      W. Liang, C.X. Tan, J.Q. Wng, et al., Chin. J. Org. Chem. 40 (2020) 2702–2713.  doi: 10.6023/cjoc202003064

    50. [50]

      W. Zhang, Acc. Chem Res. 50 (2017) 2381–2388.  doi: 10.1021/acs.accounts.7b00311

    51. [51]

      D. Zhang, J. Zhang, T. Liu, et al., J. Agric. Food Chem. 70 (2022) 8598–8608.  doi: 10.1021/acs.jafc.2c01899

    52. [52]

      J. Pan, L. Yu, D. Liu, et al., Molecules 23 (2018) 1217.  doi: 10.3390/molecules23051217

    53. [53]

      W. Zhang, C.W. Holyoke, J. Barry, et al., Bioorg. Med. Chem. Lett. 26 (2016) 5444–5449.  doi: 10.1016/j.bmcl.2016.10.031

    54. [54]

      H. Shinji, K. Tomohiro, K. Yuma, et al., Patent, WO2016171053A1, 2016.

    55. [55]

      Y. Yang, S. Wu, C. Zhao, et al., J. Agric. Food Chem. 72 (2024) 11331–11340.  doi: 10.1021/acs.jafc.3c08950

    56. [56]

      A.M. Blai, T.D. Martin, J. Pestic Sci. 22 (1988) 195–219.  doi: 10.1002/ps.2780220303

    57. [57]

      L. Pan, Z. Liu, Y.W. Chen, Chem. J. Chin. U. 34 (2013) 1416–1421.

    58. [58]

      H.L. Wang, H.R. Li, Y.C. Zhang, W.T. Yang, et al., J. Agric. Food Chem. 69 (2021) 8415–8427.  doi: 10.1021/acs.jafc.1c02081

    59. [59]

      W. Chen, W. Wei, M. Liu, et al., Chem. J. Chin. U. 36 (2015) 1291–1297.

    60. [60]

      J. Li, Y. Wang, Y. Wu, et al., Pestic Biochem. Phys. 172 (2021) 104766.  doi: 10.1016/j.pestbp.2020.104766

    61. [61]

      L. Lian, L.N. Liao, Q. Cui, et al., Patent, CN108586357A, 2018.

    62. [62]

      T. Wang, G.M. Xiong, X.S. Wu, et al., Patent, CN106008469A, 2016.

    63. [63]

      H. Jenkoppi, E.B. Alsekel, K. Mein, et al., Patent, CN110461833A, 2019.

    64. [64]

      S. Dei, Patent, CN113646300A, 2020.

    65. [65]

      H.C. Xu, G. Xu, Patent, CN113773264A, 2021.

    66. [66]

      X.H. Lv, Z.L. Ren, H. Liu, et al., Chem. Pharm. Bull. 66 (2018) 358–362.  doi: 10.1248/cpb.c17-00761

    67. [67]

      F.E. Dayan, Plants 8 (2019) 341.  doi: 10.3390/plants8090341

    68. [68]

      M.D. Garcia, J.G. Wang, T. Lonhienne, et al., The FEBS J. 284 (2017) 2037–2051.  doi: 10.1111/febs.14102

    69. [69]

      J.M. Green, Pest Manag. Sci. 70 (2014) 1351–1357.  doi: 10.1002/ps.3727

    70. [70]

      K.J. Li, R.Y. Qu, Y.C. Liu, et al., J. Agric. Food Chem. 66 (2018) 3773–3782.  doi: 10.1021/acs.jafc.8b00665

    71. [71]

      S. Zhang, X. Guo, Y. Zhou, et al., Phosphorus Sulfur. 194 (2019) 1158–1163.  doi: 10.1080/10426507.2019.1633319

    72. [72]

      B. Song, S. Yang, H. Zhong, et al., J. Fluorine Chem. 126 (2005) 87–92.  doi: 10.1016/j.jfluchem.2004.10.041

    73. [73]

      H. Dai, Y. Fang, Y. Li, et al., Chinese J. Org. Chem. 36 (2016) 2973–2980.  doi: 10.6023/cjoc201608022

    74. [74]

      R.Y. Qu, Z.M. Cai, J.F. Yang, et al., Chin. J. Org. Chem. 40 (2020) 3953–3962.  doi: 10.6023/cjoc202003050

    75. [75]

      D.F. Xu, J.L. Chen, H. Hu, Patent, CN113651760B, 2023.

    76. [76]

      C.X. Gao, Y.H. Chen, Y.D. Ran, et al., Patent, CN114901674A, 2022.

    77. [77]

      X. Xiao, Q.F. Song, Q. Tao, et al., Patent, CN118434874A, 2024.

    78. [78]

      N.J. Anthony, P. Galatzis, D.J. Laufer, et al., Patent, CN118525002A, 2023.

    79. [79]

      J. Yang, A. Guan, Q. Wu, et al., Pest Manag. Sci. 76 (2020) 3395–3402.  doi: 10.1002/ps.5970

    80. [80]

      J.C. Yang, Q. Wu, H.J. Ma, et al., Patent, CN105753853B, 2020.

    81. [81]

      L.E. He, Y.Y. Wu, H.Y. Zhang, et al., J. Heterocyclic Chem. 52 (2015) 1308–1313.  doi: 10.1002/jhet.2160

    82. [82]

      L. Lian, R.B. Hua, X.G. Peng, et al., Patent, CN113105405B, 2022.

    83. [83]

      W.H. Lee, Y.B. Kwon, K.H. Lee, et al., B. Korean Chem. Soc. 42 (2021) 420–428.  doi: 10.1002/bkcs.12205

    84. [84]

      W.H. Lee, Y.B. Kwon, J.H. Kim, et al., Bioorgan. Med. Chem. 31 (2021) 115959.  doi: 10.1016/j.bmc.2020.115959

    85. [85]

      D.W. Wang, L. Liang, Z.Y. Xue, et al., J. Agric. Food Chem. 69 (2021) 4081–4092.  doi: 10.1021/acs.jafc.1c00796

    86. [86]

      R.J. Song, C.X. Song, B.A. Song, et al., Patent, CN117486866A, 2024.

    87. [87]

      G.F. Yang, Y. Zuo, Patent, CN105294671A, 2016.

    88. [88]

      T. Tang, D.Y. Chen, Z.Y. Zhang, et al., Chin. J. Pestic. Sci. 25 (2023) 755–768.

    89. [89]

      L.G. Yuan. Z.Q. Li, Q. Liu, et al., Patent, CN111217817A, 2020.

    90. [90]

      A.J. Liao, W. Sun, Y.M. Liu, et al., Chin. Chem. Lett. 36 (2025) 110094.  doi: 10.1016/j.cclet.2024.110094

    91. [91]

      T. Wang, F. Xiong, G.M. Xiong, et al., Patent, CN107400136B, 2019.

    92. [92]

      H. Lin, H.X. Nei, A.L. Zhao, et al., Chin. J. Org. Chem. 43 (2023) 2462–2475.  doi: 10.6023/cjoc202301008

    93. [93]

      D.W. Wang, Q. Li, K. Wen, et al., J. Agric. Food Chem. 65 (2017) 5278–5286.  doi: 10.1021/acs.jafc.7b01990

    94. [94]

      D.W. Wang, H. Zhang, S.Y. Yu, et al., J. Agric. Food Chem. 69 (2021) 14115–14125.  doi: 10.1021/acs.jafc.1c05665

    95. [95]

      M.H. Chen, W.N. Wu, L.J. Chen, et al., Agrochemicals 56 (2017) 474–477.

    96. [96]

      A. Guan, C. Liu, W. Chen, et al., J. Agric. Food Chem. 65 (2017) 1272–1280.  doi: 10.1021/acs.jafc.6b05580

    97. [97]

      A. Guan, M. Wang, J. Yang, et al., J. Agric. Food Chem. 65 (2017) 10829–10835.  doi: 10.1021/acs.jafc.7b03898

    98. [98]

      A. Guan, M. Wang, W. Chen, et al., J. Fluorine Chem. 201 (2017) 49–54.  doi: 10.1016/j.jfluchem.2017.08.008

    99. [99]

      Z. Yan, A. Liu, Y. Ou, et al., Bioorgan. Med. Chem. 27 (2019) 3218–3228.  doi: 10.1016/j.bmc.2019.05.029

    100. [100]

      J. Yang, A. Guan, Z. Li, et al., J. Agric. Food Chem. 68 (2020) 6485–6492.  doi: 10.1021/acs.jafc.9b07055

    101. [101]

      A.Y. Guan, J.L. Yang, Q. Sun, et al., Patent, CN110872302B, 2022.

    102. [102]

      B.L. Wang, Y.X. Shi, S.J. Zhang, et al., Eur. J. Med. Chem. 117 (2016) 167–178.  doi: 10.1016/j.ejmech.2016.04.005

    103. [103]

      A. Liu, S. Guan, P. Zhang, et al., J. Agric. Food Chem. 71 (2023) 3742–3750.  doi: 10.1021/acs.jafc.2c06165

    104. [104]

      Y. Sun, Z. Yang, Q. Liu, et al., J. Agric. Food Chem. 70 (2022) 7360–7374.  doi: 10.1021/acs.jafc.2c00734

    105. [105]

      T. Peng, Q. Fei, W.N. Wu, Agrochemicals 60 (2021) 634–637.

    106. [106]

      E.T. Rodrigues, I. Lopes, M. Â. Pardal, Environ Int 53 (2013) 18–28.  doi: 10.1016/j.envint.2012.12.005

    107. [107]

      J. An, N. Pan, C. Liu, et al., RSC Adv 14 (2024) 16218–16227.  doi: 10.1039/d4ra01765j

    108. [108]

      S. Su, M. Chen, X. Tang, et al., Chem. Biodivers. 18 (2021) e2100186.  doi: 10.1002/cbdv.202100186

    109. [109]

      P. Zhang, A. Guan, X. Xia, et al., J. Agric. Food Chem. 67 (2019) 11893–11900.  doi: 10.1021/acs.jafc.9b05185

    110. [110]

      X. Tang, W. Zhan, S. Chen, et al., Arab. J. Chem. 15 (2022) 104110.  doi: 10.1016/j.arabjc.2022.104110

    111. [111]

      J.R. Wang, Y.M. Hu, H. Zhou, et al., J. Agric. Food Chem. 70 (2022) 11782–11791.  doi: 10.1021/acs.jafc.2c03765

    112. [112]

      X. Zhang, Z. Yang, H. Xu, et al., J. Agric. Food Chem. 70 (2022) 9262–9275.  doi: 10.1021/acs.jafc.2c01348

    113. [113]

      C. Li, Y. Liu, X. Ren, et al., Int. J. Mol. Sci. 24 (2023) 4691.  doi: 10.3390/ijms24054691

    114. [114]

      Z.Q. Huang, C.P. Feng, J. Shi, et al., Patent, CN106632083B, 2019.

    115. [115]

      C. Sun, S. Zhang, P. Qian, et al., Pest Manag. Sci. 77 (2021) 5529–5536.  doi: 10.1002/ps.6593

    116. [116]

      X.F. Sun, B.S. Cai, J.F. Wang, et al., Patent, CN104710436B, 2017.

    117. [117]

      W. Wang, X. Cheng, X. Cui, et al., Pest Manag. Sci. 77 (2021) 3529–3537.  doi: 10.1002/ps.6406

    118. [118]

      Y.K. Yan, X.S. Xie, W.J. Jiang, et al., Patent, CN117865959A, 2024.

    119. [119]

      D. Liu, J. Zhang, L. Zhao, et al., J. Agric. Food Chem. 67 (2019) 11860–11866.  doi: 10.1021/acs.jafc.9b03606

    120. [120]

      D. Liu, R. Song, Z. Wu, et al., J. Agric. Food Chem. 70 (2022) 10443–10452.  doi: 10.1021/acs.jafc.2c01838

    121. [121]

      T. Liu, J. Shi, D. Liu, et al., J. Agric. Food Chem. 70 (2022) 99–110.  doi: 10.1021/acs.jafc.1c04715

    122. [122]

      H. Guo, S. Wu, R. Song, et al., J. Agric. Food Chem. 70 (2022) 7015–7028.  doi: 10.1021/acs.jafc.2c01641

    123. [123]

      J. Jin, T. Shen, L. Shu, et al., J. Agric. Food Chem. 71 (2023) 1291–1309.  doi: 10.1021/acs.jafc.2c07315

    124. [124]

      J. Wu, B.A. Song, Sci. Sin. Chim. 46 (2016) 1165–1179.

    125. [125]

      W. Wu, Q. Chen, A. Tai, et al., Bioorg. Med. Chem. Lett. 25 (2015) 2243–2246.  doi: 10.1016/j.bmcl.2015.02.069

    126. [126]

      W. Sun, A.J. Liao, L. Lei, et al., Chin. Chem. Lett. 36 (2025) 109855.  doi: 10.1016/j.cclet.2024.109855

    127. [127]

      S. Bai, S. Liu, Y. Zhu, et al., Heterocycles 96(2018) 1383–1397.  doi: 10.3987/com-18-13918

    128. [128]

      S. Bai, S. Liu, Y. Zhu, et al., Synlett 29 (2018) 1921–1925.  doi: 10.1055/s-0037-1609910

    129. [129]

      V. Nagalakshmamma, M. Venkataswamy, C. Pasala, et al., Bioorg. Chem. 102 (2020) 104084.  doi: 10.1016/j.bioorg.2020.104084

    130. [130]

      M. Yu, H. Liu, L. Guo, et al., Pest Manag. Sci. 78 (2022) 5259–5270.  doi: 10.1002/ps.7147

    131. [131]

      N.A. Meanwell, J. Med. Chem. 54 (2011) 2529–2591.  doi: 10.1021/jm1013693

    132. [132]

      L. Khurana, B.Q. Fu, A.L. Duddupudi, et al., J. Med. Chem. 60 (2017) 1089–1104.  doi: 10.1021/acs.jmedchem.6b01448

    133. [133]

      G. Zu, J. Chen, B. Song, et al., J. Agric. Food Chem. 69 (2021) 14459–14466.  doi: 10.1021/acs.jafc.1c03555

    134. [134]

      N. Zan, D. Xie, M. Li, et al., J. Agric. Food Chem. 68 (2020) 6280–6285.  doi: 10.1021/acs.jafc.0c00987

    135. [135]

      N. Pan, H. Wang, J. An, et al., ACS Omega 9 (2024) 1424–1435.  doi: 10.1021/acsomega.3c07820

    136. [136]

      T. Masaoka, S. Chung, P. Caboni, et al., J. Med. Chem. 56 (2013) 5436–5445.  doi: 10.1021/jm400405z

    137. [137]

      M.S.E. Shoukrofy, H.A. Abd, E. Razik, et al., Bioorg. Chem. 85 (2019) 541–557.  doi: 10.1016/j.bioorg.2019.02.036

    138. [138]

      Y.J. Wang, Y.Q. Luo, D.Y. Hu, et al., J. Agric. Food Chem. 70 (2022) 6015–6025.  doi: 10.1021/acs.jafc.2c00773

    139. [139]

      Y. Wang, S. Guo, W. Sun, et al., J. Agric. Food Chem. 72 (2024) 2879–2887.  doi: 10.1021/acs.jafc.3c05334

    140. [140]

      X. Gan, Y. Wang, D. Hu, et al., Chin. J. Chem. 35 (2017) 665–672.  doi: 10.1002/cjoc.201600568

    141. [141]

      F.C. He, J. Shi, Y.J. Wang, et al., J. Agric. Food Chem. 67 (2019) 8459–8467.  doi: 10.1021/acs.jafc.9b02681

    142. [142]

      J. Zhang, F. He, J. Chen, et al., J. Agric. Food Chem. 69 (2021) 5575–5582.  doi: 10.1021/acs.jafc.0c06612

    143. [143]

      Y.J. Wang, D.G. Zhou, F.C. He, et al., Chin. Chem. Lett. 29 (2018) 127–130.  doi: 10.1117/12.2505631

    144. [144]

      D. Zhang, X. Xu, Z. Zhang, et al., Postharvest Biol. Tec. 143 (2018) 137–142.  doi: 10.1016/j.postharvbio.2018.05.002

    145. [145]

      Z.W. Wei, H.Y. Yang, Y.K. Duan, et al., Sci. Hortic-Amsterdam. 332 (2024) 113181.  doi: 10.1016/j.scienta.2024.113181

    146. [146]

      V.A. Tsygankova, Y.V. Andrusevich, O.I. Shtompel, et al., Int. J. Chem. Tech. Res. 12 (2019) 26–38.  doi: 10.20902/ijctr.2019.120504

    147. [147]

      V. Tsygankova, Y. Andrusevich, O. Shtompel, et al., Int. J. Chem. Stud. 4 (2016) 106–120.

    148. [148]

      M.H. Wang, J.J. Han, Y. Wang, et al., Patent, CN110642859B, 2021.

    149. [149]

      B.T. Valentinovna, K.V. Nikolaevich., S.K. Safarovich, et al., Patent, RU2017141122, 2017.

  • 加载中
    1. [1]

      Wen-Rui LiRu-Bing WangHuiqiang WangJin-Yao YongYu-Huan LiShi-Shan YuShuang-Gang Ma . Ring-reorganization strategy for asymmetric synthesis of sesquiterpenoid illihenin A and its antiviral activity evaluation. Chinese Chemical Letters, 2025, 36(11): 110945-. doi: 10.1016/j.cclet.2025.110945

    2. [2]

      Tiantian ZhangHanbo LiuJunbiao ChangYonggang Meng . Total synthesis of ADPr-ATP and evaluation of the antiviral activity of pRib-AMP prodrug. Chinese Chemical Letters, 2026, 37(2): 111380-. doi: 10.1016/j.cclet.2025.111380

    3. [3]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    4. [4]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    5. [5]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    6. [6]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    7. [7]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    8. [8]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    9. [9]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    10. [10]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    11. [11]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    14. [14]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    15. [15]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    16. [16]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    17. [17]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    18. [18]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    19. [19]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    20. [20]

      Chunmao YuanYanrong ZengLei HuangYu MouJun JinPing YiYanmei LiXiaojiang Hao . Hymoins A–C, three unusual polycyclic polyprenylated acylphloroglucinols with lipid-lowering activity from Hypericum monogynum. Chinese Chemical Letters, 2025, 36(3): 109859-. doi: 10.1016/j.cclet.2024.109859

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return