Citation: Zhenhui Song, Xing Wu, Tianyu Gao, Fubing Yao, Xi Tang, Qaisar Mahmood, Chong-Jian Tang. Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review[J]. Chinese Chemical Letters, ;2025, 36(12): 111008. doi: 10.1016/j.cclet.2025.111008 shu

Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review

    * Corresponding authors at: School of Metallurgy and Environment, Central South University, Changsha 410083, China.
    E-mail addresses: yaofubing@csu.edu.cn (F. Yao), chjtang@csu.edu.cn (C.-J. Tang).
  • Received Date: 31 October 2024
    Revised Date: 13 January 2025
    Accepted Date: 26 February 2025
    Available Online: 26 February 2025

Figures(6)

  • Multi-components landfill leachate is one type of wastewater that is challenging to deal with. The excellent degrading ability and low secondary pollution of electrochemical oxidation make it a promising technology for leachate treatment. However, the commercial application of this method is restricted by some technical barriers such as limited anode activity and intricate operating conditions. To improve the efficiency of electrochemical leachate treatment, many researchers commit to developing efficient electrode and optimizing operation process for eliminating these limitations. This review summarized the recently studied countermeasures for accelerating the performance of electrochemical oxidation of leachate with respect to the electron transfer, active sites and stability of electrode. The performance of electrochemical leachate treatment with different anode and the corresponding underlying mechanisms were summarized and discussed. Besides, the effects of critical parameters including temperature, pH, current density and electrolyte on reaction were discussed. With these in mind, this work offers recommendations for the improvement of electrooxidation performance as well as direction for the design of leachate treatment engineering.
  • 加载中
    1. [1]

      S. Ma, C. Zhou, J. Pan, et al., J. Clean. Prod. 333 (2022) 130234.

    2. [2]

      J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J.V. Weber, Environ. Chem. Lett. 4 (2006) 51–61.  doi: 10.1007/s10311-005-0016-z

    3. [3]

      Z. Guo, Y. Zhang, H. Jia, et al., Sci. Total Environ. 806 (2022) 150529.

    4. [4]

      D. Liu, Y. Yuan, Y. Wei, et al., J. Environ. Sci. 116 (2022) 43–51.

    5. [5]

      N. Aishi, D. Animesh, Mater. Today Proc. 67 (2022) 1290–1297.

    6. [6]

      Y. Deng, C.M. Ezyske, Water Res. 45 (2011) 6189–6194.

    7. [7]

      C. Qu, L. Li, F. Feng, et al., Front. Environ. Sci. Eng. 17 (2023) 115–126.

    8. [8]

      Z. Ma, Y. Yang, Y. Jiang, et al., Chem. Eng. J. 311 (2017) 183–190.

    9. [9]

      M. Umar, H.A. Aziz, M.S. Yusoff, Waste Manag. 30 (2010) 2113–2121.

    10. [10]

      G. Boczkaj, A. Fernandes, Chem. Eng. J. 320 (2017) 608–633.

    11. [11]

      I. Hussain, Y. Zhang, S. Huang, RSC Adv. 4 (2014) 3502–3511.

    12. [12]

      H. Mohammadi, B. Bina, A. Ebrahimi, Process Saf. Environ. Prot. 117 (2018) 200–213.

    13. [13]

      A. Cabeza, A. Urtiaga, M.J. Rivero, I. Ortiz, J. Hazard. Mater. 144 (2007) 715–719.

    14. [14]

      O.T. Can, L. Gazigil, R. Keyikoglu, Environ. Prog. Sustain. Energy 41 (2022) 13722.

    15. [15]

      Y. Zhang, Z. Zheng, H. Liu, et al., J. Chongqing Univ. 46 (2022) 76–88.

    16. [16]

      B.K.D. Pubali Mandal, A.K Gupta, Waste Manag. 69 (2017) 250–273.

    17. [17]

      S.L. He, Q. Huang, Y. Zhang, Y.L. Nie, Water Air Soil Pollut. 226 (2015) 1–7.  doi: 10.1111/age.12236

    18. [18]

      M. Fukushima, K. Tatsumi, S. Nagao, Environ. Sci. Technol. 17 (2001) 3683–3690.

    19. [19]

      F. Feng, Z. Liu, X. Tang, et al., Water Res. 229 (2023) 119393.

    20. [20]

      J. Li, Z. Yang, H. Xu, et al., RSC Adv. 6 (2016) 47509–47519.

    21. [21]

      P. Mandal, A.K. Gupta, B.K. Dubey, J. Water Process Eng. 33 (2020) 101119.

    22. [22]

      B. Biswas, S. Goel, Chemosphere 302 (2022) 134709.

    23. [23]

      Y.G. Asfaha, A.K. Tekile, F. Zewge, Clean. Eng. Technol. 4 (2021) 100261.

    24. [24]

      S.B.M.S.S. Movahed, Environ. Sci. Pollut. Res. 28 (2021) 59594–59607.

    25. [25]

      M.J. Park, T. Lee, J. Korean Soc. Water Sci. Technol. 28 (2020) 31–38.  doi: 10.17640/kswst.2020.28.3.31

    26. [26]

      R. Fu, P.-S. Zhang, Y.X. Jiang, L. Sun, X.H. Sun, Chemosphere 311 (2022) 136993.

    27. [27]

      C. Tang, W. Yan, C. Zheng, Front. Environ. Sci. Eng. 8 (2014) 337–344.  doi: 10.1007/s11783-013-0545-9

    28. [28]

      F. Abdelmalek, R.A. Torres, E. Combet, et al., Sep. Purif. Technol. 63 (2008) 30–37.

    29. [29]

      L. Weihua, M. Ji, X. Zhang, J. Yang, Environ. Chem. 26 (2007) 58–61.

    30. [30]

      N. Sergienko, E.C. Lumbaque, N. Duinslaeger, J. Radjenovic, Appl. Catal. B: Environ. 334 (2023) 122831.

    31. [31]

      L. Trotochaud, S.W. Boettcher, Scripta Mater. 74 (2014) 25–32.

    32. [32]

      R. Zhang, J. Cao, T. Peng, K. Wu, Y. Shu, Electrochim. Acta 487 (2024) 144166.

    33. [33]

      Y. Zhang, W. Tang, J. Bai, et al., J. Hazard. Mater. 424 (2022) 127662.

    34. [34]

      Y. Deng, J.D. Englehardt, Waste Manag. 27 (2007) 380–388.

    35. [35]

      A. Thiam, E. Brillas, F. Centellas, P.L. Cabot, I. Sirés, Electrochim. Acta 173 (2015) 523–533.

    36. [36]

      B. Xu, S.M. Iskander, Z. He, Environ. Res. 182 (2020) 109006.

    37. [37]

      L.C. Chiang, J.E. Chang, T.C. Wen, Water Res. 29 (1995) 671–678.

    38. [38]

      J. Radjenovic, M. Petrovic, Water Res. 94 (2016) 128–135.

    39. [39]

      A.N. Arenhart Heberle, M. Garcia-Gabaldon, E.M. Ortega, A.M. Bernardes, V. Perez-Herranz, Chemosphere 236 (2019) 124318.

    40. [40]

      K.C. de Freitas Araujo, D.R. da Silva, E.V. dos Santos, H. Varela, C.A. Martinez-Huitle, J. Electroanal. Chem. 860 (2020) 133927.

    41. [41]

      J. Cai, T. Niu, P. Shi, G. Zhao, Small 15 (2019) 1900153.

    42. [42]

      S.O. Ganiyu, C.A. Martínez-Huitle, M.A. Oturan, Curr. Opin. Electrochem. 27 (2021) 100678.

    43. [43]

      L. Chen, C. Lei, Z. Li, et al., Chemosphere 210 (2018) 516–523.

    44. [44]

      D.D. Kiper, M. Qui, G. Passard, C. Costentin, D. Nocera, Abstr. Pap. Am. Chem. Soc. 258 (2019) 8671–8679.

    45. [45]

      J. Radjenovic, D.L. Sedlak, Environ. Sci. Technol. 49 (2015) 11292–11302.  doi: 10.1021/acs.est.5b02414

    46. [46]

      P. Devi, U. Das, A.K. Dalai, Sci. Total Environ. 571 (2016) 643–657.

    47. [47]

      Z. Gu, W. Chen, Q. Li, A. Zhang, Process Saf. Environ. Prot. 133 (2020) 32–40.

    48. [48]

      L. Cui, Y. Zhang, K. He, M. Sun, Z. Zhang, Sep. Purif. Technol. 293 (2022) 121112.

    49. [49]

      T. Maqbool, Q.V. Ly, K. He, et al., J. Membr. Sci. 651 (2022) 120460.

    50. [50]

      L. Pinhedo, R. Pelegrini, R. Bertazzoli, A. Motheo, Appl. Catal. B: Environ. 57 (2005) 75–81.

    51. [51]

      H.-R. Schulten, Fresenius J. Anal. Chem. 351 (1995) 62–73.

    52. [52]

      M. Zhou, Z. Wu, Y. Cong, Q. Ye, D. Wang, China Environ. Sci. 23 (2003) 225–229.

    53. [53]

      Q. Qiao, S. Singh, S.L. Lo, et al., Chemosphere 275 (2021) 129848.

    54. [54]

      T. Xu, X. Xiao, H. Liu, China Environ. Sci. 24 (2004) 547–551.

    55. [55]

      D. Pang, Y. Liu, H. Song, et al., Chem. Eng. J. 405 (2021) 126982.

    56. [56]

      M. Panizza, M. Delucchi, I. Sirés, J. Appl. Electrochem. 40 (2010) 1721–1727.  doi: 10.1007/s10800-010-0109-7

    57. [57]

      L. Tran Le, Environ. Technol. Innov. 20 (2020) 101099.

    58. [58]

      Z. Zhang, J. Liu, H. Ai, et al., J. Environ. Chem. Eng. 11 (2023) 109834.

    59. [59]

      S. Liu, R. Liu, Y. Zhang, et al., Chemosphere 237 (2019) 124471.

    60. [60]

      M.J. Nunes, N. Monteiro, M.J. Pacheco, A. Lopes, L. Ciríaco, J. Environ. Sci. Health Part A 51 (2016) 839–846.  doi: 10.1080/10934529.2016.1181455

    61. [61]

      Y. Wang, M. Chen, C. Wang, et al., Chem. Eng. J. 374 (2019) 626–636.

    62. [62]

      I. Elaissaoui, H. Akrout, S. Grassini, D. Fulginiti, L. Bousselmi, Mater. Des. 110 (2016) 633–643.

    63. [63]

      C. Tang, Z. Liu, D. Cui, et al., Electrochim. Acta 399 (2021) 139398.

    64. [64]

      S. Man, D. Luo, Q. Sun, et al., J. Hazard. Mater. 430 (2022) 128440.

    65. [65]

      G. Zhang, L. Zhao, X. Hu, X. Zhu, F. Yang, Appl. Catal. B: Environ. 313 (2022) 121453.

    66. [66]

      M.X. Qiao, Y. Zhang, L.F. Zhai, M. Sun, Chem. Eng. J. 344 (2018) 410–418.

    67. [67]

      C.A. Martinez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Chem. Rev. 115 (2015) 13362–13407.  doi: 10.1021/acs.chemrev.5b00361

    68. [68]

      H. Lin, R. Xiao, R. Xie, et al., Environ. Sci. Technol. 55 (2021) 2597–2607.  doi: 10.1021/acs.est.0c06881

    69. [69]

      Z. Pan, C. Song, L. Li, et al., Chem. Eng. J. 376 (2019) 120909.

    70. [70]

      B.P. Chaplin, Environ. Sci. Process. Impacts 16 (2014) 1182–1203.

    71. [71]

      P. Gayen, J. Spataro, S. Avasarala, et al., Environ. Sci. Technol. 52 (2018) 9370–9379.  doi: 10.1021/acs.est.8b03038

    72. [72]

      L. Guo, Y. Jing, B.P. Chaplin, Environ. Sci. Technol. 50 (2016) 1428–1436.  doi: 10.1021/acs.est.5b04366

    73. [73]

      L. Wang, J. Lu, L. Li, Y. Wang, Q. Huang, Water Res. 170 (2020) 115254.

    74. [74]

      O. Ganzenko, P. Sistat, C. Trellu, et al., Chem. Eng. J. 419 (2021) 129467.

    75. [75]

      S. Liu, Y. Wang, X. Zhou, et al., Electrochim. Acta 253 (2017) 357–367.

    76. [76]

      H. Lin, H. Peng, X. Feng, et al., Water Res. 190 (2021) 116790.

    77. [77]

      M. Martí-Calatayud, E. Dionís, S. Mestre, V. Pérez-Herranz, J. Clean. Prod. 363 (2022) 132342.

    78. [78]

      A. Chen, S. Xia, H. Pan, et al., J. Electroanal. Chem. 824 (2018) 169–174.

    79. [79]

      L. Chang, Y. Zhou, X. Duan, W. Liu, D. Xu, J. Taiwan Inst. Chem. Eng. 45 (2014) 1338–1346.

    80. [80]

      Y. Qin, T. Yu, S. Deng, et al., Nat. Commun. 13 (2022) 1–8.

    81. [81]

      S. Anuchai, S. Phanichphant, D. Tantraviwat, et al., J. Colloid Interface Sci. 512 (2018) 105–114.

    82. [82]

      J. Xie, J. Ma, C. Zhang, et al., Environ. Sci. Technol. 54 (2020) 5227–5236.  doi: 10.1021/acs.est.9b07398

    83. [83]

      W. Li, R. Xiao, J. Xu, et al., Water Res. 216 (2022) 118287.

    84. [84]

      W. Li, R. Xiao, H. Lin, et al., J. Hazard. Mater. 424 (2022) 127342.

    85. [85]

      S.S.P. Rahardjo, Y.J. Shih, Chem. Eng. J. 452 (2023) 139370.

    86. [86]

      H. Xie, H. Zhang, X. Wang, et al., Front. Environ. Sci. Eng. 18 (2024) 3–15.

    87. [87]

      J. Cai, M. Zhou, Y. Pan, X. Du, X. Lu, Appl. Catal. B: Environ. 257 (2019) 117902.

    88. [88]

      M. Pierpaoli, P. Jakobczyk, M. Sawczak, et al., J. Hazard. Mater. 401 (2021) 123407.

    89. [89]

      T. Lim, G.Y. Jung, J.H. Kim, et al., Nat. Commun. 11 (2020) 1–11.

    90. [90]

      P. Jakóbczyk, G. Skowierzak, I. Kaczmarzyk, et al., Chemosphere 304 (2022) 135381.

    91. [91]

      M. Zhou, W. Fu, H. Gu, L. Lei, Electrochim. Acta 52 (2007) 6052–6059.

    92. [92]

      C. Zhang, Y. Jiang, Y. Li, et al., Chem. Eng. J. 228 (2013) 455–467.

    93. [93]

      G. Lv, D. Wu, R. Fu, J. Hazard. Mater. 165 (2009) 961–966.

    94. [94]

      W. Can, H. Yao-Kun, Z. Qing, J. Min, Chem. Eng. J. 243 (2014) 1–6.

    95. [95]

      L. Yan, H. Ma, B. Wang, Y. Wang, Y. Chen, Desalination 276 (2011) 397–402.

    96. [96]

      Y. Chen, W. Shi, H. Xue, et al., Electrochim. Acta 58 (2011) 383–388.

    97. [97]

      P. Li, Y. Zhao, L. Wang, et al., Electrochemistry 82 (2014) 1056–1060.  doi: 10.5796/electrochemistry.82.1056

    98. [98]

      Y. Deng, X. Zhu, N. Chen, et al., Sci. Total Environ. 745 (2020) 140768.

    99. [99]

      S. Veli, A. Arslan, M. Isgoren, D. Bingol, D. Demiral, Environ. Chall. 5 (2021) 100369.

    100. [100]

      J.F. Perez, J. Llanos, C. Saez, et al., Chem. Eng. J. 351 (2018) 766–772.

    101. [101]

      L.C. Chiang, J.E. Chang, C.T. Chung, Environ. Eng. Sci. 18 (2001) 369–379.  doi: 10.1089/109287501753359609

    102. [102]

      A. Urtiaga, A. Rueda, A. Anglada, I. Ortiz, J. Hazard. Mater. 166 (2009) 1530–1534.

    103. [103]

      Y.Y. Chu, M.H. Zhu, C. Liu, Environ. Eng. Sci. 32 (2015) 445–450.  doi: 10.1089/ees.2014.0433

    104. [104]

      G. Del Moro, L. Prieto-Rodriguez, M. De Sanctis, et al., Chem. Eng. J. 288 (2016) 87–98.

    105. [105]

      P.B. Moraes, R. Bertazzoli, Chemosphere 58 (2005) 41–46.

    106. [106]

      T.L. Luu, Environ. Technol. Innov. 20 (2020) 101099.

    107. [107]

      D. Yu, Y. Pei, J. Environ. Manage. 321 (2022) 115890.

    108. [108]

      X.-M. Li, China Water Wastewater 17 (2001) 14–17.

    109. [109]

      M. Panizza, C.A. Martinez-Huitle, Chemosphere 90 (2013) 1455–1460.

    110. [110]

      T. Cui, Y. Zhang, W. Han, et al., Chem. Eng. J. 315 (2017) 335–344.

    111. [111]

      S.Y. Guvenc, Y. Daniser, E. Can-Güven, G. Varank, A. Demir, Environ. Eng. Res. 28 (2023) 210419.

    112. [112]

      K. Pan, M. Tian, Z.H. Jiang, B. Kjartanson, A. Chen, Electrochim. Acta 60 (2012) 147–153.

    113. [113]

      E. Turro, A. Giannis, R. Cossu, et al., J. Hazard. Mater. 190 (2011) 460–465.

    114. [114]

      C. Zhang, M. Zhou, G. Ren, et al., Water Res. 70 (2015) 414–424.

    115. [115]

      H. Feng, Z. Chen, X. Wang, S. Chen, J. Crittenden, Chem. Eng. J. 413 (2021) 921–928.  doi: 10.1111/poms.13285

    116. [116]

      J. Kim, G.V. Korshin, Ozone Sci. Eng. 30 (2008) 113–119.

    117. [117]

      Y. Sun, P. Li, H. Zheng, et al., Chem. Eng. J. 308 (2017) 1233–1242.

    118. [118]

      T. Hasnine, E.C. Lumbaque, Q. Yuan, Environ. Technol. 39 (12) (2023) 2687–2703.

    119. [119]

      B. Cifcioglu-Gozuacik, S.M. Ergenekon, B. Ozbey-Unal, et al., Water Sci. Technol. 84 (2021) 752–762.  doi: 10.2166/wst.2021.261

    120. [120]

      P. Mandal, M.K. Yadav, A.K. Gupta, B.K. Dubey, Sep. Purif. Technol. 247 (2020) 116910.

    121. [121]

      H.J. Fan, H.Y. Shu, H.S. Yang, W.C. Chen, Sci. Total Environ. 361 (2006) 25–37.

    122. [122]

      A.Y. Bagastyo, D.J. Batstone, K. Rabaey, J. Radjenovic, Water Res. 47 (2013) 242–250.

    123. [123]

      Q. Lv, X. Zang, X. Li, G. Li, Fluid Phase Equilib. 458 (2018) 272–277.

    124. [124]

      A.Y. Bagastyo, D.J. Batstone, K. Rabaey, J. Radjenovic, Water Res. 47 (2013) 242–250.

    125. [125]

      R. Zhao, J. Chen, J. Liu, M. Li, H. Yang, Water Sci. Technol. 87 (2023) 366–380.  doi: 10.2166/wst.2023.002

    126. [126]

      L. Hu, L. Shi, F. Shen, et al., Water Res. 225 (2022) 119210.

    127. [127]

      R. Mao, X. Zhao, H. Lan, H. Liu, J. Qu, Water Res. 77 (2015) 1–12.

    128. [128]

      L. Rui, L. Guoyuan, Z. Shunming, et al., Ind. Water Treat. 14 (2024) 12–25.  doi: 10.21656/1000-0887.440186

    129. [129]

      Z. Wang, Z. Cui, D. Zhao, et al., China Energy Environ. Prot. 46 (2024) 155–161.

    130. [130]

      J.W. Lee, B. Kim, J.Y. Seo, et al., Appl. Surf. Sci. 610 (2023) 1–6.

    131. [131]

      K.A. Stoerzinger, R.R. Rao, X.R. Wang, et al., Chem 2 (2017) 668–675.

    132. [132]

      A.S. Koparal, E. Onder, U.B. Ogutveren, Desalination 197 (2006) 262–272.

    133. [133]

      X. Duan, C. Su, L. Zhou, et al., Appl. Catal. B: Environ. 194 (2016) 7–15.

    134. [134]

      J. Chen, Y. Xia, Q. Dai, Electrochim. Acta 165 (2015) 277–287.

    135. [135]

      A. Vlyssides, P. Karlis, M. Loizidou, A. Zorpas, D. Arapoglou, Environ. Technol. 22 (2001) 1467–1476.

    136. [136]

      2 B. Zhou, Z. Yu, Q. Wei, et al., Appl. Surf. Sci. (2016) 406–415.

    137. [137]

      R.A. Alvarez-Puebla, J.J. Garrido, Chemosphere 59 (2005) 659–667.

    138. [138]

      M. Laura Pinedo, B.D. Riascos, X.E. Quintero, C. Costa, Waste Manag. 144 (2022) 163–172.

    139. [139]

      T.J. Manning, T. Bennett, D. Milton, Sci. Total Environ. 257 (2000) 171–176.

    140. [140]

      F. de Souza, S.R. Braganca, Mater. Res. 21 (2018) 0759–0766.

    141. [141]

      A. Anglada, A.M. Urtiaga, I. Ortiz, J. Hazard. Mater. 181 (2010) 729–735.

    142. [142]

      D. Sun, X. Hong, Z. Cui, et al., J. Hazard. Mater. 388 (2020) 121768.

    143. [143]

      H.A. Gasteiger, N. Marković, P.N. Ross, E.J. Cairns, J. Electrochem. Soc. 141 (1994) 1795–1803.  doi: 10.1149/1.2055007

    144. [144]

      X. Liu, Z. He, Sci. Total Environ. 730 (2020) 139171.

    145. [145]

      N. Ambauen, C. Weber, J. Muff, C. Halle, T. Meyn, J. Appl. Electrochem. 50 (2020) 1175–1188.  doi: 10.1007/s10800-020-01476-3

  • 加载中
    1. [1]

      Cheng WangLi ZhouZhenghao FeiYanqing WangYukou Du . Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction. Chinese Chemical Letters, 2025, 36(12): 111746-. doi: 10.1016/j.cclet.2025.111746

    2. [2]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    3. [3]

      Sijia ZhouTianyi ZhouYuhua HouWang LiYanfei ShenSongqin LiuKaiqing WuYuanjian Zhang . Recent advances in electrochemiluminescence based on polymeric luminophores. Chinese Chemical Letters, 2025, 36(5): 110284-. doi: 10.1016/j.cclet.2024.110284

    4. [4]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    5. [5]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    6. [6]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    7. [7]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    8. [8]

      Liyang Qin Luna Wu Jinlin Long . Advancements in photocatalytic hydrogen peroxide synthesis: overcoming challenges for a sustainable future. Chinese Journal of Structural Chemistry, 2025, 44(4): 100545-100545. doi: 10.1016/j.cjsc.2025.100545

    9. [9]

      Xiaolong LiChangjiang LiChaopeng ShiJiarun WangBei YanXianjin XiaoTongbo Wu . CRISPR-Cas systems in DNA functional circuits: Strategies, challenges, prospects. Chinese Chemical Letters, 2025, 36(7): 110507-. doi: 10.1016/j.cclet.2024.110507

    10. [10]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    11. [11]

      Xiaolu LiuSuhua WangXiangke Wang . Challenges of porous nanomaterials in highly efficient elimination of pollutants from aqueous solution. Chinese Chemical Letters, 2025, 36(9): 110679-. doi: 10.1016/j.cclet.2024.110679

    12. [12]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    13. [13]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    14. [14]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    15. [15]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    16. [16]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    17. [17]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    18. [18]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    19. [19]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    20. [20]

      Wenya ChiRuiyao LiuWenbo ZhouWeilin LiYuan Yu . The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters, 2025, 36(8): 110587-. doi: 10.1016/j.cclet.2024.110587

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return