Citation: Yuanyi Zhou, Lili Wang, Li Chen, Qingbing Zha, Yu Meng, Mingshan Zhu. Functional inorganic nanomaterials for renal cell carcinoma treatment: Advancements and trends[J]. Chinese Chemical Letters, ;2025, 36(12): 110994. doi: 10.1016/j.cclet.2025.110994 shu

Functional inorganic nanomaterials for renal cell carcinoma treatment: Advancements and trends

Figures(7)

  • Renal cell carcinoma (RCC) as one of the most commonly diagnosed cancers threatens human health. The treatment of RCC demands more advanced protocols for better prognosis and higher quality of life. In recent years, the blooming of nanomaterials in various fields demonstrates its critical role as one of the most important components in constructing a smart therapeutic platform against RCC. Herein, focusing on the therapeutic inorganic nanomaterials (such as carbon nanomaterials, metal nanomaterials, oxide nanomaterials), their functions as drug carriers, external field sensitizers, and/or RCC microenvironment sensitizers are analyzed. In combination with the advantages of nanomaterial and RCC characteristics, the trends in integrating nanomaterial to construct multifunctional theranostic platforms for RCC treatment are highlighted. Also, possible solutions concerning the life trajectory and long-term toxicity of nanomaterials are put forward. These perspectives may promote the development of smarter and more effective systems for comprehensive RCC treatment.
  • 加载中
    1. [1]

      R.M. Carey, H.M. Siragy, Trends Endocrin. Met. 14 (2003) 274–281.

    2. [2]

      F. Bray, M. Laversanne, H. Sung, et al., CA-Cancer J. Clin. 74 (2024) 229–263.  doi: 10.3322/caac.21834

    3. [3]

      X. Wang, L. Yang, Z. Chen, et al., CA-Cancer J. Clin. 58 (2008) 97–110.  doi: 10.3322/CA.2007.0003

    4. [4]

      J.S. Lam, O. Shvarts, J.T. Leppert, et al., J. Urol. 174 (2005) 466–472.  doi: 10.1097/01.ju.0000165572.38887.da

    5. [5]

      K. Gupta, J.D. Miller, J.Z. Li, et al., Cancer Treat. Rev. 34 (2008) 193–205.

    6. [6]

      T. Powles, E.R. Plimack, D. Soulières, et al., Lancet Oncol. 21 (2020) 1563–1573.

    7. [7]

      J. Bedke, L. Albiges, U. Capitanio, et al., Eur. Urol. 81 (2022) 134–137.

    8. [8]

      Y. Huang, J. Wang, K. Jiang, et al., J. Control. Release 334 (2021) 127–137.

    9. [9]

      H. Pavenstädt, W. Kriz, M. Kretzler, Physiol. Rev. 83 (2003) 253–307.  doi: 10.1152/physrev.00020.2002

    10. [10]

      C.P. Liu, Y. Hu, J.C. Lin, et al., Med. Res. Rev. 39 (2019) 561–578.  doi: 10.1002/med.21532

    11. [11]

      R.M. Williams, J. Shah, H.S. Tian, et al., Hypertension 71 (2018) 87–94.

    12. [12]

      W. Song, S.N. Musetti, L. Huang, Biomaterials 148 (2017) 16–30.

    13. [13]

      Y. Liu, X. Wang, M. Hussain, et al., Med. Sci. 6 (2018) 100.

    14. [14]

      N. Ahmed, H. Fessi, A. Elaissari, Drug Discov. Today 17 (2012) 928–934.

    15. [15]

      S.S. Das, P. Bharadwaj, M. Bilal, et al., Polymers 12 (2020) 1397.  doi: 10.3390/polym12061397

    16. [16]

      M.H. He, L. Chen, T. Zheng, et al., Front. Pharmacol. 9 (2018) 745.

    17. [17]

      J. Li, K. Wu, J. Zhang, et al., Biomed. Pharmacother. 167 (2023) 115444.

    18. [18]

      Z. Qian, Y. Zhang, J. Yuan, et al., Front. Bioeng. Biotech. 11 (2023) 1111977.

    19. [19]

      R. Wu, K. Wang, Y. Gai, et al., J. Nanobiotechnol. 21 (2023) 3.

    20. [20]

      D. Maiti, X. Tong, X. Mou, et al., Front. Pharmacol. 9 (2019) 1401.

    21. [21]

      P.K. Jiwanti, B.Y. Wardhana, L.G. Sutanto, et al., Molecules 27 (2022) 7578.  doi: 10.3390/molecules27217578

    22. [22]

      M. Shin, J. Lim, Y. Park, et al., RSC Adv. 14 (2024) 7142–7156.  doi: 10.1039/d3ra08946k

    23. [23]

      B. Han, Y.L. Zhang, Q.D. Chen, et al., Adv. Funct. Mater. 28 (2018) 1802235.

    24. [24]

      S.V. Torti, F. Byrne, O. Whelan, et al., Int. J. Nanomed. 2 (2007) 707–714.

    25. [25]

      A. Burke, X. Ding, R. Singh, et al., Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 12897–12902.  doi: 10.1073/pnas.0905195106

    26. [26]

      J. Li, J. Wang, D. Sun, et al., J. Biomed. Nanotechnol. 12 (2016) 1604–1616.  doi: 10.1166/jbn.2016.2271

    27. [27]

      Z. Jiang, H. Jin, S. Sun, et al., Mat. Sci. Eng. C: Mater. 93 (2018) 846–852.

    28. [28]

      R. Jia, T. Li, W. Jiang, et al., Mater. Design 224 (2022) 111287.

    29. [29]

      Y. Zhou, K. Ma, J. Liu, et al., Chin. Chem. Lett. 35 (2024) 109056.

    30. [30]

      L. Wang, P. Yin, Z. Jing, et al., Surf. Interfaces 46 (2024) 104147.

    31. [31]

      J.J. Xu, W.C. Zhang, Y.W. Guo, et al., Drug Deliv. 29 (2022) 664–678.

    32. [32]

      R. Khursheed, K. Dua, S. Vishwas, et al., Biomed. Pharmacother. 150 (2022) 112951.

    33. [33]

      R.N. Pedro, T. Thekke-Adiyat, R. Goel, et al., Urology 76 (2010) 494–498.

    34. [34]

      S. Nikzad, G. Mahmoudi, P. Amini, et al., J. Renal Inj. Prev. 6 (2016) 103–108.  doi: 10.15171/jrip.2017.20

    35. [35]

      C. Callaghan, D. Peralta, J. Liu, et al., J. Pharm. Sci. 105 (2016) 284–292.

    36. [36]

      J. Liu, C. Abshire, C. Carry, et al., BJU Int. 119 (2017) 342–348.  doi: 10.1111/bju.13590

    37. [37]

      R. Liu, Q. Pei, T. Shou, et al., Int. J. Nanomed. 14 (2019) 4091–4103.  doi: 10.2147/ijn.s203222

    38. [38]

      E.J. Nam, S.K. Kong, I. Cho, et al., J. Drug Deliv. Sci. Tec. 91 (2024) 105179.

    39. [39]

      P. Zhao, X. Chen, Q. Wang, et al., Nanomedicine 15 (2020) 1079–1096.  doi: 10.2217/nnm-2019-0417

    40. [40]

      S.A. Read, S. Obeid, C. Ahlenstiel, et al., Adv. Nutr. 10 (2019) 696–710.  doi: 10.1093/advances/nmz013

    41. [41]

      S. Hameed, J. Iqbal, M. Ali, et al., Mater. Res. Express 6 (2019) 102005.  doi: 10.1088/2053-1591/ab40df

    42. [42]

      S. El-Sonbaty, E.I. Kandil, R.A.H. Haroun, Biol. Trace Elem. Res. 201 (2023) 272–281.  doi: 10.1007/s12011-022-03126-5

    43. [43]

      J. Chen, F. Ren, W. Cao, et al., Nanomedicine: NBM 34 (2021) 102370.

    44. [44]

      C. Li, P. Zhu, H. Xiang, et al., Mater. Today Bio. 18 (2023) 100513.

    45. [45]

      J. Cheng, W. Wan, W. Zhu, Chin. J. Chem. 34 (2016) 53–58.  doi: 10.1002/cjoc.201500339

    46. [46]

      C. Yang, Y. Zhu, D. Li, et al., Small 17 (2021) e2101837.

    47. [47]

      M.P. Vinardell, M. Mitjans, Nanomaterials 5 (2015) 1004–1021.  doi: 10.3390/nano5021004

    48. [48]

      X. Wang, D. Li, Z. Xia, et al., Arab. J. Chem. 15 (2022) 103753.  doi: 10.1016/j.arabjc.2022.103753

    49. [49]

      X. Zhou, T. Cao, J. Oncol. 2022 (2022) 2883404.

    50. [50]

      A. Grillone, E.R. Riva, A. Mondini, et al., Adv. Healthc. Mater. 4 (2015) 1681–1690.  doi: 10.1002/adhm.201500235

    51. [51]

      M.V. Yigit, A. Moore, Z. Medarova, Pharm. Res. 29 (2012) 1180–1188.  doi: 10.1007/s11095-012-0679-7

    52. [52]

      A. Takke, P. Shende, Life Sci. 275 (2021) 119377.

    53. [53]

      A. Takke, P. Shende, Colloid Surface A 628 (2021) 127349.

    54. [54]

      T.V.M. Sreekanth, M. Pandurangan, G.R. Dillip, et al., J. Photoch. Photobio. B 164 (2016) 174–181.

    55. [55]

      Q. Yang, Y. Wang, Q. Yang, et al., Biomaterials 146 (2017) 72–85.

    56. [56]

      M. Shi, S. Wang, S. Zheng, et al., Colloid Surface B 185 (2020) 110625.

    57. [57]

      L. Lei, K. Wang, Int. J. Nanomed. 19 (2024) 699–707.  doi: 10.2147/ijn.s415668

    58. [58]

      Z.X. Wang, Y. Hou, W. Han, et al., Chem. Res. Chinese U. 27 (2011) 94–98.

    59. [59]

      L. Gao, Y.Z. Fan, T.H. Zhang, et al., RSC Adv. 9 (2019) 11567–11575.  doi: 10.1039/c9ra01029g

    60. [60]

      H. Jiang, R. Wang, F. Zhou, et al., Int. J. Biol. Macromol. 211 (2022) 35–46.

    61. [61]

      Y. Lang, X. Tian, H.Y. Dong, et al., Cells 11 (2022) 1651.  doi: 10.3390/cells11101651

    62. [62]

      B. Yang, Y. Chen, J. Shi, Adv. Mater. 31 (2019) 1901778.

    63. [63]

      X. Qian, J. Zhang, Z. Gu, et al., Biomaterials 211 (2019) 1–13.  doi: 10.1155/2019/7362931

    64. [64]

      W. Cao, M. Jin, K. Yang, et al., J. Nanobiotechnol. 19 (2021) 325.

    65. [65]

      C. Jia, Y. Guo, F.G. Wu, Small 18 (2022) 2103868.

    66. [66]

      Q. Zhou, S. Shao, J. Wang, et al., Nat. Nanotechnol. 14 (2019) 799–809.  doi: 10.1038/s41565-019-0485-z

    67. [67]

      A. Zhang, K. Meng, Y. Liu, et al., Adv. Colloid Interface Sci. 284 (2020) 102261.

  • 加载中
    1. [1]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    2. [2]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    3. [3]

      Hengrui ZhangXijun XuXun-Lu LiXiangwen Gao . Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects. Acta Physico-Chimica Sinica, 2025, 41(10): 100115-0. doi: 10.1016/j.actphy.2025.100115

    4. [4]

      Yunzhe ZhengSi SunJiali LiuQingyu ZhaoHeng ZhangJing ZhangPeng ZhouZhaokun XiongChuan-Shu HeBo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722

    5. [5]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    6. [6]

      Jianju LiXinwei ChenYang YuHao MaXinhui XiaZixuan ZhaoJunqiu JiangQingliang ZhaoYingzi LinLiangliang Wei . Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors. Chinese Chemical Letters, 2025, 36(7): 110410-. doi: 10.1016/j.cclet.2024.110410

    7. [7]

      Jingyi YangSihan WangXubiao LuoZhenyang YuYanbo Zhou . Fenton-like process in antibiotic-containing wastewater treatment: Applications and toxicity evaluation. Chinese Chemical Letters, 2025, 36(12): 110996-. doi: 10.1016/j.cclet.2025.110996

    8. [8]

      Baolei LiDa WangMiao YuChaozheng HeXue LiJing ZhaiMdmahadi HasanChenxu ZhaoMin WangDingcai Shen . Accelerating multi-objective catalytic material design: A model-based method. Chinese Chemical Letters, 2025, 36(12): 110454-. doi: 10.1016/j.cclet.2024.110454

    9. [9]

      Lu ChengJinghua QuanHongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685

    10. [10]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    11. [11]

      Takuya TanakaRikuto NodaYuki SawatariRiki IwaiBen Zhong TangGen-ichi Konishi . Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens. Chinese Chemical Letters, 2025, 36(12): 111495-. doi: 10.1016/j.cclet.2025.111495

    12. [12]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    13. [13]

      Yimin GuoYiting LuoShuwen HuaChuan-Fan DingYinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070

    14. [14]

      Xinguo MaoShuo ZhangQiang ShiHua ChengLeyong Wang . Macrocyclic host molecules: Rising as a promising supramolecular material. Chinese Chemical Letters, 2025, 36(6): 110950-. doi: 10.1016/j.cclet.2025.110950

    15. [15]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    16. [16]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    17. [17]

      Yao WangJun OuyangHuadong YuanJianmin LuoShihui ZouJianwei NaiXinyong TaoYujing Liu . Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110412-. doi: 10.1016/j.cclet.2024.110412

    18. [18]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    19. [19]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    20. [20]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return